rocksdb/table/plain_table_reader.cc
Siying Dong abaf26266d [RocksDB] [Performance Branch] Some Changes to PlainTable format
Summary:
Some changes to PlainTable format:
(1) support variable key length
(2) use user defined slice transformer to extract prefixes
(3) Run some test cases against PlainTable in db_test and table_test

Test Plan: test db_test

Reviewers: haobo, kailiu

CC: dhruba, igor, leveldb, nkg-

Differential Revision: https://reviews.facebook.net/D14457
2013-12-20 12:08:35 -08:00

649 lines
20 KiB
C++

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "table/plain_table_reader.h"
#include <unordered_map>
#include <map>
#include "db/dbformat.h"
#include "rocksdb/cache.h"
#include "rocksdb/comparator.h"
#include "rocksdb/env.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/options.h"
#include "rocksdb/statistics.h"
#include "rocksdb/plain_table_factory.h"
#include "table/block.h"
#include "table/filter_block.h"
#include "table/format.h"
#include "table/meta_blocks.h"
#include "table/two_level_iterator.h"
#include "util/coding.h"
#include "util/dynamic_bloom.h"
#include "util/hash.h"
#include "util/histogram.h"
#include "util/murmurhash.h"
#include "util/perf_context_imp.h"
#include "util/stop_watch.h"
namespace rocksdb {
extern const uint64_t kPlainTableMagicNumber;
static uint32_t GetSliceHash(Slice const& s) {
return Hash(s.data(), s.size(), 397) ;
}
static uint32_t getBucketIdFromHash(uint32_t hash, uint32_t num_buckets) {
return hash % num_buckets;
}
PlainTableReader::PlainTableReader(const EnvOptions& storage_options,
uint64_t file_size, int bloom_bits_per_key,
double hash_table_ratio,
const TableProperties& table_properties) :
hash_table_size_(0), soptions_(storage_options), file_size_(file_size),
hash_table_ratio_(hash_table_ratio),
bloom_bits_per_key_(bloom_bits_per_key),
table_properties_(table_properties), data_start_offset_(0),
data_end_offset_(table_properties_.data_size),
user_key_len_(table_properties.fixed_key_len) {
hash_table_ = nullptr;
bloom_ = nullptr;
sub_index_ = nullptr;
}
PlainTableReader::~PlainTableReader() {
delete[] hash_table_;
delete[] sub_index_;
delete bloom_;
}
Status PlainTableReader::Open(const Options& options,
const EnvOptions& soptions,
unique_ptr<RandomAccessFile> && file,
uint64_t file_size,
unique_ptr<TableReader>* table_reader,
const int bloom_num_bits,
double hash_table_ratio) {
assert(options.allow_mmap_reads);
if (file_size > 2147483646) {
return Status::NotSupported("File is too large for PlainTableReader!");
}
TableProperties table_properties;
auto s = ReadTableProperties(
file.get(),
file_size,
kPlainTableMagicNumber,
options.env,
options.info_log.get(),
&table_properties
);
if (!s.ok()) {
return s;
}
std::unique_ptr<PlainTableReader> new_reader(new PlainTableReader(
soptions,
file_size,
bloom_num_bits,
hash_table_ratio,
table_properties
));
new_reader->file_ = std::move(file);
new_reader->options_ = options;
// -- Populate Index
s = new_reader->PopulateIndex();
if (!s.ok()) {
return s;
}
*table_reader = std::move(new_reader);
return s;
}
void PlainTableReader::SetupForCompaction() {
}
bool PlainTableReader::PrefixMayMatch(const Slice& internal_prefix) {
return true;
}
Iterator* PlainTableReader::NewIterator(const ReadOptions& options) {
return new PlainTableIterator(this);
}
struct PlainTableReader::IndexRecord {
uint32_t hash; // hash of the prefix
uint32_t offset; // offset of a row
IndexRecord* next;
};
// Helper class to track all the index records
class PlainTableReader::IndexRecordList {
public:
explicit IndexRecordList(size_t num_records_per_group) :
num_records_per_group_(num_records_per_group),
current_group_(nullptr),
num_records_in_current_group_(num_records_per_group) {
}
~IndexRecordList() {
for (size_t i = 0; i < groups_.size(); i++) {
delete[] groups_[i];
}
}
void AddRecord(murmur_t hash, uint32_t offset) {
if (num_records_in_current_group_ == num_records_per_group_) {
current_group_ = AllocateNewGroup();
num_records_in_current_group_ = 0;
}
auto& new_record = current_group_[num_records_in_current_group_];
new_record.hash = hash;
new_record.offset = offset;
new_record.next = nullptr;
num_records_in_current_group_++;
}
size_t GetNumRecords() {
return (groups_.size() - 1) * num_records_per_group_
+ num_records_in_current_group_;
}
IndexRecord* At(size_t index) {
return &(groups_[index / num_records_per_group_]
[index % num_records_per_group_]);
}
IndexRecord* AllocateNewGroup() {
IndexRecord* result = new IndexRecord[num_records_per_group_];
groups_.push_back(result);
return result;
}
private:
const size_t num_records_per_group_;
IndexRecord* current_group_;
// List of arrays allocated
std::vector<IndexRecord*> groups_;
size_t num_records_in_current_group_;
};
int PlainTableReader::PopulateIndexRecordList(
IndexRecordList& record_list) {
Slice key_slice;
Slice key_prefix_slice;
Slice key_suffix_slice;
Slice value_slice;
Slice prev_key_prefix_slice;
uint32_t prev_key_prefix_hash = 0;
uint32_t pos = data_start_offset_;
int key_index_within_prefix = 0;
bool first = true;
std::string prefix_sub_index;
HistogramImpl keys_per_prefix_hist;
// Need map to be ordered to make sure sub indexes generated
// are in order.
int num_prefixes = 0;
while (pos < data_end_offset_) {
uint32_t key_offset = pos;
status_ = Next(pos, &key_slice, &value_slice, pos);
key_prefix_slice = GetPrefix(key_slice);
if (first || prev_key_prefix_slice != key_prefix_slice) {
num_prefixes++;
if (!first) {
keys_per_prefix_hist.Add(key_index_within_prefix);
}
key_index_within_prefix = 0;
prev_key_prefix_slice = key_prefix_slice;
prev_key_prefix_hash = GetSliceHash(key_prefix_slice);
}
if (key_index_within_prefix++ % 16 == 0) {
// Add an index key for every 16 keys
record_list.AddRecord(prev_key_prefix_hash, key_offset);
}
first = false;
}
keys_per_prefix_hist.Add(key_index_within_prefix);
Log(options_.info_log, "Number of Keys per prefix Histogram: %s",
keys_per_prefix_hist.ToString().c_str());
return num_prefixes;
}
void PlainTableReader::Allocate(int num_prefixes) {
if (hash_table_ != nullptr) {
delete[] hash_table_;
}
if (bloom_bits_per_key_ > 0) {
bloom_ = new DynamicBloom(num_prefixes * bloom_bits_per_key_);
}
double hash_table_size_multipier =
(hash_table_ratio_ > 1.0) ? 1.0 : 1.0 / hash_table_ratio_;
hash_table_size_ = num_prefixes * hash_table_size_multipier + 1;
hash_table_ = new uint32_t[hash_table_size_];
}
size_t PlainTableReader::BucketizeIndexesAndFillBloom(
IndexRecordList& record_list, int num_prefixes,
std::vector<IndexRecord*>& hash2offsets,
std::vector<uint32_t>& bucket_count) {
size_t sub_index_size_needed = 0;
bool first = true;
uint32_t prev_hash = 0;
size_t num_records = record_list.GetNumRecords();
for (size_t i = 0; i < num_records; i++) {
IndexRecord* index_record = record_list.At(i);
uint32_t cur_hash = index_record->hash;
if (first || prev_hash != cur_hash) {
prev_hash = cur_hash;
first = false;
if (bloom_) {
bloom_->AddHash(cur_hash);
}
}
uint32_t bucket = getBucketIdFromHash(cur_hash, hash_table_size_);
IndexRecord* prev_bucket_head = hash2offsets[bucket];
index_record->next = prev_bucket_head;
hash2offsets[bucket] = index_record;
if (bucket_count[bucket] > 0) {
if (bucket_count[bucket] == 1) {
sub_index_size_needed += kOffsetLen + 1;
}
if (bucket_count[bucket] == 127) {
// Need more than one byte for length
sub_index_size_needed++;
}
sub_index_size_needed += kOffsetLen;
}
bucket_count[bucket]++;
}
return sub_index_size_needed;
}
void PlainTableReader::FillIndexes(size_t sub_index_size_needed,
std::vector<IndexRecord*>& hash2offsets,
std::vector<uint32_t>& bucket_count) {
Log(options_.info_log, "Reserving %zu bytes for sub index",
sub_index_size_needed);
// 4 bytes buffer for variable length size
size_t buffer_size = 64;
size_t buffer_used = 0;
sub_index_size_needed += buffer_size;
sub_index_ = new char[sub_index_size_needed];
size_t sub_index_offset = 0;
char* prev_ptr;
char* cur_ptr;
uint32_t* sub_index_ptr;
IndexRecord* record;
for (int i = 0; i < hash_table_size_; i++) {
uint32_t num_keys_for_bucket = bucket_count[i];
switch (num_keys_for_bucket) {
case 0:
// No key for bucket
hash_table_[i] = data_end_offset_;
break;
case 1:
// point directly to the file offset
hash_table_[i] = hash2offsets[i]->offset;
break;
default:
// point to second level indexes.
hash_table_[i] = sub_index_offset | kSubIndexMask;
prev_ptr = sub_index_ + sub_index_offset;
cur_ptr = EncodeVarint32(prev_ptr, num_keys_for_bucket);
sub_index_offset += cur_ptr - prev_ptr;
if (cur_ptr - prev_ptr > 2
|| (cur_ptr - prev_ptr == 2 && num_keys_for_bucket <= 127)) {
// Need to resize sub_index. Exponentially grow buffer.
buffer_used += cur_ptr - prev_ptr - 1;
if (buffer_used + 4 > buffer_size) {
Log(options_.info_log, "Recalculate suffix_map length to %zu",
sub_index_size_needed);
sub_index_size_needed += buffer_size;
buffer_size *= 2;
char* new_sub_index = new char[sub_index_size_needed];
memcpy(new_sub_index, sub_index_, sub_index_offset);
delete[] sub_index_;
sub_index_ = new_sub_index;
}
}
sub_index_ptr = (uint32_t*) (sub_index_ + sub_index_offset);
record = hash2offsets[i];
int j;
for (j = num_keys_for_bucket - 1;
j >= 0 && record; j--, record = record->next) {
sub_index_ptr[j] = record->offset;
}
assert(j == -1 && record == nullptr);
sub_index_offset += kOffsetLen * num_keys_for_bucket;
break;
}
}
Log(options_.info_log, "hash table size: %d, suffix_map length %zu",
hash_table_size_, sub_index_size_needed);
}
// PopulateIndex() builds index of keys.
// hash_table_ contains buckets size of hash_table_size_, each is a 32-bit
// integer. The lower 31 bits contain an offset value (explained below) and
// the first bit of the integer indicates type of the offset:
//
// 0 indicates that the bucket contains only one prefix (no conflict when
// hashing this prefix), whose first row starts from this offset of the file.
// 1 indicates that the bucket contains more than one prefixes, or there
// are too many rows for one prefix so we need a binary search for it. In
// this case, the offset indicates the offset of sub_index_ holding the
// binary search indexes of keys for those rows. Those binary search indexes
// are organized in this way:
//
// The first 4 bytes, indicates how many indexes (N) are stored after it. After
// it, there are N 32-bit integers, each points of an offset of the file, which
// points to starting of a row. Those offsets need to be guaranteed to be in
// ascending order so the keys they are pointing to are also in ascending order
// to make sure we can use them to do binary searches.
Status PlainTableReader::PopulateIndex() {
// Get mmapped memory to file_data_.
Status s = file_->Read(0, file_size_, &file_data_, nullptr);
if (!s.ok()) {
return s;
}
IndexRecordList record_list(256);
// First, read the whole file, for every 16 rows for a prefix (starting from
// the first one), generate a record of (hash, offset) and append it to
// IndexRecordList, which is a data structure created to store them.
int num_prefixes = PopulateIndexRecordList(record_list);
// Calculated hash table and bloom filter size and allocate memory for indexes
// and bloom filter based on the number of prefixes.
Allocate(num_prefixes);
// Bucketize all the index records to a temp data structure, in which for
// each bucket, we generate a linked list of IndexRecord, in reversed order.
std::vector<IndexRecord*> hash2offsets(hash_table_size_, nullptr);
std::vector<uint32_t> bucket_count(hash_table_size_, 0);
size_t sub_index_size_needed = BucketizeIndexesAndFillBloom(record_list,
num_prefixes,
hash2offsets,
bucket_count);
// From the temp data structure, populate indexes.
FillIndexes(sub_index_size_needed, hash2offsets, bucket_count);
return Status::OK();
}
Status PlainTableReader::GetOffset(const Slice& target, const Slice& prefix,
uint32_t prefix_hash, bool& prefix_matched,
uint32_t& ret_offset) {
prefix_matched = false;
int bucket = getBucketIdFromHash(prefix_hash, hash_table_size_);
uint32_t bucket_value = hash_table_[bucket];
if (bucket_value == data_end_offset_) {
ret_offset = data_end_offset_;
return Status::OK();
} else if ((bucket_value & kSubIndexMask) == 0) {
// point directly to the file
ret_offset = bucket_value;
return Status::OK();
}
// point to sub-index, need to do a binary search
uint32_t low = 0;
uint64_t prefix_index_offset = bucket_value ^ kSubIndexMask;
const char* index_ptr = sub_index_ + prefix_index_offset;
uint32_t upper_bound;
const uint32_t* base_ptr = (const uint32_t*) GetVarint32Ptr(index_ptr,
index_ptr + 4,
&upper_bound);
uint32_t high = upper_bound;
Slice mid_key;
// The key is between [low, high). Do a binary search between it.
while (high - low > 1) {
uint32_t mid = (high + low) / 2;
uint32_t file_offset = base_ptr[mid];
size_t tmp;
Status s = ReadKey(file_data_.data() + file_offset, &mid_key, tmp);
if (!s.ok()) {
return s;
}
int cmp_result = options_.comparator->Compare(target, mid_key);
if (cmp_result > 0) {
low = mid;
} else {
if (cmp_result == 0) {
// Happen to have found the exact key or target is smaller than the
// first key after base_offset.
prefix_matched = true;
ret_offset = file_offset;
return Status::OK();
} else {
high = mid;
}
}
}
// Both of the key at the position low or low+1 could share the same
// prefix as target. We need to rule out one of them to avoid to go
// to the wrong prefix.
Slice low_key;
size_t tmp;
uint32_t low_key_offset = base_ptr[low];
Status s = ReadKey(file_data_.data() + low_key_offset, &low_key, tmp);
if (GetPrefix(low_key) == prefix) {
prefix_matched = true;
ret_offset = low_key_offset;
} else if (low + 1 < upper_bound) {
// There is possible a next prefix, return it
prefix_matched = false;
ret_offset = base_ptr[low + 1];
} else {
// target is larger than a key of the last prefix in this bucket
// but with a different prefix. Key does not exist.
ret_offset = data_end_offset_;
}
return Status::OK();
}
bool PlainTableReader::MayHavePrefix(uint32_t hash) {
return bloom_ == nullptr || bloom_->MayContainHash(hash);
}
Status PlainTableReader::ReadKey(const char* row_ptr, Slice* key,
size_t& bytes_read) {
const char* key_ptr;
bytes_read = 0;
size_t internal_key_size;
if (IsFixedLength()) {
internal_key_size = GetFixedInternalKeyLength();
key_ptr = row_ptr;
} else {
uint32_t key_size;
key_ptr = GetVarint32Ptr(row_ptr, file_data_.data() + data_end_offset_,
&key_size);
internal_key_size = (size_t) key_size;
bytes_read = key_ptr - row_ptr;
}
if (row_ptr + internal_key_size >= file_data_.data() + data_end_offset_) {
return Status::Corruption("Unable to read the next key");
}
*key = Slice(key_ptr, internal_key_size);
bytes_read += internal_key_size;
return Status::OK();
}
Status PlainTableReader::Next(uint32_t offset, Slice* key, Slice* value,
uint32_t& next_offset) {
if (offset == data_end_offset_) {
next_offset = data_end_offset_;
return Status::OK();
}
if (offset > data_end_offset_) {
return Status::Corruption("Offset is out of file size");
}
const char* row_ptr = file_data_.data() + offset;
size_t bytes_for_key;
Status s = ReadKey(row_ptr, key, bytes_for_key);
uint32_t value_size;
const char* value_ptr = GetVarint32Ptr(row_ptr + bytes_for_key,
file_data_.data() + data_end_offset_,
&value_size);
if (value_ptr == nullptr) {
return Status::Corruption("Error reading value length.");
}
next_offset = offset + (value_ptr - row_ptr) + value_size;
if (next_offset > data_end_offset_) {
return Status::Corruption("Reach end of file when reading value");
}
*value = Slice(value_ptr, value_size);
return Status::OK();
}
Status PlainTableReader::Get(
const ReadOptions& ro, const Slice& target, void* arg,
bool (*saver)(void*, const Slice&, const Slice&, bool),
void (*mark_key_may_exist)(void*)) {
// Check bloom filter first.
Slice prefix_slice = GetPrefix(target);
uint32_t prefix_hash = GetSliceHash(prefix_slice);
if (!MayHavePrefix(prefix_hash)) {
return Status::OK();
}
uint32_t offset;
bool prefix_match;
Status s = GetOffset(target, prefix_slice, prefix_hash, prefix_match, offset);
if (!s.ok()) {
return s;
}
Slice found_key;
Slice found_value;
while (offset < data_end_offset_) {
Status s = Next(offset, &found_key, &found_value, offset);
if (!s.ok()) {
return s;
}
if (!prefix_match) {
// Need to verify prefix for the first key found if it is not yet
// checked.
if (GetPrefix(found_key) != prefix_slice) {
return Status::OK();
}
prefix_match = true;
}
if (options_.comparator->Compare(found_key, target) >= 0
&& !(*saver)(arg, found_key, found_value, true)) {
break;
}
}
return Status::OK();
}
bool PlainTableReader::TEST_KeyInCache(const ReadOptions& options,
const Slice& key) {
return false;
}
uint64_t PlainTableReader::ApproximateOffsetOf(const Slice& key) {
return 0;
}
PlainTableIterator::PlainTableIterator(PlainTableReader* table) :
table_(table) {
next_offset_ = offset_ = table_->data_end_offset_;
}
PlainTableIterator::~PlainTableIterator() {
}
bool PlainTableIterator::Valid() const {
return offset_ < table_->data_end_offset_
&& offset_ >= table_->data_start_offset_;
}
void PlainTableIterator::SeekToFirst() {
next_offset_ = table_->data_start_offset_;
if (next_offset_ >= table_->data_end_offset_) {
next_offset_ = offset_ = table_->data_end_offset_;
} else {
Next();
}
}
void PlainTableIterator::SeekToLast() {
assert(false);
}
void PlainTableIterator::Seek(const Slice& target) {
Slice prefix_slice = table_->GetPrefix(target);
uint32_t prefix_hash = GetSliceHash(prefix_slice);
if (!table_->MayHavePrefix(prefix_hash)) {
offset_ = next_offset_ = table_->data_end_offset_;
return;
}
bool prefix_match;
status_ = table_->GetOffset(target, prefix_slice, prefix_hash, prefix_match,
next_offset_);
if (!status_.ok()) {
offset_ = next_offset_ = table_->data_end_offset_;
return;
}
if (next_offset_ < table_-> data_end_offset_) {
for (Next(); status_.ok() && Valid(); Next()) {
if (!prefix_match) {
// Need to verify the first key's prefix
if (table_->GetPrefix(key()) != prefix_slice) {
offset_ = next_offset_ = table_->data_end_offset_;
break;
}
prefix_match = true;
}
if (table_->options_.comparator->Compare(key(), target) >= 0) {
break;
}
}
} else {
offset_ = table_->data_end_offset_;
}
}
void PlainTableIterator::Next() {
offset_ = next_offset_;
Slice tmp_slice;
status_ = table_->Next(next_offset_, &key_, &value_, next_offset_);
}
void PlainTableIterator::Prev() {
assert(false);
}
Slice PlainTableIterator::key() const {
return key_;
}
Slice PlainTableIterator::value() const {
return value_;
}
Status PlainTableIterator::status() const {
return status_;
}
} // namespace rocksdb