rocksdb/db/compaction/compaction_job.cc

2154 lines
85 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/compaction/compaction_job.h"
#include <algorithm>
#include <cinttypes>
#include <memory>
#include <optional>
#include <set>
#include <utility>
#include <vector>
#include "db/blob/blob_counting_iterator.h"
#include "db/blob/blob_file_addition.h"
#include "db/blob/blob_file_builder.h"
#include "db/builder.h"
#include "db/compaction/clipping_iterator.h"
#include "db/compaction/compaction_state.h"
#include "db/db_impl/db_impl.h"
#include "db/dbformat.h"
#include "db/error_handler.h"
#include "db/event_helpers.h"
#include "db/history_trimming_iterator.h"
#include "db/log_writer.h"
#include "db/merge_helper.h"
#include "db/range_del_aggregator.h"
#include "db/version_edit.h"
#include "db/version_set.h"
#include "file/filename.h"
#include "file/read_write_util.h"
#include "file/sst_file_manager_impl.h"
#include "file/writable_file_writer.h"
#include "logging/log_buffer.h"
#include "logging/logging.h"
#include "monitoring/iostats_context_imp.h"
#include "monitoring/thread_status_util.h"
#include "options/configurable_helper.h"
#include "options/options_helper.h"
#include "port/port.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/options.h"
#include "rocksdb/statistics.h"
#include "rocksdb/status.h"
#include "rocksdb/table.h"
#include "rocksdb/utilities/options_type.h"
#include "table/merging_iterator.h"
#include "table/table_builder.h"
#include "table/unique_id_impl.h"
#include "test_util/sync_point.h"
#include "util/stop_watch.h"
namespace ROCKSDB_NAMESPACE {
const char* GetCompactionReasonString(CompactionReason compaction_reason) {
switch (compaction_reason) {
case CompactionReason::kUnknown:
return "Unknown";
case CompactionReason::kLevelL0FilesNum:
return "LevelL0FilesNum";
case CompactionReason::kLevelMaxLevelSize:
return "LevelMaxLevelSize";
case CompactionReason::kUniversalSizeAmplification:
return "UniversalSizeAmplification";
case CompactionReason::kUniversalSizeRatio:
return "UniversalSizeRatio";
case CompactionReason::kUniversalSortedRunNum:
return "UniversalSortedRunNum";
case CompactionReason::kFIFOMaxSize:
return "FIFOMaxSize";
case CompactionReason::kFIFOReduceNumFiles:
return "FIFOReduceNumFiles";
case CompactionReason::kFIFOTtl:
return "FIFOTtl";
case CompactionReason::kManualCompaction:
return "ManualCompaction";
case CompactionReason::kFilesMarkedForCompaction:
return "FilesMarkedForCompaction";
case CompactionReason::kBottommostFiles:
return "BottommostFiles";
case CompactionReason::kTtl:
return "Ttl";
case CompactionReason::kFlush:
return "Flush";
case CompactionReason::kExternalSstIngestion:
return "ExternalSstIngestion";
case CompactionReason::kPeriodicCompaction:
return "PeriodicCompaction";
case CompactionReason::kChangeTemperature:
return "ChangeTemperature";
case CompactionReason::kForcedBlobGC:
return "ForcedBlobGC";
case CompactionReason::kRoundRobinTtl:
return "RoundRobinTtl";
case CompactionReason::kRefitLevel:
return "RefitLevel";
case CompactionReason::kNumOfReasons:
// fall through
default:
assert(false);
return "Invalid";
}
}
const char* GetCompactionPenultimateOutputRangeTypeString(
Compaction::PenultimateOutputRangeType range_type) {
switch (range_type) {
case Compaction::PenultimateOutputRangeType::kNotSupported:
return "NotSupported";
case Compaction::PenultimateOutputRangeType::kFullRange:
return "FullRange";
case Compaction::PenultimateOutputRangeType::kNonLastRange:
return "NonLastRange";
case Compaction::PenultimateOutputRangeType::kDisabled:
return "Disabled";
default:
assert(false);
return "Invalid";
}
}
CompactionJob::CompactionJob(
int job_id, Compaction* compaction, const ImmutableDBOptions& db_options,
const MutableDBOptions& mutable_db_options, const FileOptions& file_options,
VersionSet* versions, const std::atomic<bool>* shutting_down,
LogBuffer* log_buffer, FSDirectory* db_directory,
FSDirectory* output_directory, FSDirectory* blob_output_directory,
Statistics* stats, InstrumentedMutex* db_mutex,
ErrorHandler* db_error_handler,
std::vector<SequenceNumber> existing_snapshots,
SequenceNumber earliest_write_conflict_snapshot,
const SnapshotChecker* snapshot_checker, JobContext* job_context,
std::shared_ptr<Cache> table_cache, EventLogger* event_logger,
bool paranoid_file_checks, bool measure_io_stats, const std::string& dbname,
CompactionJobStats* compaction_job_stats, Env::Priority thread_pri,
const std::shared_ptr<IOTracer>& io_tracer,
const std::atomic<bool>& manual_compaction_canceled,
const std::string& db_id, const std::string& db_session_id,
std::string full_history_ts_low, std::string trim_ts,
BlobFileCompletionCallback* blob_callback, int* bg_compaction_scheduled,
int* bg_bottom_compaction_scheduled)
: compact_(new CompactionState(compaction)),
compaction_stats_(compaction->compaction_reason(), 1),
db_options_(db_options),
mutable_db_options_copy_(mutable_db_options),
log_buffer_(log_buffer),
output_directory_(output_directory),
stats_(stats),
bottommost_level_(false),
write_hint_(Env::WLTH_NOT_SET),
compaction_job_stats_(compaction_job_stats),
job_id_(job_id),
dbname_(dbname),
db_id_(db_id),
db_session_id_(db_session_id),
file_options_(file_options),
env_(db_options.env),
io_tracer_(io_tracer),
fs_(db_options.fs, io_tracer),
file_options_for_read_(
fs_->OptimizeForCompactionTableRead(file_options, db_options_)),
versions_(versions),
shutting_down_(shutting_down),
manual_compaction_canceled_(manual_compaction_canceled),
db_directory_(db_directory),
blob_output_directory_(blob_output_directory),
db_mutex_(db_mutex),
db_error_handler_(db_error_handler),
existing_snapshots_(std::move(existing_snapshots)),
earliest_write_conflict_snapshot_(earliest_write_conflict_snapshot),
snapshot_checker_(snapshot_checker),
job_context_(job_context),
table_cache_(std::move(table_cache)),
event_logger_(event_logger),
paranoid_file_checks_(paranoid_file_checks),
measure_io_stats_(measure_io_stats),
thread_pri_(thread_pri),
full_history_ts_low_(std::move(full_history_ts_low)),
trim_ts_(std::move(trim_ts)),
blob_callback_(blob_callback),
extra_num_subcompaction_threads_reserved_(0),
bg_compaction_scheduled_(bg_compaction_scheduled),
bg_bottom_compaction_scheduled_(bg_bottom_compaction_scheduled) {
assert(compaction_job_stats_ != nullptr);
assert(log_buffer_ != nullptr);
const auto* cfd = compact_->compaction->column_family_data();
ThreadStatusUtil::SetEnableTracking(db_options_.enable_thread_tracking);
ThreadStatusUtil::SetColumnFamily(cfd);
ThreadStatusUtil::SetThreadOperation(ThreadStatus::OP_COMPACTION);
ReportStartedCompaction(compaction);
}
CompactionJob::~CompactionJob() {
assert(compact_ == nullptr);
ThreadStatusUtil::ResetThreadStatus();
}
void CompactionJob::ReportStartedCompaction(Compaction* compaction) {
ThreadStatusUtil::SetThreadOperationProperty(ThreadStatus::COMPACTION_JOB_ID,
job_id_);
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::COMPACTION_INPUT_OUTPUT_LEVEL,
(static_cast<uint64_t>(compact_->compaction->start_level()) << 32) +
compact_->compaction->output_level());
// In the current design, a CompactionJob is always created
// for non-trivial compaction.
assert(compaction->IsTrivialMove() == false ||
compaction->is_manual_compaction() == true);
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::COMPACTION_PROP_FLAGS,
compaction->is_manual_compaction() +
(compaction->deletion_compaction() << 1));
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::COMPACTION_TOTAL_INPUT_BYTES,
compaction->CalculateTotalInputSize());
IOSTATS_RESET(bytes_written);
IOSTATS_RESET(bytes_read);
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::COMPACTION_BYTES_WRITTEN, 0);
ThreadStatusUtil::SetThreadOperationProperty(
ThreadStatus::COMPACTION_BYTES_READ, 0);
// Set the thread operation after operation properties
// to ensure GetThreadList() can always show them all together.
ThreadStatusUtil::SetThreadOperation(ThreadStatus::OP_COMPACTION);
compaction_job_stats_->is_manual_compaction =
compaction->is_manual_compaction();
compaction_job_stats_->is_full_compaction = compaction->is_full_compaction();
}
void CompactionJob::Prepare() {
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_PREPARE);
// Generate file_levels_ for compaction before making Iterator
auto* c = compact_->compaction;
ColumnFamilyData* cfd = c->column_family_data();
assert(cfd != nullptr);
assert(cfd->current()->storage_info()->NumLevelFiles(
compact_->compaction->level()) > 0);
write_hint_ = cfd->CalculateSSTWriteHint(c->output_level());
bottommost_level_ = c->bottommost_level();
if (c->ShouldFormSubcompactions()) {
StopWatch sw(db_options_.clock, stats_, SUBCOMPACTION_SETUP_TIME);
GenSubcompactionBoundaries();
}
if (boundaries_.size() >= 1) {
for (size_t i = 0; i <= boundaries_.size(); i++) {
compact_->sub_compact_states.emplace_back(
c, (i != 0) ? std::optional<Slice>(boundaries_[i - 1]) : std::nullopt,
(i != boundaries_.size()) ? std::optional<Slice>(boundaries_[i])
: std::nullopt,
static_cast<uint32_t>(i));
// assert to validate that boundaries don't have same user keys (without
// timestamp part).
assert(i == 0 || i == boundaries_.size() ||
cfd->user_comparator()->CompareWithoutTimestamp(
boundaries_[i - 1], boundaries_[i]) < 0);
}
RecordInHistogram(stats_, NUM_SUBCOMPACTIONS_SCHEDULED,
compact_->sub_compact_states.size());
} else {
compact_->sub_compact_states.emplace_back(c, std::nullopt, std::nullopt,
/*sub_job_id*/ 0);
}
// collect all seqno->time information from the input files which will be used
// to encode seqno->time to the output files.
uint64_t preserve_time_duration =
std::max(c->immutable_options()->preserve_internal_time_seconds,
c->immutable_options()->preclude_last_level_data_seconds);
if (preserve_time_duration > 0) {
const ReadOptions read_options(Env::IOActivity::kCompaction);
// Setup seqno_to_time_mapping_ with relevant time range.
seqno_to_time_mapping_.SetMaxTimeSpan(preserve_time_duration);
for (const auto& each_level : *c->inputs()) {
for (const auto& fmd : each_level.files) {
std::shared_ptr<const TableProperties> tp;
Status s =
cfd->current()->GetTableProperties(read_options, &tp, fmd, nullptr);
if (s.ok()) {
s = seqno_to_time_mapping_.DecodeFrom(tp->seqno_to_time_mapping);
}
if (!s.ok()) {
ROCKS_LOG_WARN(
db_options_.info_log,
"Problem reading or processing seqno-to-time mapping: %s",
s.ToString().c_str());
}
}
}
int64_t _current_time = 0;
Status s = db_options_.clock->GetCurrentTime(&_current_time);
if (!s.ok()) {
ROCKS_LOG_WARN(db_options_.info_log,
"Failed to get current time in compaction: Status: %s",
s.ToString().c_str());
// preserve all time information
preserve_time_min_seqno_ = 0;
preclude_last_level_min_seqno_ = 0;
seqno_to_time_mapping_.Enforce();
} else {
seqno_to_time_mapping_.Enforce(_current_time);
uint64_t preserve_time =
static_cast<uint64_t>(_current_time) > preserve_time_duration
? _current_time - preserve_time_duration
: 0;
// GetProximalSeqnoBeforeTime tells us the last seqno known to have been
// written at or before the given time. + 1 to get the minimum we should
// preserve without excluding anything that might have been written on or
// after the given time.
preserve_time_min_seqno_ =
seqno_to_time_mapping_.GetProximalSeqnoBeforeTime(preserve_time) + 1;
if (c->immutable_options()->preclude_last_level_data_seconds > 0) {
uint64_t preclude_last_level_time =
static_cast<uint64_t>(_current_time) >
c->immutable_options()->preclude_last_level_data_seconds
? _current_time -
c->immutable_options()->preclude_last_level_data_seconds
: 0;
preclude_last_level_min_seqno_ =
seqno_to_time_mapping_.GetProximalSeqnoBeforeTime(
preclude_last_level_time) +
1;
}
}
// For accuracy of the GetProximalSeqnoBeforeTime queries above, we only
// limit the capacity after them.
// Here If we set capacity to the per-SST limit, we could be throwing away
// fidelity when a compaction output file has a narrower seqno range than
// all the inputs. If we only limit capacity for each compaction output, we
// could be doing a lot of unnecessary recomputation in a large compaction
// (up to quadratic in number of files). Thus, we do soemthing in the
// middle: enforce a resonably large constant size limit substantially
// larger than kMaxSeqnoTimePairsPerSST.
seqno_to_time_mapping_.SetCapacity(kMaxSeqnoToTimeEntries);
}
}
uint64_t CompactionJob::GetSubcompactionsLimit() {
return extra_num_subcompaction_threads_reserved_ +
std::max(
std::uint64_t(1),
static_cast<uint64_t>(compact_->compaction->max_subcompactions()));
}
void CompactionJob::AcquireSubcompactionResources(
int num_extra_required_subcompactions) {
TEST_SYNC_POINT("CompactionJob::AcquireSubcompactionResources:0");
TEST_SYNC_POINT("CompactionJob::AcquireSubcompactionResources:1");
int max_db_compactions =
DBImpl::GetBGJobLimits(
mutable_db_options_copy_.max_background_flushes,
mutable_db_options_copy_.max_background_compactions,
mutable_db_options_copy_.max_background_jobs,
versions_->GetColumnFamilySet()
->write_controller()
->NeedSpeedupCompaction())
.max_compactions;
InstrumentedMutexLock l(db_mutex_);
// Apply min function first since We need to compute the extra subcompaction
// against compaction limits. And then try to reserve threads for extra
// subcompactions. The actual number of reserved threads could be less than
// the desired number.
int available_bg_compactions_against_db_limit =
std::max(max_db_compactions - *bg_compaction_scheduled_ -
*bg_bottom_compaction_scheduled_,
0);
// Reservation only supports backgrdoun threads of which the priority is
// between BOTTOM and HIGH. Need to degrade the priority to HIGH if the
// origin thread_pri_ is higher than that. Similar to ReleaseThreads().
extra_num_subcompaction_threads_reserved_ =
env_->ReserveThreads(std::min(num_extra_required_subcompactions,
available_bg_compactions_against_db_limit),
std::min(thread_pri_, Env::Priority::HIGH));
// Update bg_compaction_scheduled_ or bg_bottom_compaction_scheduled_
// depending on if this compaction has the bottommost priority
if (thread_pri_ == Env::Priority::BOTTOM) {
*bg_bottom_compaction_scheduled_ +=
extra_num_subcompaction_threads_reserved_;
} else {
*bg_compaction_scheduled_ += extra_num_subcompaction_threads_reserved_;
}
}
void CompactionJob::ShrinkSubcompactionResources(uint64_t num_extra_resources) {
// Do nothing when we have zero resources to shrink
if (num_extra_resources == 0) return;
db_mutex_->Lock();
// We cannot release threads more than what we reserved before
int extra_num_subcompaction_threads_released = env_->ReleaseThreads(
(int)num_extra_resources, std::min(thread_pri_, Env::Priority::HIGH));
// Update the number of reserved threads and the number of background
// scheduled compactions for this compaction job
extra_num_subcompaction_threads_reserved_ -=
extra_num_subcompaction_threads_released;
// TODO (zichen): design a test case with new subcompaction partitioning
// when the number of actual partitions is less than the number of planned
// partitions
assert(extra_num_subcompaction_threads_released == (int)num_extra_resources);
// Update bg_compaction_scheduled_ or bg_bottom_compaction_scheduled_
// depending on if this compaction has the bottommost priority
if (thread_pri_ == Env::Priority::BOTTOM) {
*bg_bottom_compaction_scheduled_ -=
extra_num_subcompaction_threads_released;
} else {
*bg_compaction_scheduled_ -= extra_num_subcompaction_threads_released;
}
db_mutex_->Unlock();
TEST_SYNC_POINT("CompactionJob::ShrinkSubcompactionResources:0");
}
void CompactionJob::ReleaseSubcompactionResources() {
if (extra_num_subcompaction_threads_reserved_ == 0) {
return;
}
{
InstrumentedMutexLock l(db_mutex_);
// The number of reserved threads becomes larger than 0 only if the
// compaction prioity is round robin and there is no sufficient
// sub-compactions available
// The scheduled compaction must be no less than 1 + extra number
// subcompactions using acquired resources since this compaction job has not
// finished yet
assert(*bg_bottom_compaction_scheduled_ >=
1 + extra_num_subcompaction_threads_reserved_ ||
*bg_compaction_scheduled_ >=
1 + extra_num_subcompaction_threads_reserved_);
}
ShrinkSubcompactionResources(extra_num_subcompaction_threads_reserved_);
}
void CompactionJob::GenSubcompactionBoundaries() {
// The goal is to find some boundary keys so that we can evenly partition
// the compaction input data into max_subcompactions ranges.
// For every input file, we ask TableReader to estimate 128 anchor points
// that evenly partition the input file into 128 ranges and the range
// sizes. This can be calculated by scanning index blocks of the file.
// Once we have the anchor points for all the input files, we merge them
// together and try to find keys dividing ranges evenly.
// For example, if we have two input files, and each returns following
// ranges:
// File1: (a1, 1000), (b1, 1200), (c1, 1100)
// File2: (a2, 1100), (b2, 1000), (c2, 1000)
// We total sort the keys to following:
// (a1, 1000), (a2, 1100), (b1, 1200), (b2, 1000), (c1, 1100), (c2, 1000)
// We calculate the total size by adding up all ranges' size, which is 6400.
// If we would like to partition into 2 subcompactions, the target of the
// range size is 3200. Based on the size, we take "b1" as the partition key
// since the first three ranges would hit 3200.
//
// Note that the ranges are actually overlapping. For example, in the example
// above, the range ending with "b1" is overlapping with the range ending with
// "b2". So the size 1000+1100+1200 is an underestimation of data size up to
// "b1". In extreme cases where we only compact N L0 files, a range can
// overlap with N-1 other ranges. Since we requested a relatively large number
// (128) of ranges from each input files, even N range overlapping would
// cause relatively small inaccuracy.
ReadOptions read_options(Env::IOActivity::kCompaction);
read_options.rate_limiter_priority = GetRateLimiterPriority();
auto* c = compact_->compaction;
if (c->max_subcompactions() <= 1 &&
!(c->immutable_options()->compaction_pri == kRoundRobin &&
c->immutable_options()->compaction_style == kCompactionStyleLevel)) {
return;
}
auto* cfd = c->column_family_data();
const Comparator* cfd_comparator = cfd->user_comparator();
const InternalKeyComparator& icomp = cfd->internal_comparator();
auto* v = compact_->compaction->input_version();
int base_level = v->storage_info()->base_level();
InstrumentedMutexUnlock unlock_guard(db_mutex_);
uint64_t total_size = 0;
std::vector<TableReader::Anchor> all_anchors;
int start_lvl = c->start_level();
int out_lvl = c->output_level();
for (size_t lvl_idx = 0; lvl_idx < c->num_input_levels(); lvl_idx++) {
int lvl = c->level(lvl_idx);
if (lvl >= start_lvl && lvl <= out_lvl) {
const LevelFilesBrief* flevel = c->input_levels(lvl_idx);
size_t num_files = flevel->num_files;
if (num_files == 0) {
continue;
}
for (size_t i = 0; i < num_files; i++) {
FileMetaData* f = flevel->files[i].file_metadata;
std::vector<TableReader::Anchor> my_anchors;
Status s = cfd->table_cache()->ApproximateKeyAnchors(
read_options, icomp, *f,
c->mutable_cf_options()->block_protection_bytes_per_key,
my_anchors);
if (!s.ok() || my_anchors.empty()) {
my_anchors.emplace_back(f->largest.user_key(), f->fd.GetFileSize());
}
for (auto& ac : my_anchors) {
// Can be optimize to avoid this loop.
total_size += ac.range_size;
}
all_anchors.insert(all_anchors.end(), my_anchors.begin(),
my_anchors.end());
}
}
}
// Here we total sort all the anchor points across all files and go through
// them in the sorted order to find partitioning boundaries.
// Not the most efficient implementation. A much more efficient algorithm
// probably exists. But they are more complex. If performance turns out to
// be a problem, we can optimize.
std::sort(
all_anchors.begin(), all_anchors.end(),
[cfd_comparator](TableReader::Anchor& a, TableReader::Anchor& b) -> bool {
return cfd_comparator->CompareWithoutTimestamp(a.user_key, b.user_key) <
0;
});
// Remove duplicated entries from boundaries.
all_anchors.erase(
std::unique(all_anchors.begin(), all_anchors.end(),
[cfd_comparator](TableReader::Anchor& a,
TableReader::Anchor& b) -> bool {
return cfd_comparator->CompareWithoutTimestamp(
a.user_key, b.user_key) == 0;
}),
all_anchors.end());
// Get the number of planned subcompactions, may update reserve threads
// and update extra_num_subcompaction_threads_reserved_ for round-robin
uint64_t num_planned_subcompactions;
if (c->immutable_options()->compaction_pri == kRoundRobin &&
c->immutable_options()->compaction_style == kCompactionStyleLevel) {
// For round-robin compaction prioity, we need to employ more
// subcompactions (may exceed the max_subcompaction limit). The extra
// subcompactions will be executed using reserved threads and taken into
// account bg_compaction_scheduled or bg_bottom_compaction_scheduled.
// Initialized by the number of input files
num_planned_subcompactions = static_cast<uint64_t>(c->num_input_files(0));
uint64_t max_subcompactions_limit = GetSubcompactionsLimit();
if (max_subcompactions_limit < num_planned_subcompactions) {
// Assert two pointers are not empty so that we can use extra
// subcompactions against db compaction limits
assert(bg_bottom_compaction_scheduled_ != nullptr);
assert(bg_compaction_scheduled_ != nullptr);
// Reserve resources when max_subcompaction is not sufficient
AcquireSubcompactionResources(
(int)(num_planned_subcompactions - max_subcompactions_limit));
// Subcompactions limit changes after acquiring additional resources.
// Need to call GetSubcompactionsLimit() again to update the number
// of planned subcompactions
num_planned_subcompactions =
std::min(num_planned_subcompactions, GetSubcompactionsLimit());
} else {
num_planned_subcompactions = max_subcompactions_limit;
}
} else {
num_planned_subcompactions = GetSubcompactionsLimit();
}
TEST_SYNC_POINT_CALLBACK("CompactionJob::GenSubcompactionBoundaries:0",
&num_planned_subcompactions);
if (num_planned_subcompactions == 1) return;
// Group the ranges into subcompactions
uint64_t target_range_size = std::max(
total_size / num_planned_subcompactions,
MaxFileSizeForLevel(
*(c->mutable_cf_options()), out_lvl,
c->immutable_options()->compaction_style, base_level,
c->immutable_options()->level_compaction_dynamic_level_bytes));
if (target_range_size >= total_size) {
return;
}
uint64_t next_threshold = target_range_size;
uint64_t cumulative_size = 0;
uint64_t num_actual_subcompactions = 1U;
for (TableReader::Anchor& anchor : all_anchors) {
cumulative_size += anchor.range_size;
if (cumulative_size > next_threshold) {
next_threshold += target_range_size;
num_actual_subcompactions++;
boundaries_.push_back(anchor.user_key);
}
if (num_actual_subcompactions == num_planned_subcompactions) {
break;
}
}
TEST_SYNC_POINT_CALLBACK("CompactionJob::GenSubcompactionBoundaries:1",
&num_actual_subcompactions);
// Shrink extra subcompactions resources when extra resrouces are acquired
ShrinkSubcompactionResources(
std::min((int)(num_planned_subcompactions - num_actual_subcompactions),
extra_num_subcompaction_threads_reserved_));
}
Status CompactionJob::Run() {
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_RUN);
TEST_SYNC_POINT("CompactionJob::Run():Start");
log_buffer_->FlushBufferToLog();
LogCompaction();
const size_t num_threads = compact_->sub_compact_states.size();
assert(num_threads > 0);
const uint64_t start_micros = db_options_.clock->NowMicros();
// Launch a thread for each of subcompactions 1...num_threads-1
std::vector<port::Thread> thread_pool;
thread_pool.reserve(num_threads - 1);
for (size_t i = 1; i < compact_->sub_compact_states.size(); i++) {
thread_pool.emplace_back(&CompactionJob::ProcessKeyValueCompaction, this,
&compact_->sub_compact_states[i]);
}
// Always schedule the first subcompaction (whether or not there are also
// others) in the current thread to be efficient with resources
ProcessKeyValueCompaction(&compact_->sub_compact_states[0]);
// Wait for all other threads (if there are any) to finish execution
for (auto& thread : thread_pool) {
thread.join();
}
compaction_stats_.SetMicros(db_options_.clock->NowMicros() - start_micros);
for (auto& state : compact_->sub_compact_states) {
compaction_stats_.AddCpuMicros(state.compaction_job_stats.cpu_micros);
state.RemoveLastEmptyOutput();
}
RecordTimeToHistogram(stats_, COMPACTION_TIME,
compaction_stats_.stats.micros);
RecordTimeToHistogram(stats_, COMPACTION_CPU_TIME,
compaction_stats_.stats.cpu_micros);
TEST_SYNC_POINT("CompactionJob::Run:BeforeVerify");
// Check if any thread encountered an error during execution
Status status;
IOStatus io_s;
bool wrote_new_blob_files = false;
for (const auto& state : compact_->sub_compact_states) {
if (!state.status.ok()) {
status = state.status;
io_s = state.io_status;
break;
}
if (state.Current().HasBlobFileAdditions()) {
wrote_new_blob_files = true;
}
}
if (io_status_.ok()) {
io_status_ = io_s;
}
if (status.ok()) {
constexpr IODebugContext* dbg = nullptr;
if (output_directory_) {
io_s = output_directory_->FsyncWithDirOptions(
IOOptions(), dbg,
DirFsyncOptions(DirFsyncOptions::FsyncReason::kNewFileSynced));
}
if (io_s.ok() && wrote_new_blob_files && blob_output_directory_ &&
blob_output_directory_ != output_directory_) {
io_s = blob_output_directory_->FsyncWithDirOptions(
IOOptions(), dbg,
DirFsyncOptions(DirFsyncOptions::FsyncReason::kNewFileSynced));
}
}
if (io_status_.ok()) {
io_status_ = io_s;
}
if (status.ok()) {
status = io_s;
}
if (status.ok()) {
thread_pool.clear();
std::vector<const CompactionOutputs::Output*> files_output;
for (const auto& state : compact_->sub_compact_states) {
for (const auto& output : state.GetOutputs()) {
files_output.emplace_back(&output);
}
}
ColumnFamilyData* cfd = compact_->compaction->column_family_data();
auto& prefix_extractor =
compact_->compaction->mutable_cf_options()->prefix_extractor;
std::atomic<size_t> next_file_idx(0);
auto verify_table = [&](Status& output_status) {
while (true) {
size_t file_idx = next_file_idx.fetch_add(1);
if (file_idx >= files_output.size()) {
break;
}
// Verify that the table is usable
// We set for_compaction to false and don't
// OptimizeForCompactionTableRead here because this is a special case
// after we finish the table building No matter whether
// use_direct_io_for_flush_and_compaction is true, we will regard this
// verification as user reads since the goal is to cache it here for
// further user reads
ReadOptions verify_table_read_options(Env::IOActivity::kCompaction);
verify_table_read_options.rate_limiter_priority =
GetRateLimiterPriority();
InternalIterator* iter = cfd->table_cache()->NewIterator(
verify_table_read_options, file_options_,
cfd->internal_comparator(), files_output[file_idx]->meta,
/*range_del_agg=*/nullptr, prefix_extractor,
/*table_reader_ptr=*/nullptr,
cfd->internal_stats()->GetFileReadHist(
compact_->compaction->output_level()),
TableReaderCaller::kCompactionRefill, /*arena=*/nullptr,
/*skip_filters=*/false, compact_->compaction->output_level(),
MaxFileSizeForL0MetaPin(
*compact_->compaction->mutable_cf_options()),
/*smallest_compaction_key=*/nullptr,
/*largest_compaction_key=*/nullptr,
/*allow_unprepared_value=*/false,
compact_->compaction->mutable_cf_options()
->block_protection_bytes_per_key);
auto s = iter->status();
if (s.ok() && paranoid_file_checks_) {
OutputValidator validator(cfd->internal_comparator(),
/*_enable_hash=*/true);
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
s = validator.Add(iter->key(), iter->value());
if (!s.ok()) {
break;
}
}
if (s.ok()) {
s = iter->status();
}
if (s.ok() &&
!validator.CompareValidator(files_output[file_idx]->validator)) {
s = Status::Corruption("Paranoid checksums do not match");
}
}
delete iter;
if (!s.ok()) {
output_status = s;
break;
}
}
};
for (size_t i = 1; i < compact_->sub_compact_states.size(); i++) {
thread_pool.emplace_back(
verify_table, std::ref(compact_->sub_compact_states[i].status));
}
verify_table(compact_->sub_compact_states[0].status);
for (auto& thread : thread_pool) {
thread.join();
}
for (const auto& state : compact_->sub_compact_states) {
if (!state.status.ok()) {
status = state.status;
break;
}
}
}
ReleaseSubcompactionResources();
TEST_SYNC_POINT("CompactionJob::ReleaseSubcompactionResources:0");
TEST_SYNC_POINT("CompactionJob::ReleaseSubcompactionResources:1");
TablePropertiesCollection tp;
for (const auto& state : compact_->sub_compact_states) {
for (const auto& output : state.GetOutputs()) {
auto fn =
TableFileName(state.compaction->immutable_options()->cf_paths,
output.meta.fd.GetNumber(), output.meta.fd.GetPathId());
compact_->compaction->SetOutputTableProperties(fn,
output.table_properties);
}
}
// Finish up all bookkeeping to unify the subcompaction results.
compact_->AggregateCompactionStats(compaction_stats_, *compaction_job_stats_);
uint64_t num_input_range_del = 0;
bool ok = UpdateCompactionStats(&num_input_range_del);
// (Sub)compactions returned ok, do sanity check on the number of input keys.
if (status.ok() && ok && compaction_job_stats_->has_num_input_records) {
size_t ts_sz = compact_->compaction->column_family_data()
->user_comparator()
->timestamp_size();
// When trim_ts_ is non-empty, CompactionIterator takes
// HistoryTrimmingIterator as input iterator and sees a trimmed view of
// input keys. So the number of keys it processed is not suitable for
// verification here.
// TODO: support verification when trim_ts_ is non-empty.
if (!(ts_sz > 0 && !trim_ts_.empty())) {
assert(compaction_stats_.stats.num_input_records > 0);
// TODO: verify the number of range deletion entries.
uint64_t expected =
compaction_stats_.stats.num_input_records - num_input_range_del;
uint64_t actual = compaction_job_stats_->num_input_records;
if (expected != actual) {
char scratch[2345];
compact_->compaction->Summary(scratch, sizeof(scratch));
std::string msg =
"Compaction number of input keys does not match "
"number of keys processed. Expected " +
std::to_string(expected) + " but processed " +
std::to_string(actual) + ". Compaction summary: " + scratch;
ROCKS_LOG_WARN(
db_options_.info_log, "[%s] [JOB %d] Compaction with status: %s",
compact_->compaction->column_family_data()->GetName().c_str(),
job_context_->job_id, msg.c_str());
if (db_options_.compaction_verify_record_count) {
status = Status::Corruption(msg);
}
}
}
}
RecordCompactionIOStats();
LogFlush(db_options_.info_log);
TEST_SYNC_POINT("CompactionJob::Run():End");
compact_->status = status;
TEST_SYNC_POINT_CALLBACK("CompactionJob::Run():EndStatusSet", &status);
return status;
}
Status CompactionJob::Install(const MutableCFOptions& mutable_cf_options,
bool* compaction_released) {
assert(compact_);
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_INSTALL);
db_mutex_->AssertHeld();
Status status = compact_->status;
ColumnFamilyData* cfd = compact_->compaction->column_family_data();
assert(cfd);
int output_level = compact_->compaction->output_level();
cfd->internal_stats()->AddCompactionStats(output_level, thread_pri_,
compaction_stats_);
if (status.ok()) {
status = InstallCompactionResults(mutable_cf_options, compaction_released);
}
if (!versions_->io_status().ok()) {
io_status_ = versions_->io_status();
}
VersionStorageInfo::LevelSummaryStorage tmp;
auto vstorage = cfd->current()->storage_info();
const auto& stats = compaction_stats_.stats;
double read_write_amp = 0.0;
double write_amp = 0.0;
double bytes_read_per_sec = 0;
double bytes_written_per_sec = 0;
const uint64_t bytes_read_non_output_and_blob =
stats.bytes_read_non_output_levels + stats.bytes_read_blob;
const uint64_t bytes_read_all =
stats.bytes_read_output_level + bytes_read_non_output_and_blob;
const uint64_t bytes_written_all =
stats.bytes_written + stats.bytes_written_blob;
if (bytes_read_non_output_and_blob > 0) {
read_write_amp = (bytes_written_all + bytes_read_all) /
static_cast<double>(bytes_read_non_output_and_blob);
write_amp =
bytes_written_all / static_cast<double>(bytes_read_non_output_and_blob);
}
if (stats.micros > 0) {
bytes_read_per_sec = bytes_read_all / static_cast<double>(stats.micros);
bytes_written_per_sec =
bytes_written_all / static_cast<double>(stats.micros);
}
const std::string& column_family_name = cfd->GetName();
constexpr double kMB = 1048576.0;
ROCKS_LOG_BUFFER(
log_buffer_,
"[%s] compacted to: %s, MB/sec: %.1f rd, %.1f wr, level %d, "
"files in(%d, %d) out(%d +%d blob) "
"MB in(%.1f, %.1f +%.1f blob) out(%.1f +%.1f blob), "
"read-write-amplify(%.1f) write-amplify(%.1f) %s, records in: %" PRIu64
", records dropped: %" PRIu64 " output_compression: %s\n",
column_family_name.c_str(), vstorage->LevelSummary(&tmp),
bytes_read_per_sec, bytes_written_per_sec,
compact_->compaction->output_level(),
stats.num_input_files_in_non_output_levels,
stats.num_input_files_in_output_level, stats.num_output_files,
stats.num_output_files_blob, stats.bytes_read_non_output_levels / kMB,
stats.bytes_read_output_level / kMB, stats.bytes_read_blob / kMB,
stats.bytes_written / kMB, stats.bytes_written_blob / kMB, read_write_amp,
write_amp, status.ToString().c_str(), stats.num_input_records,
stats.num_dropped_records,
CompressionTypeToString(compact_->compaction->output_compression())
.c_str());
const auto& blob_files = vstorage->GetBlobFiles();
if (!blob_files.empty()) {
assert(blob_files.front());
assert(blob_files.back());
ROCKS_LOG_BUFFER(
log_buffer_,
"[%s] Blob file summary: head=%" PRIu64 ", tail=%" PRIu64 "\n",
column_family_name.c_str(), blob_files.front()->GetBlobFileNumber(),
blob_files.back()->GetBlobFileNumber());
}
if (compaction_stats_.has_penultimate_level_output) {
ROCKS_LOG_BUFFER(
log_buffer_,
"[%s] has Penultimate Level output: %" PRIu64
", level %d, number of files: %" PRIu64 ", number of records: %" PRIu64,
column_family_name.c_str(),
compaction_stats_.penultimate_level_stats.bytes_written,
compact_->compaction->GetPenultimateLevel(),
compaction_stats_.penultimate_level_stats.num_output_files,
compaction_stats_.penultimate_level_stats.num_output_records);
}
UpdateCompactionJobStats(stats);
auto stream = event_logger_->LogToBuffer(log_buffer_, 8192);
stream << "job" << job_id_ << "event"
<< "compaction_finished"
<< "compaction_time_micros" << stats.micros
<< "compaction_time_cpu_micros" << stats.cpu_micros << "output_level"
<< compact_->compaction->output_level() << "num_output_files"
<< stats.num_output_files << "total_output_size"
<< stats.bytes_written;
if (stats.num_output_files_blob > 0) {
stream << "num_blob_output_files" << stats.num_output_files_blob
<< "total_blob_output_size" << stats.bytes_written_blob;
}
stream << "num_input_records" << stats.num_input_records
<< "num_output_records" << stats.num_output_records
<< "num_subcompactions" << compact_->sub_compact_states.size()
<< "output_compression"
<< CompressionTypeToString(compact_->compaction->output_compression());
stream << "num_single_delete_mismatches"
<< compaction_job_stats_->num_single_del_mismatch;
stream << "num_single_delete_fallthrough"
<< compaction_job_stats_->num_single_del_fallthru;
if (measure_io_stats_) {
stream << "file_write_nanos" << compaction_job_stats_->file_write_nanos;
stream << "file_range_sync_nanos"
<< compaction_job_stats_->file_range_sync_nanos;
stream << "file_fsync_nanos" << compaction_job_stats_->file_fsync_nanos;
stream << "file_prepare_write_nanos"
<< compaction_job_stats_->file_prepare_write_nanos;
}
stream << "lsm_state";
stream.StartArray();
for (int level = 0; level < vstorage->num_levels(); ++level) {
stream << vstorage->NumLevelFiles(level);
}
stream.EndArray();
if (!blob_files.empty()) {
assert(blob_files.front());
stream << "blob_file_head" << blob_files.front()->GetBlobFileNumber();
assert(blob_files.back());
stream << "blob_file_tail" << blob_files.back()->GetBlobFileNumber();
}
if (compaction_stats_.has_penultimate_level_output) {
InternalStats::CompactionStats& pl_stats =
compaction_stats_.penultimate_level_stats;
stream << "penultimate_level_num_output_files" << pl_stats.num_output_files;
stream << "penultimate_level_bytes_written" << pl_stats.bytes_written;
stream << "penultimate_level_num_output_records"
<< pl_stats.num_output_records;
stream << "penultimate_level_num_output_files_blob"
<< pl_stats.num_output_files_blob;
stream << "penultimate_level_bytes_written_blob"
<< pl_stats.bytes_written_blob;
}
CleanupCompaction();
return status;
}
void CompactionJob::NotifyOnSubcompactionBegin(
SubcompactionState* sub_compact) {
Compaction* c = compact_->compaction;
if (db_options_.listeners.empty()) {
return;
}
if (shutting_down_->load(std::memory_order_acquire)) {
return;
}
if (c->is_manual_compaction() &&
manual_compaction_canceled_.load(std::memory_order_acquire)) {
return;
}
sub_compact->notify_on_subcompaction_completion = true;
SubcompactionJobInfo info{};
sub_compact->BuildSubcompactionJobInfo(info);
info.job_id = static_cast<int>(job_id_);
info.thread_id = env_->GetThreadID();
for (const auto& listener : db_options_.listeners) {
listener->OnSubcompactionBegin(info);
}
info.status.PermitUncheckedError();
}
void CompactionJob::NotifyOnSubcompactionCompleted(
SubcompactionState* sub_compact) {
if (db_options_.listeners.empty()) {
return;
}
if (shutting_down_->load(std::memory_order_acquire)) {
return;
}
if (sub_compact->notify_on_subcompaction_completion == false) {
return;
}
SubcompactionJobInfo info{};
sub_compact->BuildSubcompactionJobInfo(info);
info.job_id = static_cast<int>(job_id_);
info.thread_id = env_->GetThreadID();
for (const auto& listener : db_options_.listeners) {
listener->OnSubcompactionCompleted(info);
}
}
void CompactionJob::ProcessKeyValueCompaction(SubcompactionState* sub_compact) {
assert(sub_compact);
assert(sub_compact->compaction);
if (db_options_.compaction_service) {
CompactionServiceJobStatus comp_status =
ProcessKeyValueCompactionWithCompactionService(sub_compact);
if (comp_status == CompactionServiceJobStatus::kSuccess ||
comp_status == CompactionServiceJobStatus::kFailure) {
return;
}
// fallback to local compaction
assert(comp_status == CompactionServiceJobStatus::kUseLocal);
}
uint64_t prev_cpu_micros = db_options_.clock->CPUMicros();
ColumnFamilyData* cfd = sub_compact->compaction->column_family_data();
// Create compaction filter and fail the compaction if
// IgnoreSnapshots() = false because it is not supported anymore
const CompactionFilter* compaction_filter =
cfd->ioptions()->compaction_filter;
std::unique_ptr<CompactionFilter> compaction_filter_from_factory = nullptr;
if (compaction_filter == nullptr) {
compaction_filter_from_factory =
sub_compact->compaction->CreateCompactionFilter();
compaction_filter = compaction_filter_from_factory.get();
}
if (compaction_filter != nullptr && !compaction_filter->IgnoreSnapshots()) {
sub_compact->status = Status::NotSupported(
"CompactionFilter::IgnoreSnapshots() = false is not supported "
"anymore.");
return;
}
NotifyOnSubcompactionBegin(sub_compact);
auto range_del_agg = std::make_unique<CompactionRangeDelAggregator>(
&cfd->internal_comparator(), existing_snapshots_, &full_history_ts_low_,
&trim_ts_);
// TODO: since we already use C++17, should use
// std::optional<const Slice> instead.
const std::optional<Slice> start = sub_compact->start;
const std::optional<Slice> end = sub_compact->end;
std::optional<Slice> start_without_ts;
std::optional<Slice> end_without_ts;
ReadOptions read_options;
read_options.verify_checksums = true;
read_options.fill_cache = false;
read_options.rate_limiter_priority = GetRateLimiterPriority();
read_options.io_activity = Env::IOActivity::kCompaction;
// Compaction iterators shouldn't be confined to a single prefix.
// Compactions use Seek() for
// (a) concurrent compactions,
// (b) CompactionFilter::Decision::kRemoveAndSkipUntil.
read_options.total_order_seek = true;
const WriteOptions write_options(Env::IOPriority::IO_LOW,
Env::IOActivity::kCompaction);
// Remove the timestamps from boundaries because boundaries created in
// GenSubcompactionBoundaries doesn't strip away the timestamp.
size_t ts_sz = cfd->user_comparator()->timestamp_size();
if (start.has_value()) {
read_options.iterate_lower_bound = &(*start);
if (ts_sz > 0) {
start_without_ts = StripTimestampFromUserKey(*start, ts_sz);
read_options.iterate_lower_bound = &(*start_without_ts);
}
}
if (end.has_value()) {
read_options.iterate_upper_bound = &(*end);
if (ts_sz > 0) {
end_without_ts = StripTimestampFromUserKey(*end, ts_sz);
read_options.iterate_upper_bound = &(*end_without_ts);
}
}
// Although the v2 aggregator is what the level iterator(s) know about,
// the AddTombstones calls will be propagated down to the v1 aggregator.
std::unique_ptr<InternalIterator> raw_input(versions_->MakeInputIterator(
read_options, sub_compact->compaction, range_del_agg.get(),
file_options_for_read_, start, end));
InternalIterator* input = raw_input.get();
IterKey start_ikey;
IterKey end_ikey;
Slice start_slice;
Slice end_slice;
Slice start_user_key{};
Slice end_user_key{};
static constexpr char kMaxTs[] =
"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff";
Slice ts_slice;
std::string max_ts;
if (ts_sz > 0) {
if (ts_sz <= strlen(kMaxTs)) {
ts_slice = Slice(kMaxTs, ts_sz);
} else {
max_ts = std::string(ts_sz, '\xff');
ts_slice = Slice(max_ts);
}
}
if (start.has_value()) {
start_ikey.SetInternalKey(*start, kMaxSequenceNumber, kValueTypeForSeek);
if (ts_sz > 0) {
start_ikey.UpdateInternalKey(kMaxSequenceNumber, kValueTypeForSeek,
&ts_slice);
}
start_slice = start_ikey.GetInternalKey();
start_user_key = start_ikey.GetUserKey();
}
if (end.has_value()) {
end_ikey.SetInternalKey(*end, kMaxSequenceNumber, kValueTypeForSeek);
if (ts_sz > 0) {
end_ikey.UpdateInternalKey(kMaxSequenceNumber, kValueTypeForSeek,
&ts_slice);
}
end_slice = end_ikey.GetInternalKey();
end_user_key = end_ikey.GetUserKey();
}
std::unique_ptr<InternalIterator> clip;
if (start.has_value() || end.has_value()) {
clip = std::make_unique<ClippingIterator>(
raw_input.get(), start.has_value() ? &start_slice : nullptr,
end.has_value() ? &end_slice : nullptr, &cfd->internal_comparator());
input = clip.get();
}
std::unique_ptr<InternalIterator> blob_counter;
if (sub_compact->compaction->DoesInputReferenceBlobFiles()) {
BlobGarbageMeter* meter = sub_compact->Current().CreateBlobGarbageMeter();
blob_counter = std::make_unique<BlobCountingIterator>(input, meter);
input = blob_counter.get();
}
std::unique_ptr<InternalIterator> trim_history_iter;
if (ts_sz > 0 && !trim_ts_.empty()) {
trim_history_iter = std::make_unique<HistoryTrimmingIterator>(
input, cfd->user_comparator(), trim_ts_);
input = trim_history_iter.get();
}
input->SeekToFirst();
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_PROCESS_KV);
// I/O measurement variables
PerfLevel prev_perf_level = PerfLevel::kEnableTime;
const uint64_t kRecordStatsEvery = 1000;
uint64_t prev_write_nanos = 0;
uint64_t prev_fsync_nanos = 0;
uint64_t prev_range_sync_nanos = 0;
uint64_t prev_prepare_write_nanos = 0;
uint64_t prev_cpu_write_nanos = 0;
uint64_t prev_cpu_read_nanos = 0;
if (measure_io_stats_) {
prev_perf_level = GetPerfLevel();
SetPerfLevel(PerfLevel::kEnableTimeAndCPUTimeExceptForMutex);
prev_write_nanos = IOSTATS(write_nanos);
prev_fsync_nanos = IOSTATS(fsync_nanos);
prev_range_sync_nanos = IOSTATS(range_sync_nanos);
prev_prepare_write_nanos = IOSTATS(prepare_write_nanos);
prev_cpu_write_nanos = IOSTATS(cpu_write_nanos);
prev_cpu_read_nanos = IOSTATS(cpu_read_nanos);
}
MergeHelper merge(
env_, cfd->user_comparator(), cfd->ioptions()->merge_operator.get(),
compaction_filter, db_options_.info_log.get(),
false /* internal key corruption is expected */,
existing_snapshots_.empty() ? 0 : existing_snapshots_.back(),
snapshot_checker_, compact_->compaction->level(), db_options_.stats);
const MutableCFOptions* mutable_cf_options =
sub_compact->compaction->mutable_cf_options();
assert(mutable_cf_options);
std::vector<std::string> blob_file_paths;
// TODO: BlobDB to support output_to_penultimate_level compaction, which needs
// 2 builders, so may need to move to `CompactionOutputs`
std::unique_ptr<BlobFileBuilder> blob_file_builder(
(mutable_cf_options->enable_blob_files &&
sub_compact->compaction->output_level() >=
mutable_cf_options->blob_file_starting_level)
? new BlobFileBuilder(
versions_, fs_.get(),
sub_compact->compaction->immutable_options(),
mutable_cf_options, &file_options_, &write_options, db_id_,
db_session_id_, job_id_, cfd->GetID(), cfd->GetName(),
write_hint_, io_tracer_, blob_callback_,
BlobFileCreationReason::kCompaction, &blob_file_paths,
sub_compact->Current().GetBlobFileAdditionsPtr())
: nullptr);
TEST_SYNC_POINT("CompactionJob::Run():Inprogress");
TEST_SYNC_POINT_CALLBACK("CompactionJob::Run():PausingManualCompaction:1",
static_cast<void*>(const_cast<std::atomic<bool>*>(
&manual_compaction_canceled_)));
const std::string* const full_history_ts_low =
full_history_ts_low_.empty() ? nullptr : &full_history_ts_low_;
const SequenceNumber job_snapshot_seq =
job_context_ ? job_context_->GetJobSnapshotSequence()
: kMaxSequenceNumber;
auto c_iter = std::make_unique<CompactionIterator>(
input, cfd->user_comparator(), &merge, versions_->LastSequence(),
&existing_snapshots_, earliest_write_conflict_snapshot_, job_snapshot_seq,
snapshot_checker_, env_, ShouldReportDetailedTime(env_, stats_),
/*expect_valid_internal_key=*/true, range_del_agg.get(),
blob_file_builder.get(), db_options_.allow_data_in_errors,
db_options_.enforce_single_del_contracts, manual_compaction_canceled_,
sub_compact->compaction
->DoesInputReferenceBlobFiles() /* must_count_input_entries */,
sub_compact->compaction, compaction_filter, shutting_down_,
db_options_.info_log, full_history_ts_low, preserve_time_min_seqno_,
preclude_last_level_min_seqno_);
c_iter->SeekToFirst();
// Assign range delete aggregator to the target output level, which makes sure
// it only output to single level
sub_compact->AssignRangeDelAggregator(std::move(range_del_agg));
const auto& c_iter_stats = c_iter->iter_stats();
// define the open and close functions for the compaction files, which will be
// used open/close output files when needed.
const CompactionFileOpenFunc open_file_func =
[this, sub_compact](CompactionOutputs& outputs) {
return this->OpenCompactionOutputFile(sub_compact, outputs);
};
const CompactionFileCloseFunc close_file_func =
[this, sub_compact, start_user_key, end_user_key](
CompactionOutputs& outputs, const Status& status,
const Slice& next_table_min_key) {
return this->FinishCompactionOutputFile(
status, sub_compact, outputs, next_table_min_key,
sub_compact->start.has_value() ? &start_user_key : nullptr,
sub_compact->end.has_value() ? &end_user_key : nullptr);
};
Status status;
TEST_SYNC_POINT_CALLBACK(
"CompactionJob::ProcessKeyValueCompaction()::Processing",
static_cast<void*>(const_cast<Compaction*>(sub_compact->compaction)));
uint64_t last_cpu_micros = prev_cpu_micros;
while (status.ok() && !cfd->IsDropped() && c_iter->Valid()) {
// Invariant: c_iter.status() is guaranteed to be OK if c_iter->Valid()
// returns true.
assert(!end.has_value() ||
cfd->user_comparator()->Compare(c_iter->user_key(), *end) < 0);
if (c_iter_stats.num_input_records % kRecordStatsEvery ==
kRecordStatsEvery - 1) {
RecordDroppedKeys(c_iter_stats, &sub_compact->compaction_job_stats);
c_iter->ResetRecordCounts();
RecordCompactionIOStats();
uint64_t cur_cpu_micros = db_options_.clock->CPUMicros();
assert(cur_cpu_micros >= last_cpu_micros);
RecordTick(stats_, COMPACTION_CPU_TOTAL_TIME,
cur_cpu_micros - last_cpu_micros);
last_cpu_micros = cur_cpu_micros;
}
// Add current compaction_iterator key to target compaction output, if the
// output file needs to be close or open, it will call the `open_file_func`
// and `close_file_func`.
// TODO: it would be better to have the compaction file open/close moved
// into `CompactionOutputs` which has the output file information.
status = sub_compact->AddToOutput(*c_iter, open_file_func, close_file_func);
if (!status.ok()) {
break;
}
TEST_SYNC_POINT_CALLBACK("CompactionJob::Run():PausingManualCompaction:2",
static_cast<void*>(const_cast<std::atomic<bool>*>(
&manual_compaction_canceled_)));
c_iter->Next();
if (c_iter->status().IsManualCompactionPaused()) {
break;
}
#ifndef NDEBUG
bool stop = false;
TEST_SYNC_POINT_CALLBACK("CompactionJob::ProcessKeyValueCompaction()::stop",
static_cast<void*>(&stop));
if (stop) {
break;
}
#endif // NDEBUG
}
// This number may not be accurate when CompactionIterator was created
// with `must_count_input_entries=false`.
assert(!sub_compact->compaction->DoesInputReferenceBlobFiles() ||
c_iter->HasNumInputEntryScanned());
sub_compact->compaction_job_stats.has_num_input_records =
c_iter->HasNumInputEntryScanned();
sub_compact->compaction_job_stats.num_input_records =
c_iter->NumInputEntryScanned();
sub_compact->compaction_job_stats.num_blobs_read =
c_iter_stats.num_blobs_read;
sub_compact->compaction_job_stats.total_blob_bytes_read =
c_iter_stats.total_blob_bytes_read;
sub_compact->compaction_job_stats.num_input_deletion_records =
c_iter_stats.num_input_deletion_records;
sub_compact->compaction_job_stats.num_corrupt_keys =
c_iter_stats.num_input_corrupt_records;
sub_compact->compaction_job_stats.num_single_del_fallthru =
c_iter_stats.num_single_del_fallthru;
sub_compact->compaction_job_stats.num_single_del_mismatch =
c_iter_stats.num_single_del_mismatch;
sub_compact->compaction_job_stats.total_input_raw_key_bytes +=
c_iter_stats.total_input_raw_key_bytes;
sub_compact->compaction_job_stats.total_input_raw_value_bytes +=
c_iter_stats.total_input_raw_value_bytes;
RecordTick(stats_, FILTER_OPERATION_TOTAL_TIME,
c_iter_stats.total_filter_time);
if (c_iter_stats.num_blobs_relocated > 0) {
RecordTick(stats_, BLOB_DB_GC_NUM_KEYS_RELOCATED,
c_iter_stats.num_blobs_relocated);
}
if (c_iter_stats.total_blob_bytes_relocated > 0) {
RecordTick(stats_, BLOB_DB_GC_BYTES_RELOCATED,
c_iter_stats.total_blob_bytes_relocated);
}
RecordDroppedKeys(c_iter_stats, &sub_compact->compaction_job_stats);
RecordCompactionIOStats();
if (status.ok() && cfd->IsDropped()) {
status =
Status::ColumnFamilyDropped("Column family dropped during compaction");
}
if ((status.ok() || status.IsColumnFamilyDropped()) &&
shutting_down_->load(std::memory_order_relaxed)) {
status = Status::ShutdownInProgress("Database shutdown");
}
if ((status.ok() || status.IsColumnFamilyDropped()) &&
(manual_compaction_canceled_.load(std::memory_order_relaxed))) {
status = Status::Incomplete(Status::SubCode::kManualCompactionPaused);
}
if (status.ok()) {
status = input->status();
}
if (status.ok()) {
status = c_iter->status();
}
// Call FinishCompactionOutputFile() even if status is not ok: it needs to
// close the output files. Open file function is also passed, in case there's
// only range-dels, no file was opened, to save the range-dels, it need to
// create a new output file.
status = sub_compact->CloseCompactionFiles(status, open_file_func,
close_file_func);
if (blob_file_builder) {
if (status.ok()) {
status = blob_file_builder->Finish();
} else {
blob_file_builder->Abandon(status);
}
blob_file_builder.reset();
sub_compact->Current().UpdateBlobStats();
}
uint64_t cur_cpu_micros = db_options_.clock->CPUMicros();
sub_compact->compaction_job_stats.cpu_micros =
cur_cpu_micros - prev_cpu_micros;
RecordTick(stats_, COMPACTION_CPU_TOTAL_TIME,
cur_cpu_micros - last_cpu_micros);
if (measure_io_stats_) {
sub_compact->compaction_job_stats.file_write_nanos +=
IOSTATS(write_nanos) - prev_write_nanos;
sub_compact->compaction_job_stats.file_fsync_nanos +=
IOSTATS(fsync_nanos) - prev_fsync_nanos;
sub_compact->compaction_job_stats.file_range_sync_nanos +=
IOSTATS(range_sync_nanos) - prev_range_sync_nanos;
sub_compact->compaction_job_stats.file_prepare_write_nanos +=
IOSTATS(prepare_write_nanos) - prev_prepare_write_nanos;
sub_compact->compaction_job_stats.cpu_micros -=
(IOSTATS(cpu_write_nanos) - prev_cpu_write_nanos +
IOSTATS(cpu_read_nanos) - prev_cpu_read_nanos) /
1000;
if (prev_perf_level != PerfLevel::kEnableTimeAndCPUTimeExceptForMutex) {
SetPerfLevel(prev_perf_level);
}
}
#ifdef ROCKSDB_ASSERT_STATUS_CHECKED
if (!status.ok()) {
if (c_iter) {
c_iter->status().PermitUncheckedError();
}
if (input) {
input->status().PermitUncheckedError();
}
}
#endif // ROCKSDB_ASSERT_STATUS_CHECKED
blob_counter.reset();
clip.reset();
raw_input.reset();
sub_compact->status = status;
NotifyOnSubcompactionCompleted(sub_compact);
}
uint64_t CompactionJob::GetCompactionId(SubcompactionState* sub_compact) const {
return (uint64_t)job_id_ << 32 | sub_compact->sub_job_id;
}
void CompactionJob::RecordDroppedKeys(
const CompactionIterationStats& c_iter_stats,
CompactionJobStats* compaction_job_stats) {
if (c_iter_stats.num_record_drop_user > 0) {
RecordTick(stats_, COMPACTION_KEY_DROP_USER,
c_iter_stats.num_record_drop_user);
}
if (c_iter_stats.num_record_drop_hidden > 0) {
RecordTick(stats_, COMPACTION_KEY_DROP_NEWER_ENTRY,
c_iter_stats.num_record_drop_hidden);
if (compaction_job_stats) {
compaction_job_stats->num_records_replaced +=
c_iter_stats.num_record_drop_hidden;
}
}
if (c_iter_stats.num_record_drop_obsolete > 0) {
RecordTick(stats_, COMPACTION_KEY_DROP_OBSOLETE,
c_iter_stats.num_record_drop_obsolete);
if (compaction_job_stats) {
compaction_job_stats->num_expired_deletion_records +=
c_iter_stats.num_record_drop_obsolete;
}
}
if (c_iter_stats.num_record_drop_range_del > 0) {
RecordTick(stats_, COMPACTION_KEY_DROP_RANGE_DEL,
c_iter_stats.num_record_drop_range_del);
}
if (c_iter_stats.num_range_del_drop_obsolete > 0) {
RecordTick(stats_, COMPACTION_RANGE_DEL_DROP_OBSOLETE,
c_iter_stats.num_range_del_drop_obsolete);
}
if (c_iter_stats.num_optimized_del_drop_obsolete > 0) {
RecordTick(stats_, COMPACTION_OPTIMIZED_DEL_DROP_OBSOLETE,
c_iter_stats.num_optimized_del_drop_obsolete);
}
}
Status CompactionJob::FinishCompactionOutputFile(
const Status& input_status, SubcompactionState* sub_compact,
CompactionOutputs& outputs, const Slice& next_table_min_key,
const Slice* comp_start_user_key, const Slice* comp_end_user_key) {
AutoThreadOperationStageUpdater stage_updater(
ThreadStatus::STAGE_COMPACTION_SYNC_FILE);
assert(sub_compact != nullptr);
assert(outputs.HasBuilder());
FileMetaData* meta = outputs.GetMetaData();
uint64_t output_number = meta->fd.GetNumber();
assert(output_number != 0);
ColumnFamilyData* cfd = sub_compact->compaction->column_family_data();
std::string file_checksum = kUnknownFileChecksum;
std::string file_checksum_func_name = kUnknownFileChecksumFuncName;
// Check for iterator errors
Status s = input_status;
// Add range tombstones
auto earliest_snapshot = kMaxSequenceNumber;
if (existing_snapshots_.size() > 0) {
earliest_snapshot = existing_snapshots_[0];
}
if (s.ok()) {
CompactionIterationStats range_del_out_stats;
// if the compaction supports per_key_placement, only output range dels to
// the penultimate level.
// Note: Use `bottommost_level_ = true` for both bottommost and
// output_to_penultimate_level compaction here, as it's only used to decide
// if range dels could be dropped.
if (outputs.HasRangeDel()) {
s = outputs.AddRangeDels(comp_start_user_key, comp_end_user_key,
range_del_out_stats, bottommost_level_,
cfd->internal_comparator(), earliest_snapshot,
next_table_min_key, full_history_ts_low_);
}
RecordDroppedKeys(range_del_out_stats, &sub_compact->compaction_job_stats);
TEST_SYNC_POINT("CompactionJob::FinishCompactionOutputFile1");
}
const uint64_t current_entries = outputs.NumEntries();
s = outputs.Finish(s, seqno_to_time_mapping_);
if (s.ok()) {
// With accurate smallest and largest key, we can get a slightly more
// accurate oldest ancester time.
// This makes oldest ancester time in manifest more accurate than in
// table properties. Not sure how to resolve it.
if (meta->smallest.size() > 0 && meta->largest.size() > 0) {
uint64_t refined_oldest_ancester_time;
Slice new_smallest = meta->smallest.user_key();
Slice new_largest = meta->largest.user_key();
if (!new_largest.empty() && !new_smallest.empty()) {
refined_oldest_ancester_time =
sub_compact->compaction->MinInputFileOldestAncesterTime(
&(meta->smallest), &(meta->largest));
if (refined_oldest_ancester_time !=
std::numeric_limits<uint64_t>::max()) {
meta->oldest_ancester_time = refined_oldest_ancester_time;
}
}
}
}
// Finish and check for file errors
IOStatus io_s = outputs.WriterSyncClose(s, db_options_.clock, stats_,
db_options_.use_fsync);
if (s.ok() && io_s.ok()) {
file_checksum = meta->file_checksum;
file_checksum_func_name = meta->file_checksum_func_name;
}
if (s.ok()) {
s = io_s;
}
if (sub_compact->io_status.ok()) {
sub_compact->io_status = io_s;
// Since this error is really a copy of the
// "normal" status, it does not also need to be checked
sub_compact->io_status.PermitUncheckedError();
}
TableProperties tp;
if (s.ok()) {
tp = outputs.GetTableProperties();
}
if (s.ok() && current_entries == 0 && tp.num_range_deletions == 0) {
// If there is nothing to output, no necessary to generate a sst file.
// This happens when the output level is bottom level, at the same time
// the sub_compact output nothing.
std::string fname =
TableFileName(sub_compact->compaction->immutable_options()->cf_paths,
meta->fd.GetNumber(), meta->fd.GetPathId());
// TODO(AR) it is not clear if there are any larger implications if
// DeleteFile fails here
Status ds = env_->DeleteFile(fname);
if (!ds.ok()) {
ROCKS_LOG_WARN(
db_options_.info_log,
"[%s] [JOB %d] Unable to remove SST file for table #%" PRIu64
" at bottom level%s",
cfd->GetName().c_str(), job_id_, output_number,
meta->marked_for_compaction ? " (need compaction)" : "");
}
// Also need to remove the file from outputs, or it will be added to the
// VersionEdit.
outputs.RemoveLastOutput();
meta = nullptr;
}
if (s.ok() && (current_entries > 0 || tp.num_range_deletions > 0)) {
// Output to event logger and fire events.
outputs.UpdateTableProperties();
ROCKS_LOG_INFO(db_options_.info_log,
"[%s] [JOB %d] Generated table #%" PRIu64 ": %" PRIu64
" keys, %" PRIu64 " bytes%s, temperature: %s",
cfd->GetName().c_str(), job_id_, output_number,
current_entries, meta->fd.file_size,
meta->marked_for_compaction ? " (need compaction)" : "",
temperature_to_string[meta->temperature].c_str());
}
std::string fname;
FileDescriptor output_fd;
uint64_t oldest_blob_file_number = kInvalidBlobFileNumber;
Status status_for_listener = s;
if (meta != nullptr) {
fname = GetTableFileName(meta->fd.GetNumber());
output_fd = meta->fd;
oldest_blob_file_number = meta->oldest_blob_file_number;
} else {
fname = "(nil)";
if (s.ok()) {
status_for_listener = Status::Aborted("Empty SST file not kept");
}
}
EventHelpers::LogAndNotifyTableFileCreationFinished(
event_logger_, cfd->ioptions()->listeners, dbname_, cfd->GetName(), fname,
job_id_, output_fd, oldest_blob_file_number, tp,
TableFileCreationReason::kCompaction, status_for_listener, file_checksum,
file_checksum_func_name);
// Report new file to SstFileManagerImpl
auto sfm =
static_cast<SstFileManagerImpl*>(db_options_.sst_file_manager.get());
if (sfm && meta != nullptr && meta->fd.GetPathId() == 0) {
Status add_s = sfm->OnAddFile(fname);
if (!add_s.ok() && s.ok()) {
s = add_s;
}
if (sfm->IsMaxAllowedSpaceReached()) {
// TODO(ajkr): should we return OK() if max space was reached by the final
// compaction output file (similarly to how flush works when full)?
s = Status::SpaceLimit("Max allowed space was reached");
TEST_SYNC_POINT(
"CompactionJob::FinishCompactionOutputFile:MaxAllowedSpaceReached");
InstrumentedMutexLock l(db_mutex_);
db_error_handler_->SetBGError(s, BackgroundErrorReason::kCompaction);
}
}
outputs.ResetBuilder();
return s;
}
Status CompactionJob::InstallCompactionResults(
const MutableCFOptions& mutable_cf_options, bool* compaction_released) {
assert(compact_);
db_mutex_->AssertHeld();
const ReadOptions read_options(Env::IOActivity::kCompaction);
const WriteOptions write_options(Env::IOActivity::kCompaction);
auto* compaction = compact_->compaction;
assert(compaction);
{
Compaction::InputLevelSummaryBuffer inputs_summary;
if (compaction_stats_.has_penultimate_level_output) {
ROCKS_LOG_BUFFER(
log_buffer_,
"[%s] [JOB %d] Compacted %s => output_to_penultimate_level: %" PRIu64
" bytes + last: %" PRIu64 " bytes. Total: %" PRIu64 " bytes",
compaction->column_family_data()->GetName().c_str(), job_id_,
compaction->InputLevelSummary(&inputs_summary),
compaction_stats_.penultimate_level_stats.bytes_written,
compaction_stats_.stats.bytes_written,
compaction_stats_.TotalBytesWritten());
} else {
ROCKS_LOG_BUFFER(log_buffer_,
"[%s] [JOB %d] Compacted %s => %" PRIu64 " bytes",
compaction->column_family_data()->GetName().c_str(),
job_id_, compaction->InputLevelSummary(&inputs_summary),
compaction_stats_.TotalBytesWritten());
}
}
VersionEdit* const edit = compaction->edit();
assert(edit);
// Add compaction inputs
compaction->AddInputDeletions(edit);
std::unordered_map<uint64_t, BlobGarbageMeter::BlobStats> blob_total_garbage;
for (const auto& sub_compact : compact_->sub_compact_states) {
sub_compact.AddOutputsEdit(edit);
for (const auto& blob : sub_compact.Current().GetBlobFileAdditions()) {
edit->AddBlobFile(blob);
}
if (sub_compact.Current().GetBlobGarbageMeter()) {
const auto& flows = sub_compact.Current().GetBlobGarbageMeter()->flows();
for (const auto& pair : flows) {
const uint64_t blob_file_number = pair.first;
const BlobGarbageMeter::BlobInOutFlow& flow = pair.second;
assert(flow.IsValid());
if (flow.HasGarbage()) {
blob_total_garbage[blob_file_number].Add(flow.GetGarbageCount(),
flow.GetGarbageBytes());
}
}
}
}
for (const auto& pair : blob_total_garbage) {
const uint64_t blob_file_number = pair.first;
const BlobGarbageMeter::BlobStats& stats = pair.second;
edit->AddBlobFileGarbage(blob_file_number, stats.GetCount(),
stats.GetBytes());
}
if ((compaction->compaction_reason() ==
CompactionReason::kLevelMaxLevelSize ||
compaction->compaction_reason() == CompactionReason::kRoundRobinTtl) &&
compaction->immutable_options()->compaction_pri == kRoundRobin) {
int start_level = compaction->start_level();
if (start_level > 0) {
auto vstorage = compaction->input_version()->storage_info();
edit->AddCompactCursor(start_level,
vstorage->GetNextCompactCursor(
start_level, compaction->num_input_files(0)));
}
}
auto manifest_wcb = [&compaction, &compaction_released](const Status& s) {
compaction->ReleaseCompactionFiles(s);
*compaction_released = true;
};
return versions_->LogAndApply(
compaction->column_family_data(), mutable_cf_options, read_options,
write_options, edit, db_mutex_, db_directory_,
/*new_descriptor_log=*/false,
/*column_family_options=*/nullptr, manifest_wcb);
}
void CompactionJob::RecordCompactionIOStats() {
RecordTick(stats_, COMPACT_READ_BYTES, IOSTATS(bytes_read));
RecordTick(stats_, COMPACT_WRITE_BYTES, IOSTATS(bytes_written));
CompactionReason compaction_reason =
compact_->compaction->compaction_reason();
if (compaction_reason == CompactionReason::kFilesMarkedForCompaction) {
RecordTick(stats_, COMPACT_READ_BYTES_MARKED, IOSTATS(bytes_read));
RecordTick(stats_, COMPACT_WRITE_BYTES_MARKED, IOSTATS(bytes_written));
} else if (compaction_reason == CompactionReason::kPeriodicCompaction) {
RecordTick(stats_, COMPACT_READ_BYTES_PERIODIC, IOSTATS(bytes_read));
RecordTick(stats_, COMPACT_WRITE_BYTES_PERIODIC, IOSTATS(bytes_written));
} else if (compaction_reason == CompactionReason::kTtl) {
RecordTick(stats_, COMPACT_READ_BYTES_TTL, IOSTATS(bytes_read));
RecordTick(stats_, COMPACT_WRITE_BYTES_TTL, IOSTATS(bytes_written));
}
ThreadStatusUtil::IncreaseThreadOperationProperty(
ThreadStatus::COMPACTION_BYTES_READ, IOSTATS(bytes_read));
IOSTATS_RESET(bytes_read);
ThreadStatusUtil::IncreaseThreadOperationProperty(
ThreadStatus::COMPACTION_BYTES_WRITTEN, IOSTATS(bytes_written));
IOSTATS_RESET(bytes_written);
}
Status CompactionJob::OpenCompactionOutputFile(SubcompactionState* sub_compact,
CompactionOutputs& outputs) {
assert(sub_compact != nullptr);
// no need to lock because VersionSet::next_file_number_ is atomic
uint64_t file_number = versions_->NewFileNumber();
std::string fname = GetTableFileName(file_number);
// Fire events.
ColumnFamilyData* cfd = sub_compact->compaction->column_family_data();
EventHelpers::NotifyTableFileCreationStarted(
cfd->ioptions()->listeners, dbname_, cfd->GetName(), fname, job_id_,
TableFileCreationReason::kCompaction);
// Make the output file
std::unique_ptr<FSWritableFile> writable_file;
#ifndef NDEBUG
bool syncpoint_arg = file_options_.use_direct_writes;
TEST_SYNC_POINT_CALLBACK("CompactionJob::OpenCompactionOutputFile",
&syncpoint_arg);
#endif
// Pass temperature of the last level files to FileSystem.
FileOptions fo_copy = file_options_;
Temperature temperature = sub_compact->compaction->output_temperature();
// only set for the last level compaction and also it's not output to
// penultimate level (when preclude_last_level feature is enabled)
if (temperature == Temperature::kUnknown &&
sub_compact->compaction->is_last_level() &&
!sub_compact->IsCurrentPenultimateLevel()) {
temperature =
sub_compact->compaction->mutable_cf_options()->last_level_temperature;
}
fo_copy.temperature = temperature;
Status s;
IOStatus io_s = NewWritableFile(fs_.get(), fname, &writable_file, fo_copy);
s = io_s;
if (sub_compact->io_status.ok()) {
sub_compact->io_status = io_s;
// Since this error is really a copy of the io_s that is checked below as s,
// it does not also need to be checked.
sub_compact->io_status.PermitUncheckedError();
}
if (!s.ok()) {
ROCKS_LOG_ERROR(
db_options_.info_log,
"[%s] [JOB %d] OpenCompactionOutputFiles for table #%" PRIu64
" fails at NewWritableFile with status %s",
sub_compact->compaction->column_family_data()->GetName().c_str(),
job_id_, file_number, s.ToString().c_str());
LogFlush(db_options_.info_log);
EventHelpers::LogAndNotifyTableFileCreationFinished(
event_logger_, cfd->ioptions()->listeners, dbname_, cfd->GetName(),
fname, job_id_, FileDescriptor(), kInvalidBlobFileNumber,
TableProperties(), TableFileCreationReason::kCompaction, s,
kUnknownFileChecksum, kUnknownFileChecksumFuncName);
return s;
}
// Try to figure out the output file's oldest ancester time.
int64_t temp_current_time = 0;
auto get_time_status = db_options_.clock->GetCurrentTime(&temp_current_time);
// Safe to proceed even if GetCurrentTime fails. So, log and proceed.
if (!get_time_status.ok()) {
ROCKS_LOG_WARN(db_options_.info_log,
"Failed to get current time. Status: %s",
get_time_status.ToString().c_str());
}
uint64_t current_time = static_cast<uint64_t>(temp_current_time);
InternalKey tmp_start, tmp_end;
if (sub_compact->start.has_value()) {
tmp_start.SetMinPossibleForUserKey(*(sub_compact->start));
}
if (sub_compact->end.has_value()) {
tmp_end.SetMinPossibleForUserKey(*(sub_compact->end));
}
uint64_t oldest_ancester_time =
sub_compact->compaction->MinInputFileOldestAncesterTime(
sub_compact->start.has_value() ? &tmp_start : nullptr,
sub_compact->end.has_value() ? &tmp_end : nullptr);
if (oldest_ancester_time == std::numeric_limits<uint64_t>::max()) {
// TODO: fix DBSSTTest.GetTotalSstFilesSize and use
// kUnknownOldestAncesterTime
oldest_ancester_time = current_time;
}
// Initialize a SubcompactionState::Output and add it to sub_compact->outputs
uint64_t epoch_number = sub_compact->compaction->MinInputFileEpochNumber();
{
FileMetaData meta;
meta.fd = FileDescriptor(file_number,
sub_compact->compaction->output_path_id(), 0);
meta.oldest_ancester_time = oldest_ancester_time;
meta.file_creation_time = current_time;
meta.epoch_number = epoch_number;
meta.temperature = temperature;
assert(!db_id_.empty());
assert(!db_session_id_.empty());
s = GetSstInternalUniqueId(db_id_, db_session_id_, meta.fd.GetNumber(),
&meta.unique_id);
if (!s.ok()) {
ROCKS_LOG_ERROR(db_options_.info_log,
"[%s] [JOB %d] file #%" PRIu64
" failed to generate unique id: %s.",
cfd->GetName().c_str(), job_id_, meta.fd.GetNumber(),
s.ToString().c_str());
return s;
}
outputs.AddOutput(std::move(meta), cfd->internal_comparator(),
paranoid_file_checks_);
}
writable_file->SetIOPriority(GetRateLimiterPriority());
writable_file->SetWriteLifeTimeHint(write_hint_);
FileTypeSet tmp_set = db_options_.checksum_handoff_file_types;
writable_file->SetPreallocationBlockSize(static_cast<size_t>(
sub_compact->compaction->OutputFilePreallocationSize()));
const auto& listeners =
sub_compact->compaction->immutable_options()->listeners;
outputs.AssignFileWriter(new WritableFileWriter(
std::move(writable_file), fname, fo_copy, db_options_.clock, io_tracer_,
db_options_.stats, Histograms::SST_WRITE_MICROS, listeners,
db_options_.file_checksum_gen_factory.get(),
tmp_set.Contains(FileType::kTableFile), false));
// TODO(hx235): pass in the correct `oldest_key_time` instead of `0`
const ReadOptions read_options(Env::IOActivity::kCompaction);
const WriteOptions write_options(Env::IOActivity::kCompaction);
TableBuilderOptions tboptions(
*cfd->ioptions(), *(sub_compact->compaction->mutable_cf_options()),
read_options, write_options, cfd->internal_comparator(),
cfd->internal_tbl_prop_coll_factories(),
sub_compact->compaction->output_compression(),
sub_compact->compaction->output_compression_opts(), cfd->GetID(),
cfd->GetName(), sub_compact->compaction->output_level(),
bottommost_level_, TableFileCreationReason::kCompaction,
0 /* oldest_key_time */, current_time, db_id_, db_session_id_,
sub_compact->compaction->max_output_file_size(), file_number);
outputs.NewBuilder(tboptions);
LogFlush(db_options_.info_log);
return s;
}
void CompactionJob::CleanupCompaction() {
for (SubcompactionState& sub_compact : compact_->sub_compact_states) {
sub_compact.Cleanup(table_cache_.get());
}
delete compact_;
compact_ = nullptr;
}
namespace {
void CopyPrefix(const Slice& src, size_t prefix_length, std::string* dst) {
assert(prefix_length > 0);
size_t length = src.size() > prefix_length ? prefix_length : src.size();
dst->assign(src.data(), length);
}
} // namespace
bool CompactionJob::UpdateCompactionStats(uint64_t* num_input_range_del) {
assert(compact_);
Compaction* compaction = compact_->compaction;
compaction_stats_.stats.num_input_files_in_non_output_levels = 0;
compaction_stats_.stats.num_input_files_in_output_level = 0;
bool has_error = false;
const ReadOptions read_options(Env::IOActivity::kCompaction);
const auto& input_table_properties = compaction->GetInputTableProperties();
for (int input_level = 0;
input_level < static_cast<int>(compaction->num_input_levels());
++input_level) {
size_t num_input_files = compaction->num_input_files(input_level);
uint64_t* bytes_read;
if (compaction->level(input_level) != compaction->output_level()) {
compaction_stats_.stats.num_input_files_in_non_output_levels +=
static_cast<int>(num_input_files);
bytes_read = &compaction_stats_.stats.bytes_read_non_output_levels;
} else {
compaction_stats_.stats.num_input_files_in_output_level +=
static_cast<int>(num_input_files);
bytes_read = &compaction_stats_.stats.bytes_read_output_level;
}
for (size_t i = 0; i < num_input_files; ++i) {
const FileMetaData* file_meta = compaction->input(input_level, i);
*bytes_read += file_meta->fd.GetFileSize();
uint64_t file_input_entries = file_meta->num_entries;
uint64_t file_num_range_del = file_meta->num_range_deletions;
if (file_input_entries == 0) {
uint64_t file_number = file_meta->fd.GetNumber();
// Try getting info from table property
std::string fn =
TableFileName(compaction->immutable_options()->cf_paths,
file_number, file_meta->fd.GetPathId());
const auto& tp = input_table_properties.find(fn);
if (tp != input_table_properties.end()) {
file_input_entries = tp->second->num_entries;
file_num_range_del = tp->second->num_range_deletions;
} else {
has_error = true;
}
}
compaction_stats_.stats.num_input_records += file_input_entries;
if (num_input_range_del) {
*num_input_range_del += file_num_range_del;
}
}
}
assert(compaction_job_stats_);
compaction_stats_.stats.bytes_read_blob =
compaction_job_stats_->total_blob_bytes_read;
compaction_stats_.stats.num_dropped_records =
compaction_stats_.DroppedRecords();
return !has_error;
}
void CompactionJob::UpdateCompactionJobStats(
const InternalStats::CompactionStats& stats) const {
compaction_job_stats_->elapsed_micros = stats.micros;
// input information
compaction_job_stats_->total_input_bytes =
stats.bytes_read_non_output_levels + stats.bytes_read_output_level;
compaction_job_stats_->num_input_records = stats.num_input_records;
compaction_job_stats_->num_input_files =
stats.num_input_files_in_non_output_levels +
stats.num_input_files_in_output_level;
compaction_job_stats_->num_input_files_at_output_level =
stats.num_input_files_in_output_level;
// output information
compaction_job_stats_->total_output_bytes = stats.bytes_written;
compaction_job_stats_->total_output_bytes_blob = stats.bytes_written_blob;
compaction_job_stats_->num_output_records = stats.num_output_records;
compaction_job_stats_->num_output_files = stats.num_output_files;
compaction_job_stats_->num_output_files_blob = stats.num_output_files_blob;
if (stats.num_output_files > 0) {
CopyPrefix(compact_->SmallestUserKey(),
CompactionJobStats::kMaxPrefixLength,
&compaction_job_stats_->smallest_output_key_prefix);
CopyPrefix(compact_->LargestUserKey(), CompactionJobStats::kMaxPrefixLength,
&compaction_job_stats_->largest_output_key_prefix);
}
}
void CompactionJob::LogCompaction() {
Compaction* compaction = compact_->compaction;
ColumnFamilyData* cfd = compaction->column_family_data();
// Let's check if anything will get logged. Don't prepare all the info if
// we're not logging
if (db_options_.info_log_level <= InfoLogLevel::INFO_LEVEL) {
Compaction::InputLevelSummaryBuffer inputs_summary;
ROCKS_LOG_INFO(
db_options_.info_log, "[%s] [JOB %d] Compacting %s, score %.2f",
cfd->GetName().c_str(), job_id_,
compaction->InputLevelSummary(&inputs_summary), compaction->score());
char scratch[2345];
compaction->Summary(scratch, sizeof(scratch));
ROCKS_LOG_INFO(db_options_.info_log, "[%s]: Compaction start summary: %s\n",
cfd->GetName().c_str(), scratch);
// build event logger report
auto stream = event_logger_->Log();
stream << "job" << job_id_ << "event"
<< "compaction_started"
<< "compaction_reason"
<< GetCompactionReasonString(compaction->compaction_reason());
for (size_t i = 0; i < compaction->num_input_levels(); ++i) {
stream << ("files_L" + std::to_string(compaction->level(i)));
stream.StartArray();
for (auto f : *compaction->inputs(i)) {
stream << f->fd.GetNumber();
}
stream.EndArray();
}
stream << "score" << compaction->score() << "input_data_size"
<< compaction->CalculateTotalInputSize() << "oldest_snapshot_seqno"
<< (existing_snapshots_.empty()
? int64_t{-1} // Use -1 for "none"
: static_cast<int64_t>(existing_snapshots_[0]));
if (compaction->SupportsPerKeyPlacement()) {
stream << "preclude_last_level_min_seqno"
<< preclude_last_level_min_seqno_;
stream << "penultimate_output_level" << compaction->GetPenultimateLevel();
stream << "penultimate_output_range"
<< GetCompactionPenultimateOutputRangeTypeString(
compaction->GetPenultimateOutputRangeType());
if (compaction->GetPenultimateOutputRangeType() ==
Compaction::PenultimateOutputRangeType::kDisabled) {
ROCKS_LOG_WARN(
db_options_.info_log,
"[%s] [JOB %d] Penultimate level output is disabled, likely "
"because of the range conflict in the penultimate level",
cfd->GetName().c_str(), job_id_);
}
}
}
}
std::string CompactionJob::GetTableFileName(uint64_t file_number) {
return TableFileName(compact_->compaction->immutable_options()->cf_paths,
file_number, compact_->compaction->output_path_id());
}
Env::IOPriority CompactionJob::GetRateLimiterPriority() {
if (versions_ && versions_->GetColumnFamilySet() &&
versions_->GetColumnFamilySet()->write_controller()) {
WriteController* write_controller =
versions_->GetColumnFamilySet()->write_controller();
if (write_controller->NeedsDelay() || write_controller->IsStopped()) {
return Env::IO_USER;
}
}
return Env::IO_LOW;
}
} // namespace ROCKSDB_NAMESPACE