mirror of https://github.com/facebook/rocksdb.git
611 lines
20 KiB
C++
611 lines
20 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "cache/fast_lru_cache.h"
|
|
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <functional>
|
|
|
|
#include "monitoring/perf_context_imp.h"
|
|
#include "monitoring/statistics.h"
|
|
#include "port/lang.h"
|
|
#include "util/distributed_mutex.h"
|
|
#include "util/hash.h"
|
|
#include "util/math.h"
|
|
#include "util/random.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
namespace fast_lru_cache {
|
|
|
|
LRUHandleTable::LRUHandleTable(int hash_bits)
|
|
: length_bits_(hash_bits),
|
|
length_bits_mask_((uint32_t{1} << length_bits_) - 1),
|
|
occupancy_(0),
|
|
occupancy_limit_(static_cast<uint32_t>((uint32_t{1} << length_bits_) *
|
|
kStrictLoadFactor)),
|
|
array_(new LRUHandle[size_t{1} << length_bits_]) {
|
|
assert(hash_bits <= 32);
|
|
}
|
|
|
|
LRUHandleTable::~LRUHandleTable() {
|
|
ApplyToEntriesRange([](LRUHandle* h) { h->FreeData(); }, 0, GetTableSize());
|
|
}
|
|
|
|
LRUHandle* LRUHandleTable::Lookup(const Slice& key, uint32_t hash) {
|
|
int probe = 0;
|
|
int slot = FindVisibleElement(key, hash, probe, 0);
|
|
return (slot == -1) ? nullptr : &array_[slot];
|
|
}
|
|
|
|
LRUHandle* LRUHandleTable::Insert(LRUHandle* h, LRUHandle** old) {
|
|
int probe = 0;
|
|
int slot = FindVisibleElementOrAvailableSlot(h->key(), h->hash, probe,
|
|
1 /*displacement*/);
|
|
*old = nullptr;
|
|
if (slot == -1) {
|
|
// TODO(Guido) Don't we need to roll back displacements here?
|
|
return nullptr;
|
|
}
|
|
|
|
if (array_[slot].IsEmpty() || array_[slot].IsTombstone()) {
|
|
bool empty = array_[slot].IsEmpty();
|
|
Assign(slot, h);
|
|
LRUHandle* new_entry = &array_[slot];
|
|
if (empty) {
|
|
// This used to be an empty slot.
|
|
return new_entry;
|
|
}
|
|
// It used to be a tombstone, so there may already be a copy of the
|
|
// key in the table.
|
|
slot = FindVisibleElement(h->key(), h->hash, probe, 0 /*displacement*/);
|
|
if (slot == -1) {
|
|
// No existing copy of the key.
|
|
return new_entry;
|
|
}
|
|
*old = &array_[slot];
|
|
return new_entry;
|
|
} else {
|
|
// There is an existing copy of the key.
|
|
*old = &array_[slot];
|
|
// Find an available slot for the new element.
|
|
array_[slot].displacements++;
|
|
slot = FindAvailableSlot(h->key(), probe, 1 /*displacement*/);
|
|
if (slot == -1) {
|
|
// No available slots. Roll back displacements.
|
|
probe = 0;
|
|
slot = FindVisibleElement(h->key(), h->hash, probe, -1);
|
|
array_[slot].displacements--;
|
|
FindAvailableSlot(h->key(), probe, -1);
|
|
return nullptr;
|
|
}
|
|
Assign(slot, h);
|
|
return &array_[slot];
|
|
}
|
|
}
|
|
|
|
void LRUHandleTable::Remove(LRUHandle* h) {
|
|
assert(h->next == nullptr &&
|
|
h->prev == nullptr); // Already off the LRU list.
|
|
int probe = 0;
|
|
FindSlot(
|
|
h->key(), [&h](LRUHandle* e) { return e == h; }, probe,
|
|
-1 /*displacement*/);
|
|
h->SetIsVisible(false);
|
|
h->SetIsElement(false);
|
|
occupancy_--;
|
|
}
|
|
|
|
void LRUHandleTable::Assign(int slot, LRUHandle* h) {
|
|
LRUHandle* dst = &array_[slot];
|
|
uint32_t disp = dst->displacements;
|
|
*dst = *h;
|
|
dst->displacements = disp;
|
|
dst->SetIsVisible(true);
|
|
dst->SetIsElement(true);
|
|
occupancy_++;
|
|
}
|
|
|
|
void LRUHandleTable::Exclude(LRUHandle* h) { h->SetIsVisible(false); }
|
|
|
|
int LRUHandleTable::FindVisibleElement(const Slice& key, uint32_t hash,
|
|
int& probe, int displacement) {
|
|
return FindSlot(
|
|
key,
|
|
[&](LRUHandle* h) { return h->Matches(key, hash) && h->IsVisible(); },
|
|
probe, displacement);
|
|
}
|
|
|
|
int LRUHandleTable::FindAvailableSlot(const Slice& key, int& probe,
|
|
int displacement) {
|
|
return FindSlot(
|
|
key, [](LRUHandle* h) { return h->IsEmpty() || h->IsTombstone(); }, probe,
|
|
displacement);
|
|
}
|
|
|
|
int LRUHandleTable::FindVisibleElementOrAvailableSlot(const Slice& key,
|
|
uint32_t hash, int& probe,
|
|
int displacement) {
|
|
return FindSlot(
|
|
key,
|
|
[&](LRUHandle* h) {
|
|
return h->IsEmpty() || h->IsTombstone() ||
|
|
(h->Matches(key, hash) && h->IsVisible());
|
|
},
|
|
probe, displacement);
|
|
}
|
|
|
|
inline int LRUHandleTable::FindSlot(const Slice& key,
|
|
std::function<bool(LRUHandle*)> cond,
|
|
int& probe, int displacement) {
|
|
uint32_t base = ModTableSize(Hash(key.data(), key.size(), kProbingSeed1));
|
|
uint32_t increment =
|
|
ModTableSize((Hash(key.data(), key.size(), kProbingSeed2) << 1) | 1);
|
|
uint32_t current = ModTableSize(base + probe * increment);
|
|
while (true) {
|
|
LRUHandle* h = &array_[current];
|
|
probe++;
|
|
if (current == base && probe > 1) {
|
|
// We looped back.
|
|
return -1;
|
|
}
|
|
if (cond(h)) {
|
|
return current;
|
|
}
|
|
if (h->IsEmpty()) {
|
|
// We check emptyness after the condition, because
|
|
// the condition may be emptyness.
|
|
return -1;
|
|
}
|
|
h->displacements += displacement;
|
|
current = ModTableSize(current + increment);
|
|
}
|
|
}
|
|
|
|
LRUCacheShard::LRUCacheShard(size_t capacity, size_t estimated_value_size,
|
|
bool strict_capacity_limit,
|
|
CacheMetadataChargePolicy metadata_charge_policy)
|
|
: capacity_(capacity),
|
|
strict_capacity_limit_(strict_capacity_limit),
|
|
table_(
|
|
CalcHashBits(capacity, estimated_value_size, metadata_charge_policy)),
|
|
usage_(0),
|
|
lru_usage_(0) {
|
|
set_metadata_charge_policy(metadata_charge_policy);
|
|
// Make empty circular linked list.
|
|
lru_.next = &lru_;
|
|
lru_.prev = &lru_;
|
|
lru_low_pri_ = &lru_;
|
|
}
|
|
|
|
void LRUCacheShard::EraseUnRefEntries() {
|
|
autovector<LRUHandle> last_reference_list;
|
|
{
|
|
DMutexLock l(mutex_);
|
|
while (lru_.next != &lru_) {
|
|
LRUHandle* old = lru_.next;
|
|
// LRU list contains only elements which can be evicted.
|
|
assert(old->IsVisible() && !old->HasRefs());
|
|
LRU_Remove(old);
|
|
table_.Remove(old);
|
|
assert(usage_ >= old->total_charge);
|
|
usage_ -= old->total_charge;
|
|
last_reference_list.push_back(*old);
|
|
}
|
|
}
|
|
|
|
// Free the entries here outside of mutex for performance reasons.
|
|
for (auto& h : last_reference_list) {
|
|
h.FreeData();
|
|
}
|
|
}
|
|
|
|
void LRUCacheShard::ApplyToSomeEntries(
|
|
const std::function<void(const Slice& key, void* value, size_t charge,
|
|
DeleterFn deleter)>& callback,
|
|
uint32_t average_entries_per_lock, uint32_t* state) {
|
|
// The state is essentially going to be the starting hash, which works
|
|
// nicely even if we resize between calls because we use upper-most
|
|
// hash bits for table indexes.
|
|
DMutexLock l(mutex_);
|
|
uint32_t length_bits = table_.GetLengthBits();
|
|
uint32_t length = table_.GetTableSize();
|
|
|
|
assert(average_entries_per_lock > 0);
|
|
// Assuming we are called with same average_entries_per_lock repeatedly,
|
|
// this simplifies some logic (index_end will not overflow).
|
|
assert(average_entries_per_lock < length || *state == 0);
|
|
|
|
uint32_t index_begin = *state >> (32 - length_bits);
|
|
uint32_t index_end = index_begin + average_entries_per_lock;
|
|
if (index_end >= length) {
|
|
// Going to end
|
|
index_end = length;
|
|
*state = UINT32_MAX;
|
|
} else {
|
|
*state = index_end << (32 - length_bits);
|
|
}
|
|
|
|
table_.ApplyToEntriesRange(
|
|
[callback,
|
|
metadata_charge_policy = metadata_charge_policy_](LRUHandle* h) {
|
|
callback(h->key(), h->value, h->GetCharge(metadata_charge_policy),
|
|
h->deleter);
|
|
},
|
|
index_begin, index_end);
|
|
}
|
|
|
|
void LRUCacheShard::LRU_Remove(LRUHandle* h) {
|
|
assert(h->next != nullptr);
|
|
assert(h->prev != nullptr);
|
|
h->next->prev = h->prev;
|
|
h->prev->next = h->next;
|
|
h->prev = h->next = nullptr;
|
|
assert(lru_usage_ >= h->total_charge);
|
|
lru_usage_ -= h->total_charge;
|
|
}
|
|
|
|
void LRUCacheShard::LRU_Insert(LRUHandle* h) {
|
|
assert(h->next == nullptr);
|
|
assert(h->prev == nullptr);
|
|
// Insert h to head of LRU list.
|
|
h->next = &lru_;
|
|
h->prev = lru_.prev;
|
|
h->prev->next = h;
|
|
h->next->prev = h;
|
|
lru_usage_ += h->total_charge;
|
|
}
|
|
|
|
void LRUCacheShard::EvictFromLRU(size_t charge,
|
|
autovector<LRUHandle>* deleted) {
|
|
while ((usage_ + charge) > capacity_ && lru_.next != &lru_) {
|
|
LRUHandle* old = lru_.next;
|
|
// LRU list contains only elements which can be evicted.
|
|
assert(old->IsVisible() && !old->HasRefs());
|
|
LRU_Remove(old);
|
|
table_.Remove(old);
|
|
assert(usage_ >= old->total_charge);
|
|
usage_ -= old->total_charge;
|
|
deleted->push_back(*old);
|
|
}
|
|
}
|
|
|
|
size_t LRUCacheShard::CalcEstimatedHandleCharge(
|
|
size_t estimated_value_size,
|
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
|
LRUHandle h;
|
|
h.CalcTotalCharge(estimated_value_size, metadata_charge_policy);
|
|
return h.total_charge;
|
|
}
|
|
|
|
int LRUCacheShard::CalcHashBits(
|
|
size_t capacity, size_t estimated_value_size,
|
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
|
size_t handle_charge =
|
|
CalcEstimatedHandleCharge(estimated_value_size, metadata_charge_policy);
|
|
assert(handle_charge > 0);
|
|
uint32_t num_entries =
|
|
static_cast<uint32_t>(capacity / (kLoadFactor * handle_charge)) + 1;
|
|
assert(num_entries <= uint32_t{1} << 31);
|
|
return FloorLog2((num_entries << 1) - 1);
|
|
}
|
|
|
|
void LRUCacheShard::SetCapacity(size_t capacity) {
|
|
assert(false); // Not supported. TODO(Guido) Support it?
|
|
autovector<LRUHandle> last_reference_list;
|
|
{
|
|
DMutexLock l(mutex_);
|
|
capacity_ = capacity;
|
|
EvictFromLRU(0, &last_reference_list);
|
|
}
|
|
|
|
// Free the entries here outside of mutex for performance reasons.
|
|
for (auto& h : last_reference_list) {
|
|
h.FreeData();
|
|
}
|
|
}
|
|
|
|
void LRUCacheShard::SetStrictCapacityLimit(bool strict_capacity_limit) {
|
|
DMutexLock l(mutex_);
|
|
strict_capacity_limit_ = strict_capacity_limit;
|
|
}
|
|
|
|
Status LRUCacheShard::Insert(const Slice& key, uint32_t hash, void* value,
|
|
size_t charge, Cache::DeleterFn deleter,
|
|
Cache::Handle** handle,
|
|
Cache::Priority /*priority*/) {
|
|
if (key.size() != kCacheKeySize) {
|
|
return Status::NotSupported("FastLRUCache only supports key size " +
|
|
std::to_string(kCacheKeySize) + "B");
|
|
}
|
|
|
|
LRUHandle tmp;
|
|
tmp.value = value;
|
|
tmp.deleter = deleter;
|
|
tmp.hash = hash;
|
|
tmp.CalcTotalCharge(charge, metadata_charge_policy_);
|
|
for (int i = 0; i < kCacheKeySize; i++) {
|
|
tmp.key_data[i] = key.data()[i];
|
|
}
|
|
|
|
Status s = Status::OK();
|
|
autovector<LRUHandle> last_reference_list;
|
|
{
|
|
DMutexLock l(mutex_);
|
|
assert(table_.GetOccupancy() <= table_.GetOccupancyLimit());
|
|
|
|
// Free the space following strict LRU policy until enough space
|
|
// is freed or the lru list is empty.
|
|
EvictFromLRU(tmp.total_charge, &last_reference_list);
|
|
if ((usage_ + tmp.total_charge > capacity_ &&
|
|
(strict_capacity_limit_ || handle == nullptr)) ||
|
|
table_.GetOccupancy() == table_.GetOccupancyLimit()) {
|
|
// There are two measures of capacity:
|
|
// - Space (or charge) capacity: The maximum possible sum of the charges
|
|
// of the elements.
|
|
// - Table capacity: The number of slots in the hash table.
|
|
// These are incomparable, in the sense that one doesn't imply the other.
|
|
// Typically we will reach space capacity before table capacity---
|
|
// if the user always inserts values with size equal to
|
|
// estimated_value_size, then at most a kLoadFactor fraction of slots
|
|
// will ever be occupied. But in some cases we may reach table capacity
|
|
// before space capacity---if the user initially claims a very large
|
|
// estimated_value_size but then inserts tiny values, more elements than
|
|
// initially estimated will be inserted.
|
|
|
|
// TODO(Guido) Some tests (at least two from cache_test, as well as the
|
|
// stress tests) currently assume the table capacity is unbounded.
|
|
if (handle == nullptr) {
|
|
// Don't insert the entry but still return ok, as if the entry inserted
|
|
// into cache and get evicted immediately.
|
|
last_reference_list.push_back(tmp);
|
|
} else {
|
|
if (table_.GetOccupancy() == table_.GetOccupancyLimit()) {
|
|
// TODO: Consider using a distinct status for this case, but usually
|
|
// it will be handled the same way as reaching charge capacity limit
|
|
s = Status::MemoryLimit(
|
|
"Insert failed because all slots in the hash table are full.");
|
|
} else {
|
|
s = Status::MemoryLimit(
|
|
"Insert failed because the total charge has exceeded the "
|
|
"capacity.");
|
|
}
|
|
}
|
|
} else {
|
|
// Insert into the cache. Note that the cache might get larger than its
|
|
// capacity if not enough space was freed up.
|
|
LRUHandle* old;
|
|
LRUHandle* h = table_.Insert(&tmp, &old);
|
|
assert(h != nullptr); // We're below occupancy, so this insertion should
|
|
// never fail.
|
|
usage_ += h->total_charge;
|
|
if (old != nullptr) {
|
|
s = Status::OkOverwritten();
|
|
assert(old->IsVisible());
|
|
table_.Exclude(old);
|
|
if (!old->HasRefs()) {
|
|
// old is on LRU because it's in cache and its reference count is 0.
|
|
LRU_Remove(old);
|
|
table_.Remove(old);
|
|
assert(usage_ >= old->total_charge);
|
|
usage_ -= old->total_charge;
|
|
last_reference_list.push_back(*old);
|
|
}
|
|
}
|
|
if (handle == nullptr) {
|
|
LRU_Insert(h);
|
|
} else {
|
|
// If caller already holds a ref, no need to take one here.
|
|
if (!h->HasRefs()) {
|
|
h->Ref();
|
|
}
|
|
*handle = reinterpret_cast<Cache::Handle*>(h);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Free the entries here outside of mutex for performance reasons.
|
|
for (auto& h : last_reference_list) {
|
|
h.FreeData();
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
Cache::Handle* LRUCacheShard::Lookup(const Slice& key, uint32_t hash) {
|
|
LRUHandle* h = nullptr;
|
|
{
|
|
DMutexLock l(mutex_);
|
|
h = table_.Lookup(key, hash);
|
|
if (h != nullptr) {
|
|
assert(h->IsVisible());
|
|
if (!h->HasRefs()) {
|
|
// The entry is in LRU since it's in hash and has no external
|
|
// references.
|
|
LRU_Remove(h);
|
|
}
|
|
h->Ref();
|
|
}
|
|
}
|
|
return reinterpret_cast<Cache::Handle*>(h);
|
|
}
|
|
|
|
bool LRUCacheShard::Ref(Cache::Handle* h) {
|
|
LRUHandle* e = reinterpret_cast<LRUHandle*>(h);
|
|
DMutexLock l(mutex_);
|
|
// To create another reference - entry must be already externally referenced.
|
|
assert(e->HasRefs());
|
|
e->Ref();
|
|
return true;
|
|
}
|
|
|
|
bool LRUCacheShard::Release(Cache::Handle* handle, bool erase_if_last_ref) {
|
|
if (handle == nullptr) {
|
|
return false;
|
|
}
|
|
LRUHandle* h = reinterpret_cast<LRUHandle*>(handle);
|
|
LRUHandle copy;
|
|
bool last_reference = false;
|
|
{
|
|
DMutexLock l(mutex_);
|
|
last_reference = h->Unref();
|
|
if (last_reference && h->IsVisible()) {
|
|
// The item is still in cache, and nobody else holds a reference to it.
|
|
if (usage_ > capacity_ || erase_if_last_ref) {
|
|
// The LRU list must be empty since the cache is full.
|
|
assert(lru_.next == &lru_ || erase_if_last_ref);
|
|
// Take this opportunity and remove the item.
|
|
table_.Remove(h);
|
|
} else {
|
|
// Put the item back on the LRU list, and don't free it.
|
|
LRU_Insert(h);
|
|
last_reference = false;
|
|
}
|
|
}
|
|
// If it was the last reference, then decrement the cache usage.
|
|
if (last_reference) {
|
|
assert(usage_ >= h->total_charge);
|
|
usage_ -= h->total_charge;
|
|
copy = *h;
|
|
}
|
|
}
|
|
|
|
// Free the entry here outside of mutex for performance reasons.
|
|
if (last_reference) {
|
|
copy.FreeData();
|
|
}
|
|
return last_reference;
|
|
}
|
|
|
|
void LRUCacheShard::Erase(const Slice& key, uint32_t hash) {
|
|
LRUHandle copy;
|
|
bool last_reference = false;
|
|
{
|
|
DMutexLock l(mutex_);
|
|
LRUHandle* h = table_.Lookup(key, hash);
|
|
if (h != nullptr) {
|
|
table_.Exclude(h);
|
|
if (!h->HasRefs()) {
|
|
// The entry is in LRU since it's in cache and has no external
|
|
// references.
|
|
LRU_Remove(h);
|
|
table_.Remove(h);
|
|
assert(usage_ >= h->total_charge);
|
|
usage_ -= h->total_charge;
|
|
last_reference = true;
|
|
copy = *h;
|
|
}
|
|
}
|
|
}
|
|
// Free the entry here outside of mutex for performance reasons.
|
|
// last_reference will only be true if e != nullptr.
|
|
if (last_reference) {
|
|
copy.FreeData();
|
|
}
|
|
}
|
|
|
|
size_t LRUCacheShard::GetUsage() const {
|
|
DMutexLock l(mutex_);
|
|
return usage_;
|
|
}
|
|
|
|
size_t LRUCacheShard::GetPinnedUsage() const {
|
|
DMutexLock l(mutex_);
|
|
assert(usage_ >= lru_usage_);
|
|
return usage_ - lru_usage_;
|
|
}
|
|
|
|
std::string LRUCacheShard::GetPrintableOptions() const { return std::string{}; }
|
|
|
|
LRUCache::LRUCache(size_t capacity, size_t estimated_value_size,
|
|
int num_shard_bits, bool strict_capacity_limit,
|
|
CacheMetadataChargePolicy metadata_charge_policy)
|
|
: ShardedCache(capacity, num_shard_bits, strict_capacity_limit) {
|
|
assert(estimated_value_size > 0 ||
|
|
metadata_charge_policy != kDontChargeCacheMetadata);
|
|
num_shards_ = 1 << num_shard_bits;
|
|
shards_ = reinterpret_cast<LRUCacheShard*>(
|
|
port::cacheline_aligned_alloc(sizeof(LRUCacheShard) * num_shards_));
|
|
size_t per_shard = (capacity + (num_shards_ - 1)) / num_shards_;
|
|
for (int i = 0; i < num_shards_; i++) {
|
|
new (&shards_[i])
|
|
LRUCacheShard(per_shard, estimated_value_size, strict_capacity_limit,
|
|
metadata_charge_policy);
|
|
}
|
|
}
|
|
|
|
LRUCache::~LRUCache() {
|
|
if (shards_ != nullptr) {
|
|
assert(num_shards_ > 0);
|
|
for (int i = 0; i < num_shards_; i++) {
|
|
shards_[i].~LRUCacheShard();
|
|
}
|
|
port::cacheline_aligned_free(shards_);
|
|
}
|
|
}
|
|
|
|
CacheShard* LRUCache::GetShard(uint32_t shard) {
|
|
return reinterpret_cast<CacheShard*>(&shards_[shard]);
|
|
}
|
|
|
|
const CacheShard* LRUCache::GetShard(uint32_t shard) const {
|
|
return reinterpret_cast<CacheShard*>(&shards_[shard]);
|
|
}
|
|
|
|
void* LRUCache::Value(Handle* handle) {
|
|
return reinterpret_cast<const LRUHandle*>(handle)->value;
|
|
}
|
|
|
|
size_t LRUCache::GetCharge(Handle* handle) const {
|
|
CacheMetadataChargePolicy metadata_charge_policy = kDontChargeCacheMetadata;
|
|
if (num_shards_ > 0) {
|
|
metadata_charge_policy = shards_[0].metadata_charge_policy_;
|
|
}
|
|
return reinterpret_cast<const LRUHandle*>(handle)->GetCharge(
|
|
metadata_charge_policy);
|
|
}
|
|
|
|
Cache::DeleterFn LRUCache::GetDeleter(Handle* handle) const {
|
|
auto h = reinterpret_cast<const LRUHandle*>(handle);
|
|
return h->deleter;
|
|
}
|
|
|
|
uint32_t LRUCache::GetHash(Handle* handle) const {
|
|
return reinterpret_cast<const LRUHandle*>(handle)->hash;
|
|
}
|
|
|
|
void LRUCache::DisownData() {
|
|
// Leak data only if that won't generate an ASAN/valgrind warning.
|
|
if (!kMustFreeHeapAllocations) {
|
|
shards_ = nullptr;
|
|
num_shards_ = 0;
|
|
}
|
|
}
|
|
|
|
} // namespace fast_lru_cache
|
|
|
|
std::shared_ptr<Cache> NewFastLRUCache(
|
|
size_t capacity, size_t estimated_value_size, int num_shard_bits,
|
|
bool strict_capacity_limit,
|
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
|
if (num_shard_bits >= 20) {
|
|
return nullptr; // The cache cannot be sharded into too many fine pieces.
|
|
}
|
|
if (num_shard_bits < 0) {
|
|
num_shard_bits = GetDefaultCacheShardBits(capacity);
|
|
}
|
|
return std::make_shared<fast_lru_cache::LRUCache>(
|
|
capacity, estimated_value_size, num_shard_bits, strict_capacity_limit,
|
|
metadata_charge_policy);
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|