rocksdb/db_stress_tool/multi_ops_txns_stress.h
Jay Huh f26e2fedb3 Disable AttributeGroup in multiops txn test (#12781)
Summary:
AttributeGroup is not yet supported in MultiOpsTxn Test. Disabling it for now.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12781

Test Plan: Disabling in the test

Reviewed By: hx235

Differential Revision: D58757042

Pulled By: jaykorean

fbshipit-source-id: 8c3c85376e6ec0d1c7027b83abeb91eddc64236f
2024-06-18 16:05:18 -07:00

452 lines
15 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#ifdef GFLAGS
#include "db_stress_tool/db_stress_common.h"
namespace ROCKSDB_NAMESPACE {
// This file defines MultiOpsTxnsStress so that we can stress test RocksDB
// transactions on a simple, emulated relational table.
//
// The record format is similar to the example found at
// https://github.com/facebook/mysql-5.6/wiki/MyRocks-record-format.
//
// The table is created by
// ```
// create table t1 (
// a int primary key,
// b int,
// c int,
// key(c),
// )
// ```
//
// (For simplicity, we use uint32_t for int here.)
//
// For this table, there is a primary index using `a`, as well as a secondary
// index using `c` and `a`.
//
// Primary key format:
// | index id | M(a) |
// Primary index value:
// | b | c |
// M(a) represents the big-endian format of a.
//
// Secondary key format:
// | index id | M(c) | M(a) |
// Secondary index value:
// | crc32 |
// Similarly to M(a), M(c) is the big-endian format of c.
//
// The in-memory representation of a record is defined in class
// MultiOpsTxnsStress:Record that includes a number of helper methods to
// encode/decode primary index keys, primary index values, secondary index keys,
// secondary index values, etc.
//
// Sometimes primary index and secondary index reside on different column
// families, but sometimes they colocate in the same column family. Current
// implementation puts them in the same (default) column family, and this is
// subject to future change if we find it interesting to test the other case.
//
// Class MultiOpsTxnsStressTest has the following transactions for testing.
//
// 1. Primary key update
// UPDATE t1 SET a = 3 WHERE a = 2;
// ```
// tx->GetForUpdate(primary key a=2)
// tx->GetForUpdate(primary key a=3)
// tx->Delete(primary key a=2)
// tx->Put(primary key a=3, value)
// tx->batch->SingleDelete(secondary key a=2)
// tx->batch->Put(secondary key a=3, value)
// tx->Prepare()
// Tx->Commit()
// ```
//
// 2. Secondary key update
// UPDATE t1 SET c = 3 WHERE c = 2;
// ```
// iter->Seek(secondary key)
// // Get corresponding primary key value(s) from iterator
// tx->GetForUpdate(primary key)
// tx->Put(primary key, value c=3)
// tx->batch->SingleDelete(secondary key c=2)
// tx->batch->Put(secondary key c=3)
// tx->Prepare()
// tx->Commit()
// ```
//
// 3. Primary index value update
// UPDATE t1 SET b = b + 1 WHERE a = 2;
// ```
// tx->GetForUpdate(primary key a=2)
// tx->Put(primary key a=2, value b=b+1)
// tx->Prepare()
// tx->Commit()
// ```
//
// 4. Point lookup
// SELECT * FROM t1 WHERE a = 3;
// ```
// tx->Get(primary key a=3)
// tx->Commit()
// ```
//
// 5. Range scan
// SELECT * FROM t1 WHERE c = 2;
// ```
// it = tx->GetIterator()
// it->Seek(secondary key c=2)
// tx->Commit()
// ```
class MultiOpsTxnsStressTest : public StressTest {
public:
class Record {
public:
static constexpr uint32_t kMetadataPrefix = 0;
static constexpr uint32_t kPrimaryIndexId = 1;
static constexpr uint32_t kSecondaryIndexId = 2;
static constexpr size_t kPrimaryIndexEntrySize = 8 + 8;
static constexpr size_t kSecondaryIndexEntrySize = 12 + 4;
static_assert(kPrimaryIndexId < kSecondaryIndexId,
"kPrimaryIndexId must be smaller than kSecondaryIndexId");
static_assert(sizeof(kPrimaryIndexId) == sizeof(uint32_t),
"kPrimaryIndexId must be 4 bytes");
static_assert(sizeof(kSecondaryIndexId) == sizeof(uint32_t),
"kSecondaryIndexId must be 4 bytes");
// Used for generating search key to probe primary index.
static std::string EncodePrimaryKey(uint32_t a);
// Used for generating search prefix to probe secondary index.
static std::string EncodeSecondaryKey(uint32_t c);
// Used for generating search key to probe secondary index.
static std::string EncodeSecondaryKey(uint32_t c, uint32_t a);
static std::tuple<Status, uint32_t, uint32_t> DecodePrimaryIndexValue(
Slice primary_index_value);
static std::pair<Status, uint32_t> DecodeSecondaryIndexValue(
Slice secondary_index_value);
Record() = default;
Record(uint32_t _a, uint32_t _b, uint32_t _c) : a_(_a), b_(_b), c_(_c) {}
bool operator==(const Record& other) const {
return a_ == other.a_ && b_ == other.b_ && c_ == other.c_;
}
bool operator!=(const Record& other) const { return !(*this == other); }
std::pair<std::string, std::string> EncodePrimaryIndexEntry() const;
std::string EncodePrimaryKey() const;
std::string EncodePrimaryIndexValue() const;
std::pair<std::string, std::string> EncodeSecondaryIndexEntry() const;
std::string EncodeSecondaryKey() const;
Status DecodePrimaryIndexEntry(Slice primary_index_key,
Slice primary_index_value);
Status DecodeSecondaryIndexEntry(Slice secondary_index_key,
Slice secondary_index_value);
uint32_t a_value() const { return a_; }
uint32_t b_value() const { return b_; }
uint32_t c_value() const { return c_; }
void SetA(uint32_t _a) { a_ = _a; }
void SetB(uint32_t _b) { b_ = _b; }
void SetC(uint32_t _c) { c_ = _c; }
std::string ToString() const {
std::string ret("(");
ret.append(std::to_string(a_));
ret.append(",");
ret.append(std::to_string(b_));
ret.append(",");
ret.append(std::to_string(c_));
ret.append(")");
return ret;
}
private:
friend class InvariantChecker;
uint32_t a_{0};
uint32_t b_{0};
uint32_t c_{0};
};
MultiOpsTxnsStressTest() {}
~MultiOpsTxnsStressTest() override {}
void FinishInitDb(SharedState*) override;
void ReopenAndPreloadDbIfNeeded(SharedState* shared);
bool IsStateTracked() const override { return false; }
Status TestGet(ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override;
std::vector<Status> TestMultiGet(
ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override;
void TestGetEntity(ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override;
void TestMultiGetEntity(ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override;
Status TestPrefixScan(ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override;
// Given a key K, this creates an iterator which scans to K and then
// does a random sequence of Next/Prev operations.
Status TestIterate(ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override;
Status TestIterateAttributeGroups(
ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override;
Status TestPut(ThreadState* thread, WriteOptions& write_opts,
const ReadOptions& read_opts, const std::vector<int>& cf_ids,
const std::vector<int64_t>& keys, char (&value)[100]) override;
Status TestDelete(ThreadState* thread, WriteOptions& write_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override;
Status TestDeleteRange(ThreadState* thread, WriteOptions& write_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override;
void TestIngestExternalFile(ThreadState* thread,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override;
void TestCompactRange(ThreadState* thread, int64_t rand_key,
const Slice& start_key,
ColumnFamilyHandle* column_family) override;
Status TestBackupRestore(ThreadState* thread,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override;
Status TestCheckpoint(ThreadState* thread,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override;
Status TestApproximateSize(ThreadState* thread, uint64_t iteration,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override;
Status TestCustomOperations(
ThreadState* thread,
const std::vector<int>& rand_column_families) override;
void RegisterAdditionalListeners() override;
void PrepareTxnDbOptions(SharedState* /*shared*/,
TransactionDBOptions& txn_db_opts) override;
Status PrimaryKeyUpdateTxn(ThreadState* thread, uint32_t old_a,
uint32_t old_a_pos, uint32_t new_a);
Status SecondaryKeyUpdateTxn(ThreadState* thread, uint32_t old_c,
uint32_t old_c_pos, uint32_t new_c);
Status UpdatePrimaryIndexValueTxn(ThreadState* thread, uint32_t a,
uint32_t b_delta);
Status PointLookupTxn(ThreadState* thread, ReadOptions ropts, uint32_t a);
Status RangeScanTxn(ThreadState* thread, ReadOptions ropts, uint32_t c);
void VerifyDb(ThreadState* thread) const override;
void ContinuouslyVerifyDb(ThreadState* thread) const override {
VerifyDb(thread);
}
void VerifyPkSkFast(const ReadOptions& read_options, int job_id);
protected:
class Counter {
public:
uint64_t Next() { return value_.fetch_add(1); }
private:
std::atomic<uint64_t> value_ = Env::Default()->NowNanos();
};
using KeySet = std::set<uint32_t>;
class KeyGenerator {
public:
explicit KeyGenerator(uint32_t s, uint32_t low, uint32_t high,
KeySet&& existing_uniq, KeySet&& non_existing_uniq)
: rand_(s),
low_(low),
high_(high),
existing_uniq_(std::move(existing_uniq)),
non_existing_uniq_(std::move(non_existing_uniq)) {}
~KeyGenerator() {
assert(!existing_uniq_.empty());
assert(!non_existing_uniq_.empty());
}
void FinishInit();
std::pair<uint32_t, uint32_t> ChooseExisting();
void Replace(uint32_t old_val, uint32_t old_pos, uint32_t new_val);
uint32_t Allocate();
void UndoAllocation(uint32_t new_val);
std::string ToString() const {
std::ostringstream oss;
oss << "[" << low_ << ", " << high_ << "): " << existing_.size()
<< " elements, " << existing_uniq_.size() << " unique values, "
<< non_existing_uniq_.size() << " unique non-existing values";
return oss.str();
}
private:
Random rand_;
uint32_t low_ = 0;
uint32_t high_ = 0;
std::vector<uint32_t> existing_{};
KeySet existing_uniq_{};
KeySet non_existing_uniq_{};
bool initialized_ = false;
};
// Return <a, pos>
std::pair<uint32_t, uint32_t> ChooseExistingA(ThreadState* thread);
uint32_t GenerateNextA(ThreadState* thread);
// Return <c, pos>
std::pair<uint32_t, uint32_t> ChooseExistingC(ThreadState* thread);
uint32_t GenerateNextC(ThreadState* thread);
// Randomly commit or rollback `txn`
void ProcessRecoveredPreparedTxnsHelper(Transaction* txn,
SharedState*) override;
// Some applications, e.g. MyRocks writes a KV pair to the database via
// commit-time-write-batch (ctwb) in additional to the transaction's regular
// write batch. The key is usually constant representing some system
// metadata, while the value is monoticailly increasing which represents the
// actual value of the metadata. Method WriteToCommitTimeWriteBatch()
// emulates this scenario.
Status WriteToCommitTimeWriteBatch(Transaction& txn);
Status CommitAndCreateTimestampedSnapshotIfNeeded(ThreadState* thread,
Transaction& txn);
void SetupSnapshot(ThreadState* thread, ReadOptions& read_opts,
Transaction& txn,
std::shared_ptr<const Snapshot>& snapshot);
std::vector<std::unique_ptr<KeyGenerator>> key_gen_for_a_;
std::vector<std::unique_ptr<KeyGenerator>> key_gen_for_c_;
Counter counter_{};
private:
struct KeySpaces {
uint32_t lb_a = 0;
uint32_t ub_a = 0;
uint32_t lb_c = 0;
uint32_t ub_c = 0;
explicit KeySpaces() = default;
explicit KeySpaces(uint32_t _lb_a, uint32_t _ub_a, uint32_t _lb_c,
uint32_t _ub_c)
: lb_a(_lb_a), ub_a(_ub_a), lb_c(_lb_c), ub_c(_ub_c) {}
std::string EncodeTo() const;
bool DecodeFrom(Slice data);
};
void PersistKeySpacesDesc(const std::string& key_spaces_path, uint32_t lb_a,
uint32_t ub_a, uint32_t lb_c, uint32_t ub_c);
KeySpaces ReadKeySpacesDesc(const std::string& key_spaces_path);
void PreloadDb(SharedState* shared, int threads, uint32_t lb_a, uint32_t ub_a,
uint32_t lb_c, uint32_t ub_c);
void ScanExistingDb(SharedState* shared, int threads);
};
class InvariantChecker {
public:
static_assert(sizeof(MultiOpsTxnsStressTest::Record().a_) == sizeof(uint32_t),
"MultiOpsTxnsStressTest::Record::a_ must be 4 bytes");
static_assert(sizeof(MultiOpsTxnsStressTest::Record().b_) == sizeof(uint32_t),
"MultiOpsTxnsStressTest::Record::b_ must be 4 bytes");
static_assert(sizeof(MultiOpsTxnsStressTest::Record().c_) == sizeof(uint32_t),
"MultiOpsTxnsStressTest::Record::c_ must be 4 bytes");
};
class MultiOpsTxnsStressListener : public EventListener {
public:
explicit MultiOpsTxnsStressListener(MultiOpsTxnsStressTest* stress_test)
: stress_test_(stress_test) {
assert(stress_test_);
}
~MultiOpsTxnsStressListener() override {}
void OnFlushCompleted(DB* db, const FlushJobInfo& info) override {
assert(db);
#ifdef NDEBUG
(void)db;
#endif
assert(info.cf_id == 0);
const ReadOptions read_options(Env::IOActivity::kFlush);
stress_test_->VerifyPkSkFast(read_options, info.job_id);
}
void OnCompactionCompleted(DB* db, const CompactionJobInfo& info) override {
assert(db);
#ifdef NDEBUG
(void)db;
#endif
assert(info.cf_id == 0);
const ReadOptions read_options(Env::IOActivity::kCompaction);
stress_test_->VerifyPkSkFast(read_options, info.job_id);
}
private:
MultiOpsTxnsStressTest* const stress_test_ = nullptr;
};
} // namespace ROCKSDB_NAMESPACE
#endif // GFLAGS