rocksdb/db/compaction_picker.cc

1690 lines
62 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/compaction_picker.h"
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>
#include <limits>
#include <queue>
#include <string>
#include <utility>
#include "db/column_family.h"
#include "monitoring/statistics.h"
#include "util/filename.h"
#include "util/log_buffer.h"
#include "util/random.h"
#include "util/string_util.h"
#include "util/sync_point.h"
namespace rocksdb {
namespace {
uint64_t TotalCompensatedFileSize(const std::vector<FileMetaData*>& files) {
uint64_t sum = 0;
for (size_t i = 0; i < files.size() && files[i]; i++) {
sum += files[i]->compensated_file_size;
}
return sum;
}
bool FindIntraL0Compaction(const std::vector<FileMetaData*>& level_files,
size_t min_files_to_compact,
uint64_t max_compact_bytes_per_del_file,
CompactionInputFiles* comp_inputs) {
size_t compact_bytes = static_cast<size_t>(level_files[0]->fd.file_size);
size_t compact_bytes_per_del_file = port::kMaxSizet;
// compaction range will be [0, span_len).
size_t span_len;
// pull in files until the amount of compaction work per deleted file begins
// increasing.
size_t new_compact_bytes_per_del_file = 0;
for (span_len = 1; span_len < level_files.size(); ++span_len) {
compact_bytes += level_files[span_len]->fd.file_size;
new_compact_bytes_per_del_file = compact_bytes / span_len;
if (level_files[span_len]->being_compacted ||
new_compact_bytes_per_del_file > compact_bytes_per_del_file) {
break;
}
compact_bytes_per_del_file = new_compact_bytes_per_del_file;
}
if (span_len >= min_files_to_compact &&
compact_bytes_per_del_file < max_compact_bytes_per_del_file) {
assert(comp_inputs != nullptr);
comp_inputs->level = 0;
for (size_t i = 0; i < span_len; ++i) {
comp_inputs->files.push_back(level_files[i]);
}
return true;
}
return false;
}
} // anonymous namespace
// Determine compression type, based on user options, level of the output
// file and whether compression is disabled.
// If enable_compression is false, then compression is always disabled no
// matter what the values of the other two parameters are.
// Otherwise, the compression type is determined based on options and level.
CompressionType GetCompressionType(const ImmutableCFOptions& ioptions,
const VersionStorageInfo* vstorage,
const MutableCFOptions& mutable_cf_options,
int level, int base_level,
const bool enable_compression) {
if (!enable_compression) {
// disable compression
return kNoCompression;
}
// If bottommost_compression is set and we are compacting to the
// bottommost level then we should use it.
if (ioptions.bottommost_compression != kDisableCompressionOption &&
level >= (vstorage->num_non_empty_levels() - 1)) {
return ioptions.bottommost_compression;
}
// If the user has specified a different compression level for each level,
// then pick the compression for that level.
if (!ioptions.compression_per_level.empty()) {
assert(level == 0 || level >= base_level);
int idx = (level == 0) ? 0 : level - base_level + 1;
const int n = static_cast<int>(ioptions.compression_per_level.size()) - 1;
// It is possible for level_ to be -1; in that case, we use level
// 0's compression. This occurs mostly in backwards compatibility
// situations when the builder doesn't know what level the file
// belongs to. Likewise, if level is beyond the end of the
// specified compression levels, use the last value.
return ioptions.compression_per_level[std::max(0, std::min(idx, n))];
} else {
return mutable_cf_options.compression;
}
}
CompactionPicker::CompactionPicker(const ImmutableCFOptions& ioptions,
const InternalKeyComparator* icmp)
: ioptions_(ioptions), icmp_(icmp) {}
CompactionPicker::~CompactionPicker() {}
// Delete this compaction from the list of running compactions.
void CompactionPicker::ReleaseCompactionFiles(Compaction* c, Status status) {
UnregisterCompaction(c);
if (!status.ok()) {
c->ResetNextCompactionIndex();
}
}
void CompactionPicker::GetRange(const CompactionInputFiles& inputs,
InternalKey* smallest,
InternalKey* largest) const {
const int level = inputs.level;
assert(!inputs.empty());
smallest->Clear();
largest->Clear();
if (level == 0) {
for (size_t i = 0; i < inputs.size(); i++) {
FileMetaData* f = inputs[i];
if (i == 0) {
*smallest = f->smallest;
*largest = f->largest;
} else {
if (icmp_->Compare(f->smallest, *smallest) < 0) {
*smallest = f->smallest;
}
if (icmp_->Compare(f->largest, *largest) > 0) {
*largest = f->largest;
}
}
}
} else {
*smallest = inputs[0]->smallest;
*largest = inputs[inputs.size() - 1]->largest;
}
}
void CompactionPicker::GetRange(const CompactionInputFiles& inputs1,
const CompactionInputFiles& inputs2,
InternalKey* smallest,
InternalKey* largest) const {
assert(!inputs1.empty() || !inputs2.empty());
if (inputs1.empty()) {
GetRange(inputs2, smallest, largest);
} else if (inputs2.empty()) {
GetRange(inputs1, smallest, largest);
} else {
InternalKey smallest1, smallest2, largest1, largest2;
GetRange(inputs1, &smallest1, &largest1);
GetRange(inputs2, &smallest2, &largest2);
*smallest =
icmp_->Compare(smallest1, smallest2) < 0 ? smallest1 : smallest2;
*largest = icmp_->Compare(largest1, largest2) < 0 ? largest2 : largest1;
}
}
void CompactionPicker::GetRange(const std::vector<CompactionInputFiles>& inputs,
InternalKey* smallest,
InternalKey* largest) const {
InternalKey current_smallest;
InternalKey current_largest;
bool initialized = false;
for (const auto& in : inputs) {
if (in.empty()) {
continue;
}
GetRange(in, &current_smallest, &current_largest);
if (!initialized) {
*smallest = current_smallest;
*largest = current_largest;
initialized = true;
} else {
if (icmp_->Compare(current_smallest, *smallest) < 0) {
*smallest = current_smallest;
}
if (icmp_->Compare(current_largest, *largest) > 0) {
*largest = current_largest;
}
}
}
assert(initialized);
}
bool CompactionPicker::ExpandInputsToCleanCut(const std::string& /*cf_name*/,
VersionStorageInfo* vstorage,
CompactionInputFiles* inputs) {
// This isn't good compaction
assert(!inputs->empty());
const int level = inputs->level;
// GetOverlappingInputs will always do the right thing for level-0.
// So we don't need to do any expansion if level == 0.
if (level == 0) {
return true;
}
InternalKey smallest, largest;
// Keep expanding inputs until we are sure that there is a "clean cut"
// boundary between the files in input and the surrounding files.
// This will ensure that no parts of a key are lost during compaction.
int hint_index = -1;
size_t old_size;
do {
old_size = inputs->size();
GetRange(*inputs, &smallest, &largest);
inputs->clear();
vstorage->GetOverlappingInputs(level, &smallest, &largest, &inputs->files,
hint_index, &hint_index);
} while (inputs->size() > old_size);
// we started off with inputs non-empty and the previous loop only grew
// inputs. thus, inputs should be non-empty here
assert(!inputs->empty());
// If, after the expansion, there are files that are already under
// compaction, then we must drop/cancel this compaction.
if (AreFilesInCompaction(inputs->files)) {
return false;
}
return true;
}
bool CompactionPicker::RangeOverlapWithCompaction(
const Slice& smallest_user_key, const Slice& largest_user_key,
int level) const {
const Comparator* ucmp = icmp_->user_comparator();
for (Compaction* c : compactions_in_progress_) {
if (c->output_level() == level &&
ucmp->Compare(smallest_user_key, c->GetLargestUserKey()) <= 0 &&
ucmp->Compare(largest_user_key, c->GetSmallestUserKey()) >= 0) {
// Overlap
return true;
}
}
// Did not overlap with any running compaction in level `level`
return false;
}
bool CompactionPicker::FilesRangeOverlapWithCompaction(
const std::vector<CompactionInputFiles>& inputs, int level) const {
bool is_empty = true;
for (auto& in : inputs) {
if (!in.empty()) {
is_empty = false;
break;
}
}
if (is_empty) {
// No files in inputs
return false;
}
InternalKey smallest, largest;
GetRange(inputs, &smallest, &largest);
return RangeOverlapWithCompaction(smallest.user_key(), largest.user_key(),
level);
}
// Returns true if any one of specified files are being compacted
bool CompactionPicker::AreFilesInCompaction(
const std::vector<FileMetaData*>& files) {
for (size_t i = 0; i < files.size(); i++) {
if (files[i]->being_compacted) {
return true;
}
}
return false;
}
Compaction* CompactionPicker::CompactFiles(
const CompactionOptions& compact_options,
const std::vector<CompactionInputFiles>& input_files, int output_level,
VersionStorageInfo* vstorage, const MutableCFOptions& mutable_cf_options,
uint32_t output_path_id) {
assert(input_files.size());
// This compaction output should not overlap with a running compaction as
// `SanitizeCompactionInputFiles` should've checked earlier and db mutex
// shouldn't have been released since.
assert(!FilesRangeOverlapWithCompaction(input_files, output_level));
auto c =
new Compaction(vstorage, ioptions_, mutable_cf_options, input_files,
output_level, compact_options.output_file_size_limit,
mutable_cf_options.max_compaction_bytes, output_path_id,
compact_options.compression, /* grandparents */ {}, true);
RegisterCompaction(c);
return c;
}
Status CompactionPicker::GetCompactionInputsFromFileNumbers(
std::vector<CompactionInputFiles>* input_files,
std::unordered_set<uint64_t>* input_set, const VersionStorageInfo* vstorage,
const CompactionOptions& /*compact_options*/) const {
if (input_set->size() == 0U) {
return Status::InvalidArgument(
"Compaction must include at least one file.");
}
assert(input_files);
std::vector<CompactionInputFiles> matched_input_files;
matched_input_files.resize(vstorage->num_levels());
int first_non_empty_level = -1;
int last_non_empty_level = -1;
// TODO(yhchiang): use a lazy-initialized mapping from
// file_number to FileMetaData in Version.
for (int level = 0; level < vstorage->num_levels(); ++level) {
for (auto file : vstorage->LevelFiles(level)) {
auto iter = input_set->find(file->fd.GetNumber());
if (iter != input_set->end()) {
matched_input_files[level].files.push_back(file);
input_set->erase(iter);
last_non_empty_level = level;
if (first_non_empty_level == -1) {
first_non_empty_level = level;
}
}
}
}
if (!input_set->empty()) {
std::string message(
"Cannot find matched SST files for the following file numbers:");
for (auto fn : *input_set) {
message += " ";
message += ToString(fn);
}
return Status::InvalidArgument(message);
}
for (int level = first_non_empty_level; level <= last_non_empty_level;
++level) {
matched_input_files[level].level = level;
input_files->emplace_back(std::move(matched_input_files[level]));
}
return Status::OK();
}
// Returns true if any one of the parent files are being compacted
bool CompactionPicker::IsRangeInCompaction(VersionStorageInfo* vstorage,
const InternalKey* smallest,
const InternalKey* largest,
int level, int* level_index) {
std::vector<FileMetaData*> inputs;
assert(level < NumberLevels());
vstorage->GetOverlappingInputs(level, smallest, largest, &inputs,
*level_index, level_index);
return AreFilesInCompaction(inputs);
}
// Populates the set of inputs of all other levels that overlap with the
// start level.
// Now we assume all levels except start level and output level are empty.
// Will also attempt to expand "start level" if that doesn't expand
// "output level" or cause "level" to include a file for compaction that has an
// overlapping user-key with another file.
// REQUIRES: input_level and output_level are different
// REQUIRES: inputs->empty() == false
// Returns false if files on parent level are currently in compaction, which
// means that we can't compact them
bool CompactionPicker::SetupOtherInputs(
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
VersionStorageInfo* vstorage, CompactionInputFiles* inputs,
CompactionInputFiles* output_level_inputs, int* parent_index,
int base_index) {
assert(!inputs->empty());
assert(output_level_inputs->empty());
const int input_level = inputs->level;
const int output_level = output_level_inputs->level;
if (input_level == output_level) {
// no possibility of conflict
return true;
}
// For now, we only support merging two levels, start level and output level.
// We need to assert other levels are empty.
for (int l = input_level + 1; l < output_level; l++) {
assert(vstorage->NumLevelFiles(l) == 0);
}
InternalKey smallest, largest;
// Get the range one last time.
GetRange(*inputs, &smallest, &largest);
// Populate the set of next-level files (inputs_GetOutputLevelInputs()) to
// include in compaction
vstorage->GetOverlappingInputs(output_level, &smallest, &largest,
&output_level_inputs->files, *parent_index,
parent_index);
if (AreFilesInCompaction(output_level_inputs->files)) {
return false;
}
if (!output_level_inputs->empty()) {
if (!ExpandInputsToCleanCut(cf_name, vstorage, output_level_inputs)) {
return false;
}
}
// See if we can further grow the number of inputs in "level" without
// changing the number of "level+1" files we pick up. We also choose NOT
// to expand if this would cause "level" to include some entries for some
// user key, while excluding other entries for the same user key. This
// can happen when one user key spans multiple files.
if (!output_level_inputs->empty()) {
const uint64_t limit = mutable_cf_options.max_compaction_bytes;
const uint64_t output_level_inputs_size =
TotalCompensatedFileSize(output_level_inputs->files);
const uint64_t inputs_size = TotalCompensatedFileSize(inputs->files);
bool expand_inputs = false;
CompactionInputFiles expanded_inputs;
expanded_inputs.level = input_level;
// Get closed interval of output level
InternalKey all_start, all_limit;
GetRange(*inputs, *output_level_inputs, &all_start, &all_limit);
bool try_overlapping_inputs = true;
vstorage->GetOverlappingInputs(input_level, &all_start, &all_limit,
&expanded_inputs.files, base_index, nullptr);
uint64_t expanded_inputs_size =
TotalCompensatedFileSize(expanded_inputs.files);
if (!ExpandInputsToCleanCut(cf_name, vstorage, &expanded_inputs)) {
try_overlapping_inputs = false;
}
if (try_overlapping_inputs && expanded_inputs.size() > inputs->size() &&
output_level_inputs_size + expanded_inputs_size < limit &&
!AreFilesInCompaction(expanded_inputs.files)) {
InternalKey new_start, new_limit;
GetRange(expanded_inputs, &new_start, &new_limit);
CompactionInputFiles expanded_output_level_inputs;
expanded_output_level_inputs.level = output_level;
vstorage->GetOverlappingInputs(output_level, &new_start, &new_limit,
&expanded_output_level_inputs.files,
*parent_index, parent_index);
assert(!expanded_output_level_inputs.empty());
if (!AreFilesInCompaction(expanded_output_level_inputs.files) &&
ExpandInputsToCleanCut(cf_name, vstorage,
&expanded_output_level_inputs) &&
expanded_output_level_inputs.size() == output_level_inputs->size()) {
expand_inputs = true;
}
}
if (!expand_inputs) {
vstorage->GetCleanInputsWithinInterval(input_level, &all_start,
&all_limit, &expanded_inputs.files,
base_index, nullptr);
expanded_inputs_size = TotalCompensatedFileSize(expanded_inputs.files);
if (expanded_inputs.size() > inputs->size() &&
output_level_inputs_size + expanded_inputs_size < limit &&
!AreFilesInCompaction(expanded_inputs.files)) {
expand_inputs = true;
}
}
if (expand_inputs) {
ROCKS_LOG_INFO(ioptions_.info_log,
"[%s] Expanding@%d %" ROCKSDB_PRIszt "+%" ROCKSDB_PRIszt
"(%" PRIu64 "+%" PRIu64 " bytes) to %" ROCKSDB_PRIszt
"+%" ROCKSDB_PRIszt " (%" PRIu64 "+%" PRIu64 "bytes)\n",
cf_name.c_str(), input_level, inputs->size(),
output_level_inputs->size(), inputs_size,
output_level_inputs_size, expanded_inputs.size(),
output_level_inputs->size(), expanded_inputs_size,
output_level_inputs_size);
inputs->files = expanded_inputs.files;
}
}
return true;
}
void CompactionPicker::GetGrandparents(
VersionStorageInfo* vstorage, const CompactionInputFiles& inputs,
const CompactionInputFiles& output_level_inputs,
std::vector<FileMetaData*>* grandparents) {
InternalKey start, limit;
GetRange(inputs, output_level_inputs, &start, &limit);
// Compute the set of grandparent files that overlap this compaction
// (parent == level+1; grandparent == level+2)
if (output_level_inputs.level + 1 < NumberLevels()) {
vstorage->GetOverlappingInputs(output_level_inputs.level + 1, &start,
&limit, grandparents);
}
}
Compaction* CompactionPicker::CompactRange(
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
VersionStorageInfo* vstorage, int input_level, int output_level,
uint32_t output_path_id, const InternalKey* begin, const InternalKey* end,
InternalKey** compaction_end, bool* manual_conflict) {
// CompactionPickerFIFO has its own implementation of compact range
assert(ioptions_.compaction_style != kCompactionStyleFIFO);
if (input_level == ColumnFamilyData::kCompactAllLevels) {
assert(ioptions_.compaction_style == kCompactionStyleUniversal);
// Universal compaction with more than one level always compacts all the
// files together to the last level.
assert(vstorage->num_levels() > 1);
// DBImpl::CompactRange() set output level to be the last level
if (ioptions_.allow_ingest_behind) {
assert(output_level == vstorage->num_levels() - 2);
} else {
assert(output_level == vstorage->num_levels() - 1);
}
// DBImpl::RunManualCompaction will make full range for universal compaction
assert(begin == nullptr);
assert(end == nullptr);
*compaction_end = nullptr;
int start_level = 0;
for (; start_level < vstorage->num_levels() &&
vstorage->NumLevelFiles(start_level) == 0;
start_level++) {
}
if (start_level == vstorage->num_levels()) {
return nullptr;
}
if ((start_level == 0) && (!level0_compactions_in_progress_.empty())) {
*manual_conflict = true;
// Only one level 0 compaction allowed
return nullptr;
}
std::vector<CompactionInputFiles> inputs(vstorage->num_levels() -
start_level);
for (int level = start_level; level < vstorage->num_levels(); level++) {
inputs[level - start_level].level = level;
auto& files = inputs[level - start_level].files;
for (FileMetaData* f : vstorage->LevelFiles(level)) {
files.push_back(f);
}
if (AreFilesInCompaction(files)) {
*manual_conflict = true;
return nullptr;
}
}
// 2 non-exclusive manual compactions could run at the same time producing
// overlaping outputs in the same level.
if (FilesRangeOverlapWithCompaction(inputs, output_level)) {
// This compaction output could potentially conflict with the output
// of a currently running compaction, we cannot run it.
*manual_conflict = true;
return nullptr;
}
Compaction* c = new Compaction(
vstorage, ioptions_, mutable_cf_options, std::move(inputs),
output_level, mutable_cf_options.MaxFileSizeForLevel(output_level),
/* max_compaction_bytes */ LLONG_MAX, output_path_id,
GetCompressionType(ioptions_, vstorage, mutable_cf_options,
output_level, 1),
/* grandparents */ {}, /* is manual */ true);
RegisterCompaction(c);
return c;
}
CompactionInputFiles inputs;
inputs.level = input_level;
bool covering_the_whole_range = true;
// All files are 'overlapping' in universal style compaction.
// We have to compact the entire range in one shot.
if (ioptions_.compaction_style == kCompactionStyleUniversal) {
begin = nullptr;
end = nullptr;
}
vstorage->GetOverlappingInputs(input_level, begin, end, &inputs.files);
if (inputs.empty()) {
return nullptr;
}
if ((input_level == 0) && (!level0_compactions_in_progress_.empty())) {
// Only one level 0 compaction allowed
TEST_SYNC_POINT("CompactionPicker::CompactRange:Conflict");
*manual_conflict = true;
return nullptr;
}
// Avoid compacting too much in one shot in case the range is large.
// But we cannot do this for level-0 since level-0 files can overlap
// and we must not pick one file and drop another older file if the
// two files overlap.
if (input_level > 0) {
const uint64_t limit = mutable_cf_options.max_compaction_bytes;
uint64_t total = 0;
for (size_t i = 0; i + 1 < inputs.size(); ++i) {
uint64_t s = inputs[i]->compensated_file_size;
total += s;
if (total >= limit) {
**compaction_end = inputs[i + 1]->smallest;
covering_the_whole_range = false;
inputs.files.resize(i + 1);
break;
}
}
}
assert(output_path_id < static_cast<uint32_t>(ioptions_.cf_paths.size()));
if (ExpandInputsToCleanCut(cf_name, vstorage, &inputs) == false) {
// manual compaction is now multi-threaded, so it can
// happen that ExpandWhileOverlapping fails
// we handle it higher in RunManualCompaction
*manual_conflict = true;
return nullptr;
}
if (covering_the_whole_range) {
*compaction_end = nullptr;
}
CompactionInputFiles output_level_inputs;
if (output_level == ColumnFamilyData::kCompactToBaseLevel) {
assert(input_level == 0);
output_level = vstorage->base_level();
assert(output_level > 0);
}
output_level_inputs.level = output_level;
if (input_level != output_level) {
int parent_index = -1;
if (!SetupOtherInputs(cf_name, mutable_cf_options, vstorage, &inputs,
&output_level_inputs, &parent_index, -1)) {
// manual compaction is now multi-threaded, so it can
// happen that SetupOtherInputs fails
// we handle it higher in RunManualCompaction
*manual_conflict = true;
return nullptr;
}
}
std::vector<CompactionInputFiles> compaction_inputs({inputs});
if (!output_level_inputs.empty()) {
compaction_inputs.push_back(output_level_inputs);
}
for (size_t i = 0; i < compaction_inputs.size(); i++) {
if (AreFilesInCompaction(compaction_inputs[i].files)) {
*manual_conflict = true;
return nullptr;
}
}
// 2 non-exclusive manual compactions could run at the same time producing
// overlaping outputs in the same level.
if (FilesRangeOverlapWithCompaction(compaction_inputs, output_level)) {
// This compaction output could potentially conflict with the output
// of a currently running compaction, we cannot run it.
*manual_conflict = true;
return nullptr;
}
std::vector<FileMetaData*> grandparents;
GetGrandparents(vstorage, inputs, output_level_inputs, &grandparents);
Compaction* compaction = new Compaction(
vstorage, ioptions_, mutable_cf_options, std::move(compaction_inputs),
output_level, mutable_cf_options.MaxFileSizeForLevel(output_level),
mutable_cf_options.max_compaction_bytes, output_path_id,
GetCompressionType(ioptions_, vstorage, mutable_cf_options, output_level,
vstorage->base_level()),
std::move(grandparents), /* is manual compaction */ true);
TEST_SYNC_POINT_CALLBACK("CompactionPicker::CompactRange:Return", compaction);
RegisterCompaction(compaction);
// Creating a compaction influences the compaction score because the score
// takes running compactions into account (by skipping files that are already
// being compacted). Since we just changed compaction score, we recalculate it
// here
vstorage->ComputeCompactionScore(ioptions_, mutable_cf_options);
return compaction;
}
#ifndef ROCKSDB_LITE
namespace {
// Test whether two files have overlapping key-ranges.
bool HaveOverlappingKeyRanges(const Comparator* c, const SstFileMetaData& a,
const SstFileMetaData& b) {
if (c->Compare(a.smallestkey, b.smallestkey) >= 0) {
if (c->Compare(a.smallestkey, b.largestkey) <= 0) {
// b.smallestkey <= a.smallestkey <= b.largestkey
return true;
}
} else if (c->Compare(a.largestkey, b.smallestkey) >= 0) {
// a.smallestkey < b.smallestkey <= a.largestkey
return true;
}
if (c->Compare(a.largestkey, b.largestkey) <= 0) {
if (c->Compare(a.largestkey, b.smallestkey) >= 0) {
// b.smallestkey <= a.largestkey <= b.largestkey
return true;
}
} else if (c->Compare(a.smallestkey, b.largestkey) <= 0) {
// a.smallestkey <= b.largestkey < a.largestkey
return true;
}
return false;
}
} // namespace
Status CompactionPicker::SanitizeCompactionInputFilesForAllLevels(
std::unordered_set<uint64_t>* input_files,
const ColumnFamilyMetaData& cf_meta, const int output_level) const {
auto& levels = cf_meta.levels;
auto comparator = icmp_->user_comparator();
// TODO(yhchiang): add is_adjustable to CompactionOptions
// the smallest and largest key of the current compaction input
std::string smallestkey;
std::string largestkey;
// a flag for initializing smallest and largest key
bool is_first = false;
const int kNotFound = -1;
// For each level, it does the following things:
// 1. Find the first and the last compaction input files
// in the current level.
// 2. Include all files between the first and the last
// compaction input files.
// 3. Update the compaction key-range.
// 4. For all remaining levels, include files that have
// overlapping key-range with the compaction key-range.
for (int l = 0; l <= output_level; ++l) {
auto& current_files = levels[l].files;
int first_included = static_cast<int>(current_files.size());
int last_included = kNotFound;
// identify the first and the last compaction input files
// in the current level.
for (size_t f = 0; f < current_files.size(); ++f) {
if (input_files->find(TableFileNameToNumber(current_files[f].name)) !=
input_files->end()) {
first_included = std::min(first_included, static_cast<int>(f));
last_included = std::max(last_included, static_cast<int>(f));
if (is_first == false) {
smallestkey = current_files[f].smallestkey;
largestkey = current_files[f].largestkey;
is_first = true;
}
}
}
if (last_included == kNotFound) {
continue;
}
if (l != 0) {
// expend the compaction input of the current level if it
// has overlapping key-range with other non-compaction input
// files in the same level.
while (first_included > 0) {
if (comparator->Compare(current_files[first_included - 1].largestkey,
current_files[first_included].smallestkey) <
0) {
break;
}
first_included--;
}
while (last_included < static_cast<int>(current_files.size()) - 1) {
if (comparator->Compare(current_files[last_included + 1].smallestkey,
current_files[last_included].largestkey) > 0) {
break;
}
last_included++;
}
} else if (output_level > 0) {
last_included = static_cast<int>(current_files.size() - 1);
}
// include all files between the first and the last compaction input files.
for (int f = first_included; f <= last_included; ++f) {
if (current_files[f].being_compacted) {
return Status::Aborted("Necessary compaction input file " +
current_files[f].name +
" is currently being compacted.");
}
input_files->insert(TableFileNameToNumber(current_files[f].name));
}
// update smallest and largest key
if (l == 0) {
for (int f = first_included; f <= last_included; ++f) {
if (comparator->Compare(smallestkey, current_files[f].smallestkey) >
0) {
smallestkey = current_files[f].smallestkey;
}
if (comparator->Compare(largestkey, current_files[f].largestkey) < 0) {
largestkey = current_files[f].largestkey;
}
}
} else {
if (comparator->Compare(smallestkey,
current_files[first_included].smallestkey) > 0) {
smallestkey = current_files[first_included].smallestkey;
}
if (comparator->Compare(largestkey,
current_files[last_included].largestkey) < 0) {
largestkey = current_files[last_included].largestkey;
}
}
SstFileMetaData aggregated_file_meta;
aggregated_file_meta.smallestkey = smallestkey;
aggregated_file_meta.largestkey = largestkey;
// For all lower levels, include all overlapping files.
// We need to add overlapping files from the current level too because even
// if there no input_files in level l, we would still need to add files
// which overlap with the range containing the input_files in levels 0 to l
// Level 0 doesn't need to be handled this way because files are sorted by
// time and not by key
for (int m = std::max(l, 1); m <= output_level; ++m) {
for (auto& next_lv_file : levels[m].files) {
if (HaveOverlappingKeyRanges(comparator, aggregated_file_meta,
next_lv_file)) {
if (next_lv_file.being_compacted) {
return Status::Aborted(
"File " + next_lv_file.name +
" that has overlapping key range with one of the compaction "
" input file is currently being compacted.");
}
input_files->insert(TableFileNameToNumber(next_lv_file.name));
}
}
}
}
return Status::OK();
}
Status CompactionPicker::SanitizeCompactionInputFiles(
std::unordered_set<uint64_t>* input_files,
const ColumnFamilyMetaData& cf_meta, const int output_level) const {
assert(static_cast<int>(cf_meta.levels.size()) - 1 ==
cf_meta.levels[cf_meta.levels.size() - 1].level);
if (output_level >= static_cast<int>(cf_meta.levels.size())) {
return Status::InvalidArgument(
"Output level for column family " + cf_meta.name +
" must between [0, " +
ToString(cf_meta.levels[cf_meta.levels.size() - 1].level) + "].");
}
if (output_level > MaxOutputLevel()) {
return Status::InvalidArgument(
"Exceed the maximum output level defined by "
"the current compaction algorithm --- " +
ToString(MaxOutputLevel()));
}
if (output_level < 0) {
return Status::InvalidArgument("Output level cannot be negative.");
}
if (input_files->size() == 0) {
return Status::InvalidArgument(
"A compaction must contain at least one file.");
}
Status s = SanitizeCompactionInputFilesForAllLevels(input_files, cf_meta,
output_level);
if (!s.ok()) {
return s;
}
// for all input files, check whether the file number matches
// any currently-existing files.
for (auto file_num : *input_files) {
bool found = false;
for (auto level_meta : cf_meta.levels) {
for (auto file_meta : level_meta.files) {
if (file_num == TableFileNameToNumber(file_meta.name)) {
if (file_meta.being_compacted) {
return Status::Aborted("Specified compaction input file " +
MakeTableFileName("", file_num) +
" is already being compacted.");
}
found = true;
break;
}
}
if (found) {
break;
}
}
if (!found) {
return Status::InvalidArgument(
"Specified compaction input file " + MakeTableFileName("", file_num) +
" does not exist in column family " + cf_meta.name + ".");
}
}
return Status::OK();
}
#endif // !ROCKSDB_LITE
void CompactionPicker::RegisterCompaction(Compaction* c) {
if (c == nullptr) {
return;
}
assert(ioptions_.compaction_style != kCompactionStyleLevel ||
c->output_level() == 0 ||
!FilesRangeOverlapWithCompaction(*c->inputs(), c->output_level()));
if (c->start_level() == 0 ||
ioptions_.compaction_style == kCompactionStyleUniversal) {
level0_compactions_in_progress_.insert(c);
}
compactions_in_progress_.insert(c);
}
void CompactionPicker::UnregisterCompaction(Compaction* c) {
if (c == nullptr) {
return;
}
if (c->start_level() == 0 ||
ioptions_.compaction_style == kCompactionStyleUniversal) {
level0_compactions_in_progress_.erase(c);
}
compactions_in_progress_.erase(c);
}
bool LevelCompactionPicker::NeedsCompaction(
const VersionStorageInfo* vstorage) const {
if (!vstorage->ExpiredTtlFiles().empty()) {
return true;
}
if (!vstorage->BottommostFilesMarkedForCompaction().empty()) {
return true;
}
if (!vstorage->FilesMarkedForCompaction().empty()) {
return true;
}
for (int i = 0; i <= vstorage->MaxInputLevel(); i++) {
if (vstorage->CompactionScore(i) >= 1) {
return true;
}
}
return false;
}
namespace {
// A class to build a leveled compaction step-by-step.
class LevelCompactionBuilder {
public:
LevelCompactionBuilder(const std::string& cf_name,
VersionStorageInfo* vstorage,
CompactionPicker* compaction_picker,
LogBuffer* log_buffer,
const MutableCFOptions& mutable_cf_options,
const ImmutableCFOptions& ioptions)
: cf_name_(cf_name),
vstorage_(vstorage),
compaction_picker_(compaction_picker),
log_buffer_(log_buffer),
mutable_cf_options_(mutable_cf_options),
ioptions_(ioptions) {}
// Pick and return a compaction.
Compaction* PickCompaction();
// Pick the initial files to compact to the next level. (or together
// in Intra-L0 compactions)
void SetupInitialFiles();
// If the initial files are from L0 level, pick other L0
// files if needed.
bool SetupOtherL0FilesIfNeeded();
// Based on initial files, setup other files need to be compacted
// in this compaction, accordingly.
bool SetupOtherInputsIfNeeded();
Compaction* GetCompaction();
// For the specfied level, pick a file that we want to compact.
// Returns false if there is no file to compact.
// If it returns true, inputs->files.size() will be exactly one.
// If level is 0 and there is already a compaction on that level, this
// function will return false.
bool PickFileToCompact();
// For L0->L0, picks the longest span of files that aren't currently
// undergoing compaction for which work-per-deleted-file decreases. The span
// always starts from the newest L0 file.
//
// Intra-L0 compaction is independent of all other files, so it can be
// performed even when L0->base_level compactions are blocked.
//
// Returns true if `inputs` is populated with a span of files to be compacted;
// otherwise, returns false.
bool PickIntraL0Compaction();
// If there is any file marked for compaction, put put it into inputs.
void PickFilesMarkedForCompaction();
void PickExpiredTtlFiles();
const std::string& cf_name_;
VersionStorageInfo* vstorage_;
CompactionPicker* compaction_picker_;
LogBuffer* log_buffer_;
int start_level_ = -1;
int output_level_ = -1;
int parent_index_ = -1;
int base_index_ = -1;
double start_level_score_ = 0;
bool is_manual_ = false;
CompactionInputFiles start_level_inputs_;
std::vector<CompactionInputFiles> compaction_inputs_;
CompactionInputFiles output_level_inputs_;
std::vector<FileMetaData*> grandparents_;
CompactionReason compaction_reason_ = CompactionReason::kUnknown;
const MutableCFOptions& mutable_cf_options_;
const ImmutableCFOptions& ioptions_;
// Pick a path ID to place a newly generated file, with its level
static uint32_t GetPathId(const ImmutableCFOptions& ioptions,
const MutableCFOptions& mutable_cf_options,
int level);
static const int kMinFilesForIntraL0Compaction = 4;
};
void LevelCompactionBuilder::PickFilesMarkedForCompaction() {
if (vstorage_->FilesMarkedForCompaction().empty()) {
return;
}
auto continuation = [&](std::pair<int, FileMetaData*> level_file) {
// If it's being compacted it has nothing to do here.
// If this assert() fails that means that some function marked some
// files as being_compacted, but didn't call ComputeCompactionScore()
assert(!level_file.second->being_compacted);
start_level_ = level_file.first;
output_level_ =
(start_level_ == 0) ? vstorage_->base_level() : start_level_ + 1;
if (start_level_ == 0 &&
!compaction_picker_->level0_compactions_in_progress()->empty()) {
return false;
}
start_level_inputs_.files = {level_file.second};
start_level_inputs_.level = start_level_;
return compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
&start_level_inputs_);
};
// take a chance on a random file first
Random64 rnd(/* seed */ reinterpret_cast<uint64_t>(vstorage_));
size_t random_file_index = static_cast<size_t>(rnd.Uniform(
static_cast<uint64_t>(vstorage_->FilesMarkedForCompaction().size())));
if (continuation(vstorage_->FilesMarkedForCompaction()[random_file_index])) {
// found the compaction!
return;
}
for (auto& level_file : vstorage_->FilesMarkedForCompaction()) {
if (continuation(level_file)) {
// found the compaction!
return;
}
}
start_level_inputs_.files.clear();
}
void LevelCompactionBuilder::PickExpiredTtlFiles() {
if (vstorage_->ExpiredTtlFiles().empty()) {
return;
}
auto continuation = [&](std::pair<int, FileMetaData*> level_file) {
// If it's being compacted it has nothing to do here.
// If this assert() fails that means that some function marked some
// files as being_compacted, but didn't call ComputeCompactionScore()
assert(!level_file.second->being_compacted);
start_level_ = level_file.first;
output_level_ =
(start_level_ == 0) ? vstorage_->base_level() : start_level_ + 1;
if ((start_level_ == vstorage_->num_non_empty_levels() - 1) ||
(start_level_ == 0 &&
!compaction_picker_->level0_compactions_in_progress()->empty())) {
return false;
}
start_level_inputs_.files = {level_file.second};
start_level_inputs_.level = start_level_;
return compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
&start_level_inputs_);
};
for (auto& level_file : vstorage_->ExpiredTtlFiles()) {
if (continuation(level_file)) {
// found the compaction!
return;
}
}
start_level_inputs_.files.clear();
}
void LevelCompactionBuilder::SetupInitialFiles() {
// Find the compactions by size on all levels.
bool skipped_l0_to_base = false;
for (int i = 0; i < compaction_picker_->NumberLevels() - 1; i++) {
start_level_score_ = vstorage_->CompactionScore(i);
start_level_ = vstorage_->CompactionScoreLevel(i);
assert(i == 0 || start_level_score_ <= vstorage_->CompactionScore(i - 1));
if (start_level_score_ >= 1) {
if (skipped_l0_to_base && start_level_ == vstorage_->base_level()) {
// If L0->base_level compaction is pending, don't schedule further
// compaction from base level. Otherwise L0->base_level compaction
// may starve.
continue;
}
output_level_ =
(start_level_ == 0) ? vstorage_->base_level() : start_level_ + 1;
if (PickFileToCompact()) {
// found the compaction!
if (start_level_ == 0) {
// L0 score = `num L0 files` / `level0_file_num_compaction_trigger`
compaction_reason_ = CompactionReason::kLevelL0FilesNum;
} else {
// L1+ score = `Level files size` / `MaxBytesForLevel`
compaction_reason_ = CompactionReason::kLevelMaxLevelSize;
}
break;
} else {
// didn't find the compaction, clear the inputs
start_level_inputs_.clear();
if (start_level_ == 0) {
skipped_l0_to_base = true;
// L0->base_level may be blocked due to ongoing L0->base_level
// compactions. It may also be blocked by an ongoing compaction from
// base_level downwards.
//
// In these cases, to reduce L0 file count and thus reduce likelihood
// of write stalls, we can attempt compacting a span of files within
// L0.
if (PickIntraL0Compaction()) {
output_level_ = 0;
compaction_reason_ = CompactionReason::kLevelL0FilesNum;
break;
}
}
}
}
}
// if we didn't find a compaction, check if there are any files marked for
// compaction
if (start_level_inputs_.empty()) {
parent_index_ = base_index_ = -1;
PickFilesMarkedForCompaction();
if (!start_level_inputs_.empty()) {
is_manual_ = true;
compaction_reason_ = CompactionReason::kFilesMarkedForCompaction;
return;
}
size_t i;
for (i = 0; i < vstorage_->BottommostFilesMarkedForCompaction().size();
++i) {
auto& level_and_file = vstorage_->BottommostFilesMarkedForCompaction()[i];
assert(!level_and_file.second->being_compacted);
start_level_inputs_.level = output_level_ = start_level_ =
level_and_file.first;
start_level_inputs_.files = {level_and_file.second};
if (compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
&start_level_inputs_)) {
break;
}
}
if (i == vstorage_->BottommostFilesMarkedForCompaction().size()) {
start_level_inputs_.clear();
} else {
assert(!start_level_inputs_.empty());
compaction_reason_ = CompactionReason::kBottommostFiles;
return;
}
assert(start_level_inputs_.empty());
PickExpiredTtlFiles();
if (!start_level_inputs_.empty()) {
compaction_reason_ = CompactionReason::kTtl;
}
}
}
bool LevelCompactionBuilder::SetupOtherL0FilesIfNeeded() {
if (start_level_ == 0 && output_level_ != 0) {
// Two level 0 compaction won't run at the same time, so don't need to worry
// about files on level 0 being compacted.
assert(compaction_picker_->level0_compactions_in_progress()->empty());
InternalKey smallest, largest;
compaction_picker_->GetRange(start_level_inputs_, &smallest, &largest);
// Note that the next call will discard the file we placed in
// c->inputs_[0] earlier and replace it with an overlapping set
// which will include the picked file.
start_level_inputs_.files.clear();
vstorage_->GetOverlappingInputs(0, &smallest, &largest,
&start_level_inputs_.files);
// If we include more L0 files in the same compaction run it can
// cause the 'smallest' and 'largest' key to get extended to a
// larger range. So, re-invoke GetRange to get the new key range
compaction_picker_->GetRange(start_level_inputs_, &smallest, &largest);
if (compaction_picker_->IsRangeInCompaction(
vstorage_, &smallest, &largest, output_level_, &parent_index_)) {
return false;
}
}
assert(!start_level_inputs_.files.empty());
return true;
}
bool LevelCompactionBuilder::SetupOtherInputsIfNeeded() {
// Setup input files from output level. For output to L0, we only compact
// spans of files that do not interact with any pending compactions, so don't
// need to consider other levels.
if (output_level_ != 0) {
output_level_inputs_.level = output_level_;
if (!compaction_picker_->SetupOtherInputs(
cf_name_, mutable_cf_options_, vstorage_, &start_level_inputs_,
&output_level_inputs_, &parent_index_, base_index_)) {
return false;
}
compaction_inputs_.push_back(start_level_inputs_);
if (!output_level_inputs_.empty()) {
compaction_inputs_.push_back(output_level_inputs_);
}
// In some edge cases we could pick a compaction that will be compacting
// a key range that overlap with another running compaction, and both
// of them have the same output level. This could happen if
// (1) we are running a non-exclusive manual compaction
// (2) AddFile ingest a new file into the LSM tree
// We need to disallow this from happening.
if (compaction_picker_->FilesRangeOverlapWithCompaction(compaction_inputs_,
output_level_)) {
// This compaction output could potentially conflict with the output
// of a currently running compaction, we cannot run it.
return false;
}
compaction_picker_->GetGrandparents(vstorage_, start_level_inputs_,
output_level_inputs_, &grandparents_);
} else {
compaction_inputs_.push_back(start_level_inputs_);
}
return true;
}
Compaction* LevelCompactionBuilder::PickCompaction() {
// Pick up the first file to start compaction. It may have been extended
// to a clean cut.
SetupInitialFiles();
if (start_level_inputs_.empty()) {
return nullptr;
}
assert(start_level_ >= 0 && output_level_ >= 0);
// If it is a L0 -> base level compaction, we need to set up other L0
// files if needed.
if (!SetupOtherL0FilesIfNeeded()) {
return nullptr;
}
// Pick files in the output level and expand more files in the start level
// if needed.
if (!SetupOtherInputsIfNeeded()) {
return nullptr;
}
// Form a compaction object containing the files we picked.
Compaction* c = GetCompaction();
TEST_SYNC_POINT_CALLBACK("LevelCompactionPicker::PickCompaction:Return", c);
return c;
}
Compaction* LevelCompactionBuilder::GetCompaction() {
auto c = new Compaction(
vstorage_, ioptions_, mutable_cf_options_, std::move(compaction_inputs_),
output_level_, mutable_cf_options_.MaxFileSizeForLevel(output_level_),
mutable_cf_options_.max_compaction_bytes,
GetPathId(ioptions_, mutable_cf_options_, output_level_),
GetCompressionType(ioptions_, vstorage_, mutable_cf_options_,
output_level_, vstorage_->base_level()),
std::move(grandparents_), is_manual_, start_level_score_,
false /* deletion_compaction */, compaction_reason_);
// If it's level 0 compaction, make sure we don't execute any other level 0
// compactions in parallel
compaction_picker_->RegisterCompaction(c);
// Creating a compaction influences the compaction score because the score
// takes running compactions into account (by skipping files that are already
// being compacted). Since we just changed compaction score, we recalculate it
// here
vstorage_->ComputeCompactionScore(ioptions_, mutable_cf_options_);
return c;
}
/*
* Find the optimal path to place a file
* Given a level, finds the path where levels up to it will fit in levels
* up to and including this path
*/
uint32_t LevelCompactionBuilder::GetPathId(
const ImmutableCFOptions& ioptions,
const MutableCFOptions& mutable_cf_options, int level) {
uint32_t p = 0;
assert(!ioptions.cf_paths.empty());
// size remaining in the most recent path
uint64_t current_path_size = ioptions.cf_paths[0].target_size;
uint64_t level_size;
int cur_level = 0;
// max_bytes_for_level_base denotes L1 size.
// We estimate L0 size to be the same as L1.
level_size = mutable_cf_options.max_bytes_for_level_base;
// Last path is the fallback
while (p < ioptions.cf_paths.size() - 1) {
if (level_size <= current_path_size) {
if (cur_level == level) {
// Does desired level fit in this path?
return p;
} else {
current_path_size -= level_size;
if (cur_level > 0) {
if (ioptions.level_compaction_dynamic_level_bytes) {
// Currently, level_compaction_dynamic_level_bytes is ignored when
// multiple db paths are specified. https://github.com/facebook/
// rocksdb/blob/master/db/column_family.cc.
// Still, adding this check to avoid accidentally using
// max_bytes_for_level_multiplier_additional
level_size = static_cast<uint64_t>(
level_size * mutable_cf_options.max_bytes_for_level_multiplier);
} else {
level_size = static_cast<uint64_t>(
level_size * mutable_cf_options.max_bytes_for_level_multiplier *
mutable_cf_options.MaxBytesMultiplerAdditional(cur_level));
}
}
cur_level++;
continue;
}
}
p++;
current_path_size = ioptions.cf_paths[p].target_size;
}
return p;
}
bool LevelCompactionBuilder::PickFileToCompact() {
// level 0 files are overlapping. So we cannot pick more
// than one concurrent compactions at this level. This
// could be made better by looking at key-ranges that are
// being compacted at level 0.
if (start_level_ == 0 &&
!compaction_picker_->level0_compactions_in_progress()->empty()) {
TEST_SYNC_POINT("LevelCompactionPicker::PickCompactionBySize:0");
return false;
}
start_level_inputs_.clear();
assert(start_level_ >= 0);
// Pick the largest file in this level that is not already
// being compacted
const std::vector<int>& file_size =
vstorage_->FilesByCompactionPri(start_level_);
const std::vector<FileMetaData*>& level_files =
vstorage_->LevelFiles(start_level_);
unsigned int cmp_idx;
for (cmp_idx = vstorage_->NextCompactionIndex(start_level_);
cmp_idx < file_size.size(); cmp_idx++) {
int index = file_size[cmp_idx];
auto* f = level_files[index];
// do not pick a file to compact if it is being compacted
// from n-1 level.
if (f->being_compacted) {
continue;
}
start_level_inputs_.files.push_back(f);
start_level_inputs_.level = start_level_;
if (!compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
&start_level_inputs_) ||
compaction_picker_->FilesRangeOverlapWithCompaction(
{start_level_inputs_}, output_level_)) {
// A locked (pending compaction) input-level file was pulled in due to
// user-key overlap.
start_level_inputs_.clear();
continue;
}
// Now that input level is fully expanded, we check whether any output files
// are locked due to pending compaction.
//
// Note we rely on ExpandInputsToCleanCut() to tell us whether any output-
// level files are locked, not just the extra ones pulled in for user-key
// overlap.
InternalKey smallest, largest;
compaction_picker_->GetRange(start_level_inputs_, &smallest, &largest);
CompactionInputFiles output_level_inputs;
output_level_inputs.level = output_level_;
vstorage_->GetOverlappingInputs(output_level_, &smallest, &largest,
&output_level_inputs.files);
if (!output_level_inputs.empty() &&
!compaction_picker_->ExpandInputsToCleanCut(cf_name_, vstorage_,
&output_level_inputs)) {
start_level_inputs_.clear();
continue;
}
base_index_ = index;
break;
}
// store where to start the iteration in the next call to PickCompaction
vstorage_->SetNextCompactionIndex(start_level_, cmp_idx);
return start_level_inputs_.size() > 0;
}
bool LevelCompactionBuilder::PickIntraL0Compaction() {
start_level_inputs_.clear();
const std::vector<FileMetaData*>& level_files =
vstorage_->LevelFiles(0 /* level */);
if (level_files.size() <
static_cast<size_t>(
mutable_cf_options_.level0_file_num_compaction_trigger + 2) ||
level_files[0]->being_compacted) {
// If L0 isn't accumulating much files beyond the regular trigger, don't
// resort to L0->L0 compaction yet.
return false;
}
return FindIntraL0Compaction(level_files, kMinFilesForIntraL0Compaction,
port::kMaxUint64, &start_level_inputs_);
}
} // namespace
Compaction* LevelCompactionPicker::PickCompaction(
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
VersionStorageInfo* vstorage, LogBuffer* log_buffer) {
LevelCompactionBuilder builder(cf_name, vstorage, this, log_buffer,
mutable_cf_options, ioptions_);
return builder.PickCompaction();
}
#ifndef ROCKSDB_LITE
bool FIFOCompactionPicker::NeedsCompaction(
const VersionStorageInfo* vstorage) const {
const int kLevel0 = 0;
return vstorage->CompactionScore(kLevel0) >= 1;
}
namespace {
uint64_t GetTotalFilesSize(
const std::vector<FileMetaData*>& files) {
uint64_t total_size = 0;
for (const auto& f : files) {
total_size += f->fd.file_size;
}
return total_size;
}
} // anonymous namespace
Compaction* FIFOCompactionPicker::PickTTLCompaction(
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
VersionStorageInfo* vstorage, LogBuffer* log_buffer) {
assert(mutable_cf_options.compaction_options_fifo.ttl > 0);
const int kLevel0 = 0;
const std::vector<FileMetaData*>& level_files = vstorage->LevelFiles(kLevel0);
uint64_t total_size = GetTotalFilesSize(level_files);
int64_t _current_time;
auto status = ioptions_.env->GetCurrentTime(&_current_time);
if (!status.ok()) {
ROCKS_LOG_BUFFER(log_buffer,
"[%s] FIFO compaction: Couldn't get current time: %s. "
"Not doing compactions based on TTL. ",
cf_name.c_str(), status.ToString().c_str());
return nullptr;
}
const uint64_t current_time = static_cast<uint64_t>(_current_time);
std::vector<CompactionInputFiles> inputs;
inputs.emplace_back();
inputs[0].level = 0;
// avoid underflow
if (current_time > mutable_cf_options.compaction_options_fifo.ttl) {
for (auto ritr = level_files.rbegin(); ritr != level_files.rend(); ++ritr) {
auto f = *ritr;
if (f->fd.table_reader != nullptr &&
f->fd.table_reader->GetTableProperties() != nullptr) {
auto creation_time =
f->fd.table_reader->GetTableProperties()->creation_time;
if (creation_time == 0 ||
creation_time >= (current_time -
mutable_cf_options.compaction_options_fifo.ttl)) {
break;
}
total_size -= f->compensated_file_size;
inputs[0].files.push_back(f);
}
}
}
// Return a nullptr and proceed to size-based FIFO compaction if:
// 1. there are no files older than ttl OR
// 2. there are a few files older than ttl, but deleting them will not bring
// the total size to be less than max_table_files_size threshold.
if (inputs[0].files.empty() ||
total_size >
mutable_cf_options.compaction_options_fifo.max_table_files_size) {
return nullptr;
}
for (const auto& f : inputs[0].files) {
ROCKS_LOG_BUFFER(log_buffer,
"[%s] FIFO compaction: picking file %" PRIu64
" with creation time %" PRIu64 " for deletion",
cf_name.c_str(), f->fd.GetNumber(),
f->fd.table_reader->GetTableProperties()->creation_time);
}
Compaction* c = new Compaction(
vstorage, ioptions_, mutable_cf_options, std::move(inputs), 0, 0, 0, 0,
kNoCompression, {}, /* is manual */ false, vstorage->CompactionScore(0),
/* is deletion compaction */ true, CompactionReason::kFIFOTtl);
return c;
}
Compaction* FIFOCompactionPicker::PickSizeCompaction(
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
VersionStorageInfo* vstorage, LogBuffer* log_buffer) {
const int kLevel0 = 0;
const std::vector<FileMetaData*>& level_files = vstorage->LevelFiles(kLevel0);
uint64_t total_size = GetTotalFilesSize(level_files);
if (total_size <=
mutable_cf_options.compaction_options_fifo.max_table_files_size ||
level_files.size() == 0) {
// total size not exceeded
if (mutable_cf_options.compaction_options_fifo.allow_compaction &&
level_files.size() > 0) {
CompactionInputFiles comp_inputs;
// try to prevent same files from being compacted multiple times, which
// could produce large files that may never TTL-expire. Achieve this by
// disallowing compactions with files larger than memtable (inflate its
// size by 10% to account for uncompressed L0 files that may have size
// slightly greater than memtable size limit).
size_t max_compact_bytes_per_del_file =
static_cast<size_t>(MultiplyCheckOverflow(
static_cast<uint64_t>(mutable_cf_options.write_buffer_size),
1.1));
if (FindIntraL0Compaction(
level_files,
mutable_cf_options
.level0_file_num_compaction_trigger /* min_files_to_compact */
,
max_compact_bytes_per_del_file, &comp_inputs)) {
Compaction* c = new Compaction(
vstorage, ioptions_, mutable_cf_options, {comp_inputs}, 0,
16 * 1024 * 1024 /* output file size limit */,
0 /* max compaction bytes, not applicable */,
0 /* output path ID */, mutable_cf_options.compression, {},
/* is manual */ false, vstorage->CompactionScore(0),
/* is deletion compaction */ false,
CompactionReason::kFIFOReduceNumFiles);
return c;
}
}
ROCKS_LOG_BUFFER(
log_buffer,
"[%s] FIFO compaction: nothing to do. Total size %" PRIu64
", max size %" PRIu64 "\n",
cf_name.c_str(), total_size,
mutable_cf_options.compaction_options_fifo.max_table_files_size);
return nullptr;
}
if (!level0_compactions_in_progress_.empty()) {
ROCKS_LOG_BUFFER(
log_buffer,
"[%s] FIFO compaction: Already executing compaction. No need "
"to run parallel compactions since compactions are very fast",
cf_name.c_str());
return nullptr;
}
std::vector<CompactionInputFiles> inputs;
inputs.emplace_back();
inputs[0].level = 0;
for (auto ritr = level_files.rbegin(); ritr != level_files.rend(); ++ritr) {
auto f = *ritr;
total_size -= f->compensated_file_size;
inputs[0].files.push_back(f);
char tmp_fsize[16];
AppendHumanBytes(f->fd.GetFileSize(), tmp_fsize, sizeof(tmp_fsize));
ROCKS_LOG_BUFFER(log_buffer,
"[%s] FIFO compaction: picking file %" PRIu64
" with size %s for deletion",
cf_name.c_str(), f->fd.GetNumber(), tmp_fsize);
if (total_size <=
mutable_cf_options.compaction_options_fifo.max_table_files_size) {
break;
}
}
Compaction* c = new Compaction(
vstorage, ioptions_, mutable_cf_options, std::move(inputs), 0, 0, 0, 0,
kNoCompression, {}, /* is manual */ false, vstorage->CompactionScore(0),
/* is deletion compaction */ true, CompactionReason::kFIFOMaxSize);
return c;
}
Compaction* FIFOCompactionPicker::PickCompaction(
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
VersionStorageInfo* vstorage, LogBuffer* log_buffer) {
assert(vstorage->num_levels() == 1);
Compaction* c = nullptr;
if (mutable_cf_options.compaction_options_fifo.ttl > 0) {
c = PickTTLCompaction(cf_name, mutable_cf_options, vstorage, log_buffer);
}
if (c == nullptr) {
c = PickSizeCompaction(cf_name, mutable_cf_options, vstorage, log_buffer);
}
RegisterCompaction(c);
return c;
}
Compaction* FIFOCompactionPicker::CompactRange(
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
VersionStorageInfo* vstorage, int input_level, int output_level,
uint32_t /*output_path_id*/, const InternalKey* /*begin*/,
const InternalKey* /*end*/, InternalKey** compaction_end,
bool* /*manual_conflict*/) {
assert(input_level == 0);
assert(output_level == 0);
*compaction_end = nullptr;
LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, ioptions_.info_log);
Compaction* c =
PickCompaction(cf_name, mutable_cf_options, vstorage, &log_buffer);
log_buffer.FlushBufferToLog();
return c;
}
#endif // !ROCKSDB_LITE
} // namespace rocksdb