rocksdb/util/udt_util.cc
Yu Zhang fc58c7c62a Add UDT support in SstFileDumper (#11757)
Summary:
For a SST file that uses user-defined timestamp aware comparators, if a lower or upper bound is set, sst_dump tool doesn't handle it well. This PR adds support for that. While working on this `MaybeAddTimestampsToRange` is moved to the udt_util.h file to be shared.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11757

Test Plan:
make all check
for changes in db_impl.cc and db_impl_compaction_flush.cc

for changes in sst_file_dumper.cc, I manually tested this change handles specifying bounds for UDT use cases. It probably should have a unit test file eventually.

Reviewed By: ltamasi

Differential Revision: D48668048

Pulled By: jowlyzhang

fbshipit-source-id: 1560465f40e44668d6d82a7439fe9012be0e74a8
2023-08-30 13:42:04 -07:00

386 lines
13 KiB
C++

// Copyright (c) Meta Platforms, Inc. and affiliates.
//
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "util/udt_util.h"
#include "db/dbformat.h"
#include "rocksdb/types.h"
#include "util/coding.h"
#include "util/write_batch_util.h"
namespace ROCKSDB_NAMESPACE {
namespace {
enum class RecoveryType {
kNoop,
kUnrecoverable,
kStripTimestamp,
kPadTimestamp,
};
RecoveryType GetRecoveryType(const size_t running_ts_sz,
const std::optional<size_t>& recorded_ts_sz) {
if (running_ts_sz == 0) {
if (!recorded_ts_sz.has_value()) {
// A column family id not recorded is equivalent to that column family has
// zero timestamp size.
return RecoveryType::kNoop;
}
return RecoveryType::kStripTimestamp;
}
assert(running_ts_sz != 0);
if (!recorded_ts_sz.has_value()) {
return RecoveryType::kPadTimestamp;
}
if (running_ts_sz != *recorded_ts_sz) {
return RecoveryType::kUnrecoverable;
}
return RecoveryType::kNoop;
}
bool AllRunningColumnFamiliesConsistent(
const UnorderedMap<uint32_t, size_t>& running_ts_sz,
const UnorderedMap<uint32_t, size_t>& record_ts_sz) {
for (const auto& [cf_id, ts_sz] : running_ts_sz) {
auto record_it = record_ts_sz.find(cf_id);
RecoveryType recovery_type =
GetRecoveryType(ts_sz, record_it != record_ts_sz.end()
? std::optional<size_t>(record_it->second)
: std::nullopt);
if (recovery_type != RecoveryType::kNoop) {
return false;
}
}
return true;
}
Status CheckWriteBatchTimestampSizeConsistency(
const WriteBatch* batch,
const UnorderedMap<uint32_t, size_t>& running_ts_sz,
const UnorderedMap<uint32_t, size_t>& record_ts_sz,
TimestampSizeConsistencyMode check_mode, bool* ts_need_recovery) {
std::vector<uint32_t> column_family_ids;
Status status =
CollectColumnFamilyIdsFromWriteBatch(*batch, &column_family_ids);
if (!status.ok()) {
return status;
}
for (const auto& cf_id : column_family_ids) {
auto running_iter = running_ts_sz.find(cf_id);
if (running_iter == running_ts_sz.end()) {
// Ignore dropped column family referred to in a WriteBatch regardless of
// its consistency.
continue;
}
auto record_iter = record_ts_sz.find(cf_id);
RecoveryType recovery_type = GetRecoveryType(
running_iter->second, record_iter != record_ts_sz.end()
? std::optional<size_t>(record_iter->second)
: std::nullopt);
if (recovery_type != RecoveryType::kNoop) {
if (check_mode == TimestampSizeConsistencyMode::kVerifyConsistency) {
return Status::InvalidArgument(
"WriteBatch contains timestamp size inconsistency.");
}
if (recovery_type == RecoveryType::kUnrecoverable) {
return Status::InvalidArgument(
"WriteBatch contains unrecoverable timestamp size inconsistency.");
}
// If any column family needs reconciliation, it will mark the whole
// WriteBatch to need recovery and rebuilt.
*ts_need_recovery = true;
}
}
return Status::OK();
}
enum class ToggleUDT {
kUnchanged,
kEnableUDT,
kDisableUDT,
kInvalidChange,
};
ToggleUDT CompareComparator(const Comparator* new_comparator,
const std::string& old_comparator_name) {
static const char* kUDTSuffix = ".u64ts";
static const Slice kSuffixSlice = kUDTSuffix;
static const size_t kSuffixSize = 6;
size_t ts_sz = new_comparator->timestamp_size();
(void)ts_sz;
Slice new_ucmp_name(new_comparator->Name());
Slice old_ucmp_name(old_comparator_name);
if (new_ucmp_name.compare(old_ucmp_name) == 0) {
return ToggleUDT::kUnchanged;
}
if (new_ucmp_name.size() == old_ucmp_name.size() + kSuffixSize &&
new_ucmp_name.starts_with(old_ucmp_name) &&
new_ucmp_name.ends_with(kSuffixSlice)) {
assert(ts_sz == 8);
return ToggleUDT::kEnableUDT;
}
if (old_ucmp_name.size() == new_ucmp_name.size() + kSuffixSize &&
old_ucmp_name.starts_with(new_ucmp_name) &&
old_ucmp_name.ends_with(kSuffixSlice)) {
assert(ts_sz == 0);
return ToggleUDT::kDisableUDT;
}
return ToggleUDT::kInvalidChange;
}
} // namespace
TimestampRecoveryHandler::TimestampRecoveryHandler(
const UnorderedMap<uint32_t, size_t>& running_ts_sz,
const UnorderedMap<uint32_t, size_t>& record_ts_sz)
: running_ts_sz_(running_ts_sz),
record_ts_sz_(record_ts_sz),
new_batch_(new WriteBatch()),
handler_valid_(true),
new_batch_diff_from_orig_batch_(false) {}
Status TimestampRecoveryHandler::PutCF(uint32_t cf, const Slice& key,
const Slice& value) {
std::string new_key_buf;
Slice new_key;
Status status =
ReconcileTimestampDiscrepancy(cf, key, &new_key_buf, &new_key);
if (!status.ok()) {
return status;
}
return WriteBatchInternal::Put(new_batch_.get(), cf, new_key, value);
}
Status TimestampRecoveryHandler::DeleteCF(uint32_t cf, const Slice& key) {
std::string new_key_buf;
Slice new_key;
Status status =
ReconcileTimestampDiscrepancy(cf, key, &new_key_buf, &new_key);
if (!status.ok()) {
return status;
}
return WriteBatchInternal::Delete(new_batch_.get(), cf, new_key);
}
Status TimestampRecoveryHandler::SingleDeleteCF(uint32_t cf, const Slice& key) {
std::string new_key_buf;
Slice new_key;
Status status =
ReconcileTimestampDiscrepancy(cf, key, &new_key_buf, &new_key);
if (!status.ok()) {
return status;
}
return WriteBatchInternal::SingleDelete(new_batch_.get(), cf, new_key);
}
Status TimestampRecoveryHandler::DeleteRangeCF(uint32_t cf,
const Slice& begin_key,
const Slice& end_key) {
std::string new_begin_key_buf;
Slice new_begin_key;
std::string new_end_key_buf;
Slice new_end_key;
Status status = ReconcileTimestampDiscrepancy(
cf, begin_key, &new_begin_key_buf, &new_begin_key);
if (!status.ok()) {
return status;
}
status = ReconcileTimestampDiscrepancy(cf, end_key, &new_end_key_buf,
&new_end_key);
if (!status.ok()) {
return status;
}
return WriteBatchInternal::DeleteRange(new_batch_.get(), cf, new_begin_key,
new_end_key);
}
Status TimestampRecoveryHandler::MergeCF(uint32_t cf, const Slice& key,
const Slice& value) {
std::string new_key_buf;
Slice new_key;
Status status =
ReconcileTimestampDiscrepancy(cf, key, &new_key_buf, &new_key);
if (!status.ok()) {
return status;
}
return WriteBatchInternal::Merge(new_batch_.get(), cf, new_key, value);
}
Status TimestampRecoveryHandler::PutBlobIndexCF(uint32_t cf, const Slice& key,
const Slice& value) {
std::string new_key_buf;
Slice new_key;
Status status =
ReconcileTimestampDiscrepancy(cf, key, &new_key_buf, &new_key);
if (!status.ok()) {
return status;
}
return WriteBatchInternal::PutBlobIndex(new_batch_.get(), cf, new_key, value);
}
Status TimestampRecoveryHandler::ReconcileTimestampDiscrepancy(
uint32_t cf, const Slice& key, std::string* new_key_buf, Slice* new_key) {
assert(handler_valid_);
auto running_iter = running_ts_sz_.find(cf);
if (running_iter == running_ts_sz_.end()) {
// The column family referred to by the WriteBatch is no longer running.
// Copy over the entry as is to the new WriteBatch.
*new_key = key;
return Status::OK();
}
size_t running_ts_sz = running_iter->second;
auto record_iter = record_ts_sz_.find(cf);
std::optional<size_t> record_ts_sz =
record_iter != record_ts_sz_.end()
? std::optional<size_t>(record_iter->second)
: std::nullopt;
RecoveryType recovery_type = GetRecoveryType(running_ts_sz, record_ts_sz);
switch (recovery_type) {
case RecoveryType::kNoop:
*new_key = key;
break;
case RecoveryType::kStripTimestamp:
assert(record_ts_sz.has_value());
*new_key = StripTimestampFromUserKey(key, *record_ts_sz);
new_batch_diff_from_orig_batch_ = true;
break;
case RecoveryType::kPadTimestamp:
AppendKeyWithMinTimestamp(new_key_buf, key, running_ts_sz);
*new_key = *new_key_buf;
new_batch_diff_from_orig_batch_ = true;
break;
case RecoveryType::kUnrecoverable:
return Status::InvalidArgument(
"Unrecoverable timestamp size inconsistency encountered by "
"TimestampRecoveryHandler.");
default:
assert(false);
}
return Status::OK();
}
Status HandleWriteBatchTimestampSizeDifference(
const WriteBatch* batch,
const UnorderedMap<uint32_t, size_t>& running_ts_sz,
const UnorderedMap<uint32_t, size_t>& record_ts_sz,
TimestampSizeConsistencyMode check_mode,
std::unique_ptr<WriteBatch>* new_batch) {
// Quick path to bypass checking the WriteBatch.
if (AllRunningColumnFamiliesConsistent(running_ts_sz, record_ts_sz)) {
return Status::OK();
}
bool need_recovery = false;
Status status = CheckWriteBatchTimestampSizeConsistency(
batch, running_ts_sz, record_ts_sz, check_mode, &need_recovery);
if (!status.ok()) {
return status;
} else if (need_recovery) {
assert(new_batch);
SequenceNumber sequence = WriteBatchInternal::Sequence(batch);
TimestampRecoveryHandler recovery_handler(running_ts_sz, record_ts_sz);
status = batch->Iterate(&recovery_handler);
if (!status.ok()) {
return status;
} else {
*new_batch = recovery_handler.TransferNewBatch();
WriteBatchInternal::SetSequence(new_batch->get(), sequence);
}
}
return Status::OK();
}
Status ValidateUserDefinedTimestampsOptions(
const Comparator* new_comparator, const std::string& old_comparator_name,
bool new_persist_udt, bool old_persist_udt,
bool* mark_sst_files_has_no_udt) {
size_t ts_sz = new_comparator->timestamp_size();
ToggleUDT res = CompareComparator(new_comparator, old_comparator_name);
switch (res) {
case ToggleUDT::kUnchanged:
if (old_persist_udt == new_persist_udt) {
return Status::OK();
}
if (ts_sz == 0) {
return Status::OK();
}
return Status::InvalidArgument(
"Cannot toggle the persist_user_defined_timestamps flag for a column "
"family with user-defined timestamps feature enabled.");
case ToggleUDT::kEnableUDT:
if (!new_persist_udt) {
*mark_sst_files_has_no_udt = true;
return Status::OK();
}
return Status::InvalidArgument(
"Cannot open a column family and enable user-defined timestamps "
"feature without setting persist_user_defined_timestamps flag to "
"false.");
case ToggleUDT::kDisableUDT:
if (!old_persist_udt) {
return Status::OK();
}
return Status::InvalidArgument(
"Cannot open a column family and disable user-defined timestamps "
"feature if its existing persist_user_defined_timestamps flag is not "
"false.");
case ToggleUDT::kInvalidChange:
return Status::InvalidArgument(
new_comparator->Name(),
"does not match existing comparator " + old_comparator_name);
default:
break;
}
return Status::InvalidArgument(
"Unsupported user defined timestamps settings change.");
}
void GetFullHistoryTsLowFromU64CutoffTs(Slice* cutoff_ts,
std::string* full_history_ts_low) {
uint64_t cutoff_udt_ts = 0;
[[maybe_unused]] bool format_res = GetFixed64(cutoff_ts, &cutoff_udt_ts);
assert(format_res);
PutFixed64(full_history_ts_low, cutoff_udt_ts + 1);
}
std::tuple<std::optional<Slice>, std::optional<Slice>>
MaybeAddTimestampsToRange(const Slice* start, const Slice* end, size_t ts_sz,
std::string* start_with_ts, std::string* end_with_ts,
bool exclusive_end) {
std::optional<Slice> ret_start, ret_end;
if (start) {
if (ts_sz == 0) {
ret_start = *start;
} else {
// Maximum timestamp means including all keys with any timestamp for start
AppendKeyWithMaxTimestamp(start_with_ts, *start, ts_sz);
ret_start = Slice(*start_with_ts);
}
}
if (end) {
if (ts_sz == 0) {
ret_end = *end;
} else {
if (exclusive_end) {
// Append a maximum timestamp as the range limit is exclusive:
// [start, end)
AppendKeyWithMaxTimestamp(end_with_ts, *end, ts_sz);
} else {
// Append a minimum timestamp to end so the range limit is inclusive:
// [start, end]
AppendKeyWithMinTimestamp(end_with_ts, *end, ts_sz);
}
ret_end = Slice(*end_with_ts);
}
}
return std::make_tuple(ret_start, ret_end);
}
} // namespace ROCKSDB_NAMESPACE