rocksdb/snappy/snappy-1.0.5/snappy-test.h

506 lines
15 KiB
C++

// Copyright 2011 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Various stubs for the unit tests for the open-source version of Snappy.
#ifndef UTIL_SNAPPY_OPENSOURCE_SNAPPY_TEST_H_
#define UTIL_SNAPPY_OPENSOURCE_SNAPPY_TEST_H_
#include "snappy-stubs-internal.h"
#include <stdio.h>
#include <stdarg.h>
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#include <sys/time.h>
#ifdef HAVE_WINDOWS_H
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include <string>
#ifdef HAVE_GTEST
#include <gtest/gtest.h>
#undef TYPED_TEST
#define TYPED_TEST TEST
#define INIT_GTEST(argc, argv) ::testing::InitGoogleTest(argc, *argv)
#else
// Stubs for if the user doesn't have Google Test installed.
#define TEST(test_case, test_subcase) \
void Test_ ## test_case ## _ ## test_subcase()
#define INIT_GTEST(argc, argv)
#define TYPED_TEST TEST
#define EXPECT_EQ CHECK_EQ
#define EXPECT_NE CHECK_NE
#define EXPECT_FALSE(cond) CHECK(!(cond))
#endif
#ifdef HAVE_GFLAGS
#include <gflags/gflags.h>
// This is tricky; both gflags and Google Test want to look at the command line
// arguments. Google Test seems to be the most happy with unknown arguments,
// though, so we call it first and hope for the best.
#define InitGoogle(argv0, argc, argv, remove_flags) \
INIT_GTEST(argc, argv); \
google::ParseCommandLineFlags(argc, argv, remove_flags);
#else
// If we don't have the gflags package installed, these can only be
// changed at compile time.
#define DEFINE_int32(flag_name, default_value, description) \
static int FLAGS_ ## flag_name = default_value;
#define InitGoogle(argv0, argc, argv, remove_flags) \
INIT_GTEST(argc, argv)
#endif
#ifdef HAVE_LIBZ
#include "zlib.h"
#endif
#ifdef HAVE_LIBLZO2
#include "lzo/lzo1x.h"
#endif
#ifdef HAVE_LIBLZF
extern "C" {
#include "lzf.h"
}
#endif
#ifdef HAVE_LIBFASTLZ
#include "fastlz.h"
#endif
#ifdef HAVE_LIBQUICKLZ
#include "quicklz.h"
#endif
namespace {
namespace File {
void Init() { }
void ReadFileToStringOrDie(const char* filename, string* data) {
FILE* fp = fopen(filename, "rb");
if (fp == NULL) {
perror(filename);
exit(1);
}
data->clear();
while (!feof(fp)) {
char buf[4096];
size_t ret = fread(buf, 1, 4096, fp);
if (ret == 0 && ferror(fp)) {
perror("fread");
exit(1);
}
data->append(string(buf, ret));
}
fclose(fp);
}
void ReadFileToStringOrDie(const string& filename, string* data) {
ReadFileToStringOrDie(filename.c_str(), data);
}
void WriteStringToFileOrDie(const string& str, const char* filename) {
FILE* fp = fopen(filename, "wb");
if (fp == NULL) {
perror(filename);
exit(1);
}
int ret = fwrite(str.data(), str.size(), 1, fp);
if (ret != 1) {
perror("fwrite");
exit(1);
}
fclose(fp);
}
} // namespace File
} // namespace
namespace snappy {
#define FLAGS_test_random_seed 301
typedef string TypeParam;
void Test_CorruptedTest_VerifyCorrupted();
void Test_Snappy_SimpleTests();
void Test_Snappy_MaxBlowup();
void Test_Snappy_RandomData();
void Test_Snappy_FourByteOffset();
void Test_SnappyCorruption_TruncatedVarint();
void Test_SnappyCorruption_UnterminatedVarint();
void Test_Snappy_ReadPastEndOfBuffer();
void Test_Snappy_FindMatchLength();
void Test_Snappy_FindMatchLengthRandom();
string ReadTestDataFile(const string& base);
// A sprintf() variant that returns a std::string.
// Not safe for general use due to truncation issues.
string StringPrintf(const char* format, ...);
// A simple, non-cryptographically-secure random generator.
class ACMRandom {
public:
explicit ACMRandom(uint32 seed) : seed_(seed) {}
int32 Next();
int32 Uniform(int32 n) {
return Next() % n;
}
uint8 Rand8() {
return static_cast<uint8>((Next() >> 1) & 0x000000ff);
}
bool OneIn(int X) { return Uniform(X) == 0; }
// Skewed: pick "base" uniformly from range [0,max_log] and then
// return "base" random bits. The effect is to pick a number in the
// range [0,2^max_log-1] with bias towards smaller numbers.
int32 Skewed(int max_log);
private:
static const uint32 M = 2147483647L; // 2^31-1
uint32 seed_;
};
inline int32 ACMRandom::Next() {
static const uint64 A = 16807; // bits 14, 8, 7, 5, 2, 1, 0
// We are computing
// seed_ = (seed_ * A) % M, where M = 2^31-1
//
// seed_ must not be zero or M, or else all subsequent computed values
// will be zero or M respectively. For all other values, seed_ will end
// up cycling through every number in [1,M-1]
uint64 product = seed_ * A;
// Compute (product % M) using the fact that ((x << 31) % M) == x.
seed_ = (product >> 31) + (product & M);
// The first reduction may overflow by 1 bit, so we may need to repeat.
// mod == M is not possible; using > allows the faster sign-bit-based test.
if (seed_ > M) {
seed_ -= M;
}
return seed_;
}
inline int32 ACMRandom::Skewed(int max_log) {
const int32 base = (Next() - 1) % (max_log+1);
return (Next() - 1) & ((1u << base)-1);
}
// A wall-time clock. This stub is not super-accurate, nor resistant to the
// system time changing.
class CycleTimer {
public:
CycleTimer() : real_time_us_(0) {}
void Start() {
#ifdef WIN32
QueryPerformanceCounter(&start_);
#else
gettimeofday(&start_, NULL);
#endif
}
void Stop() {
#ifdef WIN32
LARGE_INTEGER stop;
LARGE_INTEGER frequency;
QueryPerformanceCounter(&stop);
QueryPerformanceFrequency(&frequency);
double elapsed = static_cast<double>(stop.QuadPart - start_.QuadPart) /
frequency.QuadPart;
real_time_us_ += elapsed * 1e6 + 0.5;
#else
struct timeval stop;
gettimeofday(&stop, NULL);
real_time_us_ += 1000000 * (stop.tv_sec - start_.tv_sec);
real_time_us_ += (stop.tv_usec - start_.tv_usec);
#endif
}
double Get() {
return real_time_us_ * 1e-6;
}
private:
int64 real_time_us_;
#ifdef WIN32
LARGE_INTEGER start_;
#else
struct timeval start_;
#endif
};
// Minimalistic microbenchmark framework.
typedef void (*BenchmarkFunction)(int, int);
class Benchmark {
public:
Benchmark(const string& name, BenchmarkFunction function) :
name_(name), function_(function) {}
Benchmark* DenseRange(int start, int stop) {
start_ = start;
stop_ = stop;
return this;
}
void Run();
private:
const string name_;
const BenchmarkFunction function_;
int start_, stop_;
};
#define BENCHMARK(benchmark_name) \
Benchmark* Benchmark_ ## benchmark_name = \
(new Benchmark(#benchmark_name, benchmark_name))
extern Benchmark* Benchmark_BM_UFlat;
extern Benchmark* Benchmark_BM_UValidate;
extern Benchmark* Benchmark_BM_ZFlat;
void ResetBenchmarkTiming();
void StartBenchmarkTiming();
void StopBenchmarkTiming();
void SetBenchmarkLabel(const string& str);
void SetBenchmarkBytesProcessed(int64 bytes);
#ifdef HAVE_LIBZ
// Object-oriented wrapper around zlib.
class ZLib {
public:
ZLib();
~ZLib();
// Wipe a ZLib object to a virgin state. This differs from Reset()
// in that it also breaks any state.
void Reinit();
// Call this to make a zlib buffer as good as new. Here's the only
// case where they differ:
// CompressChunk(a); CompressChunk(b); CompressChunkDone(); vs
// CompressChunk(a); Reset(); CompressChunk(b); CompressChunkDone();
// You'll want to use Reset(), then, when you interrupt a compress
// (or uncompress) in the middle of a chunk and want to start over.
void Reset();
// According to the zlib manual, when you Compress, the destination
// buffer must have size at least src + .1%*src + 12. This function
// helps you calculate that. Augment this to account for a potential
// gzip header and footer, plus a few bytes of slack.
static int MinCompressbufSize(int uncompress_size) {
return uncompress_size + uncompress_size/1000 + 40;
}
// Compresses the source buffer into the destination buffer.
// sourceLen is the byte length of the source buffer.
// Upon entry, destLen is the total size of the destination buffer,
// which must be of size at least MinCompressbufSize(sourceLen).
// Upon exit, destLen is the actual size of the compressed buffer.
//
// This function can be used to compress a whole file at once if the
// input file is mmap'ed.
//
// Returns Z_OK if success, Z_MEM_ERROR if there was not
// enough memory, Z_BUF_ERROR if there was not enough room in the
// output buffer. Note that if the output buffer is exactly the same
// size as the compressed result, we still return Z_BUF_ERROR.
// (check CL#1936076)
int Compress(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen);
// Uncompresses the source buffer into the destination buffer.
// The destination buffer must be long enough to hold the entire
// decompressed contents.
//
// Returns Z_OK on success, otherwise, it returns a zlib error code.
int Uncompress(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen);
// Uncompress data one chunk at a time -- ie you can call this
// more than once. To get this to work you need to call per-chunk
// and "done" routines.
//
// Returns Z_OK if success, Z_MEM_ERROR if there was not
// enough memory, Z_BUF_ERROR if there was not enough room in the
// output buffer.
int UncompressAtMost(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen);
// Checks gzip footer information, as needed. Mostly this just
// makes sure the checksums match. Whenever you call this, it
// will assume the last 8 bytes from the previous UncompressChunk
// call are the footer. Returns true iff everything looks ok.
bool UncompressChunkDone();
private:
int InflateInit(); // sets up the zlib inflate structure
int DeflateInit(); // sets up the zlib deflate structure
// These init the zlib data structures for compressing/uncompressing
int CompressInit(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen);
int UncompressInit(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen);
// Initialization method to be called if we hit an error while
// uncompressing. On hitting an error, call this method before
// returning the error.
void UncompressErrorInit();
// Helper function for Compress
int CompressChunkOrAll(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen,
int flush_mode);
int CompressAtMostOrAll(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen,
int flush_mode);
// Likewise for UncompressAndUncompressChunk
int UncompressChunkOrAll(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen,
int flush_mode);
int UncompressAtMostOrAll(Bytef *dest, uLongf *destLen,
const Bytef *source, uLong *sourceLen,
int flush_mode);
// Initialization method to be called if we hit an error while
// compressing. On hitting an error, call this method before
// returning the error.
void CompressErrorInit();
int compression_level_; // compression level
int window_bits_; // log base 2 of the window size used in compression
int mem_level_; // specifies the amount of memory to be used by
// compressor (1-9)
z_stream comp_stream_; // Zlib stream data structure
bool comp_init_; // True if we have initialized comp_stream_
z_stream uncomp_stream_; // Zlib stream data structure
bool uncomp_init_; // True if we have initialized uncomp_stream_
// These are used only with chunked compression.
bool first_chunk_; // true if we need to emit headers with this chunk
};
#endif // HAVE_LIBZ
} // namespace snappy
DECLARE_bool(run_microbenchmarks);
static void RunSpecifiedBenchmarks() {
if (!FLAGS_run_microbenchmarks) {
return;
}
fprintf(stderr, "Running microbenchmarks.\n");
#ifndef NDEBUG
fprintf(stderr, "WARNING: Compiled with assertions enabled, will be slow.\n");
#endif
#ifndef __OPTIMIZE__
fprintf(stderr, "WARNING: Compiled without optimization, will be slow.\n");
#endif
fprintf(stderr, "Benchmark Time(ns) CPU(ns) Iterations\n");
fprintf(stderr, "---------------------------------------------------\n");
snappy::Benchmark_BM_UFlat->Run();
snappy::Benchmark_BM_UValidate->Run();
snappy::Benchmark_BM_ZFlat->Run();
fprintf(stderr, "\n");
}
#ifndef HAVE_GTEST
static inline int RUN_ALL_TESTS() {
fprintf(stderr, "Running correctness tests.\n");
snappy::Test_CorruptedTest_VerifyCorrupted();
snappy::Test_Snappy_SimpleTests();
snappy::Test_Snappy_MaxBlowup();
snappy::Test_Snappy_RandomData();
snappy::Test_Snappy_FourByteOffset();
snappy::Test_SnappyCorruption_TruncatedVarint();
snappy::Test_SnappyCorruption_UnterminatedVarint();
snappy::Test_Snappy_ReadPastEndOfBuffer();
snappy::Test_Snappy_FindMatchLength();
snappy::Test_Snappy_FindMatchLengthRandom();
fprintf(stderr, "All tests passed.\n");
return 0;
}
#endif // HAVE_GTEST
// For main().
namespace snappy {
static void CompressFile(const char* fname);
static void UncompressFile(const char* fname);
static void MeasureFile(const char* fname);
} // namespace
using snappy::CompressFile;
using snappy::UncompressFile;
using snappy::MeasureFile;
#endif // UTIL_SNAPPY_OPENSOURCE_SNAPPY_TEST_H_