rocksdb/db_stress_tool/db_stress_shared_state.h

445 lines
15 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors
#ifdef GFLAGS
#pragma once
#include "db_stress_tool/db_stress_stat.h"
#include "db_stress_tool/expected_state.h"
// SyncPoint is not supported in Released Windows Mode.
#if !(defined NDEBUG) || !defined(OS_WIN)
#include "test_util/sync_point.h"
#endif // !(defined NDEBUG) || !defined(OS_WIN)
#include "util/gflags_compat.h"
DECLARE_uint64(seed);
DECLARE_int64(max_key);
DECLARE_uint64(log2_keys_per_lock);
DECLARE_int32(threads);
DECLARE_int32(column_families);
DECLARE_int32(nooverwritepercent);
DECLARE_string(expected_values_dir);
DECLARE_int32(clear_column_family_one_in);
DECLARE_bool(test_batches_snapshots);
DECLARE_int32(compaction_thread_pool_adjust_interval);
DECLARE_int32(continuous_verification_interval);
DECLARE_int32(read_fault_one_in);
DECLARE_int32(write_fault_one_in);
DECLARE_int32(open_metadata_write_fault_one_in);
DECLARE_int32(open_write_fault_one_in);
DECLARE_int32(open_read_fault_one_in);
DECLARE_int32(inject_error_severity);
namespace ROCKSDB_NAMESPACE {
class StressTest;
// State shared by all concurrent executions of the same benchmark.
class SharedState {
public:
// Errors when reading filter blocks are ignored, so we use a thread
// local variable updated via sync points to keep track of errors injected
// while reading filter blocks in order to ignore the Get/MultiGet result
// for those calls
static thread_local bool ignore_read_error;
SharedState(Env* /*env*/, StressTest* stress_test)
: cv_(&mu_),
seed_(static_cast<uint32_t>(FLAGS_seed)),
max_key_(FLAGS_max_key),
log2_keys_per_lock_(static_cast<uint32_t>(FLAGS_log2_keys_per_lock)),
num_threads_(0),
num_initialized_(0),
num_populated_(0),
vote_reopen_(0),
num_done_(0),
start_(false),
start_verify_(false),
num_bg_threads_(0),
should_stop_bg_thread_(false),
bg_thread_finished_(0),
stress_test_(stress_test),
verification_failure_(false),
should_stop_test_(false),
no_overwrite_ids_(GenerateNoOverwriteIds()),
expected_state_manager_(nullptr),
printing_verification_results_(false),
start_timestamp_(Env::Default()->NowNanos()) {
Status status;
// TODO: We should introduce a way to explicitly disable verification
// during shutdown. When that is disabled and FLAGS_expected_values_dir
// is empty (disabling verification at startup), we can skip tracking
// expected state. Only then should we permit bypassing the below feature
// compatibility checks.
if (!FLAGS_expected_values_dir.empty()) {
if (!std::atomic<uint32_t>{}.is_lock_free()) {
status = Status::InvalidArgument(
"Cannot use --expected_values_dir on platforms without lock-free "
"std::atomic<uint32_t>");
}
if (status.ok() && FLAGS_clear_column_family_one_in > 0) {
status = Status::InvalidArgument(
"Cannot use --expected_values_dir on when "
"--clear_column_family_one_in is greater than zero.");
}
}
if (status.ok()) {
if (FLAGS_expected_values_dir.empty()) {
expected_state_manager_.reset(
new AnonExpectedStateManager(FLAGS_max_key, FLAGS_column_families));
} else {
expected_state_manager_.reset(new FileExpectedStateManager(
FLAGS_max_key, FLAGS_column_families, FLAGS_expected_values_dir));
}
status = expected_state_manager_->Open();
}
if (!status.ok()) {
fprintf(stderr, "Failed setting up expected state with error: %s\n",
status.ToString().c_str());
exit(1);
}
if (FLAGS_test_batches_snapshots) {
fprintf(stdout, "No lock creation because test_batches_snapshots set\n");
return;
}
long num_locks = static_cast<long>(max_key_ >> log2_keys_per_lock_);
if (max_key_ & ((1 << log2_keys_per_lock_) - 1)) {
num_locks++;
}
fprintf(stdout, "Creating %ld locks\n", num_locks * FLAGS_column_families);
key_locks_.resize(FLAGS_column_families);
for (int i = 0; i < FLAGS_column_families; ++i) {
key_locks_[i].reset(new port::Mutex[num_locks]);
}
if (FLAGS_read_fault_one_in) {
#ifdef NDEBUG
// Unsupported in release mode because it relies on
// `IGNORE_STATUS_IF_ERROR` to distinguish faults not expected to lead to
// failure.
fprintf(stderr,
"Cannot set nonzero value for --read_fault_one_in in "
"release mode.");
exit(1);
#else // NDEBUG
SyncPoint::GetInstance()->SetCallBack("FaultInjectionIgnoreError",
IgnoreReadErrorCallback);
SyncPoint::GetInstance()->EnableProcessing();
#endif // NDEBUG
}
}
~SharedState() {
#ifndef NDEBUG
if (FLAGS_read_fault_one_in) {
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->DisableProcessing();
}
#endif
}
port::Mutex* GetMutex() { return &mu_; }
port::CondVar* GetCondVar() { return &cv_; }
StressTest* GetStressTest() const { return stress_test_; }
int64_t GetMaxKey() const { return max_key_; }
uint32_t GetNumThreads() const { return num_threads_; }
void SetThreads(int num_threads) { num_threads_ = num_threads; }
void IncInitialized() { num_initialized_++; }
void IncOperated() { num_populated_++; }
void IncDone() { num_done_++; }
void IncVotedReopen() { vote_reopen_ = (vote_reopen_ + 1) % num_threads_; }
bool AllInitialized() const { return num_initialized_ >= num_threads_; }
bool AllOperated() const { return num_populated_ >= num_threads_; }
bool AllDone() const { return num_done_ >= num_threads_; }
bool AllVotedReopen() { return (vote_reopen_ == 0); }
void SetStart() { start_ = true; }
void SetStartVerify() { start_verify_ = true; }
bool Started() const { return start_; }
bool VerifyStarted() const { return start_verify_; }
void SetVerificationFailure() { verification_failure_.store(true); }
bool HasVerificationFailedYet() const { return verification_failure_.load(); }
void SetShouldStopTest() { should_stop_test_.store(true); }
bool ShouldStopTest() const { return should_stop_test_.load(); }
// Returns a lock covering `key` in `cf`.
port::Mutex* GetMutexForKey(int cf, int64_t key) {
return &key_locks_[cf][key >> log2_keys_per_lock_];
}
// Acquires locks for all keys in `cf`.
void LockColumnFamily(int cf) {
for (int i = 0; i < max_key_ >> log2_keys_per_lock_; ++i) {
key_locks_[cf][i].Lock();
}
}
// Releases locks for all keys in `cf`.
void UnlockColumnFamily(int cf) {
for (int i = 0; i < max_key_ >> log2_keys_per_lock_; ++i) {
key_locks_[cf][i].Unlock();
}
}
// Returns a collection of mutex locks covering the key range [start, end) in
// `cf`.
std::vector<std::unique_ptr<MutexLock>> GetLocksForKeyRange(int cf,
int64_t start,
int64_t end) {
std::vector<std::unique_ptr<MutexLock>> range_locks;
if (start >= end) {
return range_locks;
}
const int64_t start_idx = start >> log2_keys_per_lock_;
int64_t end_idx = end >> log2_keys_per_lock_;
if ((end & ((1 << log2_keys_per_lock_) - 1)) == 0) {
--end_idx;
}
for (int64_t idx = start_idx; idx <= end_idx; ++idx) {
range_locks.emplace_back(
std::make_unique<MutexLock>(&key_locks_[cf][idx]));
}
return range_locks;
}
Status SaveAtAndAfter(DB* db) {
return expected_state_manager_->SaveAtAndAfter(db);
}
bool HasHistory() { return expected_state_manager_->HasHistory(); }
Status Restore(DB* db) { return expected_state_manager_->Restore(db); }
// Requires external locking covering all keys in `cf`.
void ClearColumnFamily(int cf) {
return expected_state_manager_->ClearColumnFamily(cf);
}
// Prepare a Put that will be started but not finish yet
// This is useful for crash-recovery testing when the process may crash
// before updating the corresponding expected value
//
// Requires external locking covering `key` in `cf` to prevent concurrent
// write or delete to the same `key`.
PendingExpectedValue PreparePut(int cf, int64_t key) {
return expected_state_manager_->PreparePut(cf, key);
}
// Does not requires external locking.
ExpectedValue Get(int cf, int64_t key) {
return expected_state_manager_->Get(cf, key);
}
// Prepare a Delete that will be started but not finish yet
// This is useful for crash-recovery testing when the process may crash
// before updating the corresponding expected value
//
// Requires external locking covering `key` in `cf` to prevent concurrent
// write or delete to the same `key`.
PendingExpectedValue PrepareDelete(int cf, int64_t key) {
return expected_state_manager_->PrepareDelete(cf, key);
}
// Requires external locking covering `key` in `cf` to prevent concurrent
// write or delete to the same `key`.
PendingExpectedValue PrepareSingleDelete(int cf, int64_t key) {
return expected_state_manager_->PrepareSingleDelete(cf, key);
}
// Requires external locking covering keys in `[begin_key, end_key)` in `cf`
// to prevent concurrent write or delete to the same `key`.
std::vector<PendingExpectedValue> PrepareDeleteRange(int cf,
int64_t begin_key,
int64_t end_key) {
return expected_state_manager_->PrepareDeleteRange(cf, begin_key, end_key);
}
bool AllowsOverwrite(int64_t key) const {
return no_overwrite_ids_.find(key) == no_overwrite_ids_.end();
}
// Requires external locking covering `key` in `cf` to prevent concurrent
// delete to the same `key`.
bool Exists(int cf, int64_t key) {
return expected_state_manager_->Exists(cf, key);
}
// Sync the `value_base` to the corresponding expected value
void SyncPut(int cf, int64_t key, uint32_t value_base) {
return expected_state_manager_->SyncPut(cf, key, value_base);
}
// Sync the corresponding expected value to be pending Put
void SyncPendingPut(int cf, int64_t key) {
return expected_state_manager_->SyncPendingPut(cf, key);
}
// Sync the corresponding expected value to be deleted
void SyncDelete(int cf, int64_t key) {
return expected_state_manager_->SyncDelete(cf, key);
}
uint32_t GetSeed() const { return seed_; }
void SetShouldStopBgThread() { should_stop_bg_thread_ = true; }
bool ShouldStopBgThread() { return should_stop_bg_thread_; }
void IncBgThreads() { ++num_bg_threads_; }
void IncBgThreadsFinished() { ++bg_thread_finished_; }
bool BgThreadsFinished() const {
return bg_thread_finished_ == num_bg_threads_;
}
bool ShouldVerifyAtBeginning() const {
return !FLAGS_expected_values_dir.empty();
}
bool PrintingVerificationResults() {
bool tmp = false;
return !printing_verification_results_.compare_exchange_strong(
tmp, true, std::memory_order_relaxed);
}
void FinishPrintingVerificationResults() {
printing_verification_results_.store(false, std::memory_order_relaxed);
}
uint64_t GetStartTimestamp() const { return start_timestamp_; }
void SafeTerminate() {
// Grab mutex so that we don't call terminate while another thread is
// attempting to print a stack trace due to the first one
MutexLock l(&mu_);
std::terminate();
}
private:
static void IgnoreReadErrorCallback(void*) { ignore_read_error = true; }
// Pick random keys in each column family that will not experience overwrite.
std::unordered_set<int64_t> GenerateNoOverwriteIds() const {
fprintf(stdout, "Choosing random keys with no overwrite\n");
// Start with the identity permutation. Subsequent iterations of
// for loop below will start with perm of previous for loop
std::vector<int64_t> permutation(max_key_);
for (int64_t i = 0; i < max_key_; ++i) {
permutation[i] = i;
}
// Now do the Knuth shuffle
const int64_t num_no_overwrite_keys =
(max_key_ * FLAGS_nooverwritepercent) / 100;
// Only need to figure out first num_no_overwrite_keys of permutation
std::unordered_set<int64_t> ret;
ret.reserve(num_no_overwrite_keys);
Random64 rnd(seed_);
for (int64_t i = 0; i < num_no_overwrite_keys; i++) {
assert(i < max_key_);
int64_t rand_index = i + rnd.Next() % (max_key_ - i);
// Swap i and rand_index;
int64_t temp = permutation[i];
permutation[i] = permutation[rand_index];
permutation[rand_index] = temp;
// Fill no_overwrite_ids_ with the first num_no_overwrite_keys of
// permutation
ret.insert(permutation[i]);
}
return ret;
}
port::Mutex mu_;
port::CondVar cv_;
const uint32_t seed_;
const int64_t max_key_;
const uint32_t log2_keys_per_lock_;
int num_threads_;
long num_initialized_;
long num_populated_;
long vote_reopen_;
long num_done_;
bool start_;
bool start_verify_;
int num_bg_threads_;
bool should_stop_bg_thread_;
int bg_thread_finished_;
StressTest* stress_test_;
std::atomic<bool> verification_failure_;
std::atomic<bool> should_stop_test_;
// Keys that should not be overwritten
const std::unordered_set<int64_t> no_overwrite_ids_;
std::unique_ptr<ExpectedStateManager> expected_state_manager_;
// Cannot store `port::Mutex` directly in vector since it is not copyable
// and storing it in the container may require copying depending on the impl.
std::vector<std::unique_ptr<port::Mutex[]>> key_locks_;
std::atomic<bool> printing_verification_results_;
const uint64_t start_timestamp_;
};
// Per-thread state for concurrent executions of the same benchmark.
struct ThreadState {
uint32_t tid; // 0..n-1
Random rand; // Has different seeds for different threads
SharedState* shared;
Stats stats;
struct SnapshotState {
const Snapshot* snapshot;
// The cf from which we did a Get at this snapshot
int cf_at;
// The name of the cf at the time that we did a read
std::string cf_at_name;
// The key with which we did a Get at this snapshot
std::string key;
// The status of the Get
Status status;
// The value of the Get
std::string value;
// optional state of all keys in the db
std::vector<bool>* key_vec;
std::string timestamp;
};
std::queue<std::pair<uint64_t, SnapshotState>> snapshot_queue;
ThreadState(uint32_t index, SharedState* _shared)
: tid(index), rand(1000 + index + _shared->GetSeed()), shared(_shared) {}
};
} // namespace ROCKSDB_NAMESPACE
#endif // GFLAGS