rocksdb/db/multi_cf_iterator_test.cc
Jay Huh db1dea22b1 MultiCfIterator Implementations (#12422)
Summary:
This PR continues https://github.com/facebook/rocksdb/issues/12153 by implementing the missing `Iterator` APIs - `Seek()`, `SeekForPrev()`, `SeekToLast()`, and `Prev`. A MaxHeap Implementation has been added to handle the reverse direction.

The current implementation does not include upper/lower bounds yet. These will be added in subsequent PRs. The API is still marked as under construction and will be lifted after being added to the stress test.

Please note that changing the iterator direction in the middle of iteration is expensive, as it requires seeking the element in each iterator again in the opposite direction and rebuilding the heap along the way. The first `Next()` after `SeekForPrev()` requires changing the direction under the current implementation. We may optimize this in later PRs.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12422

Test Plan: The `multi_cf_iterator_test` has been extended to cover the API implementations.

Reviewed By: pdillinger

Differential Revision: D54820754

Pulled By: jaykorean

fbshipit-source-id: 9eb741508df0f7bad598fb8e6bd5cdffc39e81d1
2024-03-18 09:05:30 -07:00

498 lines
20 KiB
C++

// Copyright (c) Meta Platforms, Inc. and affiliates.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include <memory>
#include "db/db_test_util.h"
namespace ROCKSDB_NAMESPACE {
class MultiCfIteratorTest : public DBTestBase {
public:
MultiCfIteratorTest()
: DBTestBase("multi_cf_iterator_test", /*env_do_fsync=*/true) {}
// Verify Iteration of MultiCfIterator
// by SeekToFirst() + Next() and SeekToLast() + Prev()
void verifyMultiCfIterator(
const std::vector<ColumnFamilyHandle*>& cfhs,
const std::vector<Slice>& expected_keys,
const std::optional<std::vector<Slice>>& expected_values = std::nullopt,
const std::optional<std::vector<WideColumns>>& expected_wide_columns =
std::nullopt,
const std::optional<std::vector<AttributeGroups>>&
expected_attribute_groups = std::nullopt) {
int i = 0;
std::unique_ptr<Iterator> iter =
db_->NewMultiCfIterator(ReadOptions(), cfhs);
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ASSERT_EQ(expected_keys[i], iter->key());
if (expected_values.has_value()) {
ASSERT_EQ(expected_values.value()[i], iter->value());
}
if (expected_wide_columns.has_value()) {
ASSERT_EQ(expected_wide_columns.value()[i], iter->columns());
}
if (expected_attribute_groups.has_value()) {
// TODO - Add this back when attribute_groups() API is added
// ASSERT_EQ(expected_attribute_groups.value()[i],
// iter->attribute_groups());
}
++i;
}
ASSERT_EQ(expected_keys.size(), i);
ASSERT_OK(iter->status());
int rev_i = i - 1;
for (iter->SeekToLast(); iter->Valid(); iter->Prev()) {
ASSERT_EQ(expected_keys[rev_i], iter->key());
if (expected_values.has_value()) {
ASSERT_EQ(expected_values.value()[rev_i], iter->value());
}
if (expected_wide_columns.has_value()) {
ASSERT_EQ(expected_wide_columns.value()[rev_i], iter->columns());
}
if (expected_attribute_groups.has_value()) {
// TODO - Add this back when attribute_groups() API is added
// ASSERT_EQ(expected_attribute_groups.value()[rev_i],
// iter->attribute_groups());
}
rev_i--;
}
ASSERT_OK(iter->status());
}
void verifyExpectedKeys(ColumnFamilyHandle* cfh,
const std::vector<Slice>& expected_keys) {
int i = 0;
Iterator* iter = db_->NewIterator(ReadOptions(), cfh);
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ASSERT_EQ(expected_keys[i], iter->key());
++i;
}
ASSERT_EQ(expected_keys.size(), i);
ASSERT_OK(iter->status());
delete iter;
}
};
TEST_F(MultiCfIteratorTest, InvalidArguments) {
Options options = GetDefaultOptions();
{
CreateAndReopenWithCF({"cf_1", "cf_2", "cf_3"}, options);
// Invalid - No CF is provided
std::unique_ptr<Iterator> iter_with_no_cf =
db_->NewMultiCfIterator(ReadOptions(), {});
ASSERT_NOK(iter_with_no_cf->status());
ASSERT_TRUE(iter_with_no_cf->status().IsInvalidArgument());
}
}
TEST_F(MultiCfIteratorTest, SimpleValues) {
Options options = GetDefaultOptions();
{
// Case 1: Unique key per CF
CreateAndReopenWithCF({"cf_1", "cf_2", "cf_3"}, options);
ASSERT_OK(Put(0, "key_1", "key_1_cf_0_val"));
ASSERT_OK(Put(1, "key_2", "key_2_cf_1_val"));
ASSERT_OK(Put(2, "key_3", "key_3_cf_2_val"));
ASSERT_OK(Put(3, "key_4", "key_4_cf_3_val"));
std::vector<Slice> expected_keys = {"key_1", "key_2", "key_3", "key_4"};
std::vector<Slice> expected_values = {"key_1_cf_0_val", "key_2_cf_1_val",
"key_3_cf_2_val", "key_4_cf_3_val"};
// Test for iteration over CF default->1->2->3
std::vector<ColumnFamilyHandle*> cfhs_order_0_1_2_3 = {
handles_[0], handles_[1], handles_[2], handles_[3]};
verifyMultiCfIterator(cfhs_order_0_1_2_3, expected_keys, expected_values);
// Test for iteration over CF 3->1->default_cf->2
std::vector<ColumnFamilyHandle*> cfhs_order_3_1_0_2 = {
handles_[3], handles_[1], handles_[0], handles_[2]};
// Iteration order and the return values should be the same since keys are
// unique per CF
verifyMultiCfIterator(cfhs_order_3_1_0_2, expected_keys, expected_values);
// Verify Seek()
{
std::unique_ptr<Iterator> iter =
db_->NewMultiCfIterator(ReadOptions(), cfhs_order_0_1_2_3);
iter->Seek("");
ASSERT_EQ(IterStatus(iter.get()), "key_1->key_1_cf_0_val");
iter->Seek("key_1");
ASSERT_EQ(IterStatus(iter.get()), "key_1->key_1_cf_0_val");
iter->Seek("key_2");
ASSERT_EQ(IterStatus(iter.get()), "key_2->key_2_cf_1_val");
iter->Next();
ASSERT_EQ(IterStatus(iter.get()), "key_3->key_3_cf_2_val");
iter->Seek("key_x");
ASSERT_EQ(IterStatus(iter.get()), "(invalid)");
}
// Verify SeekForPrev()
{
std::unique_ptr<Iterator> iter =
db_->NewMultiCfIterator(ReadOptions(), cfhs_order_0_1_2_3);
iter->SeekForPrev("");
ASSERT_EQ(IterStatus(iter.get()), "(invalid)");
iter->SeekForPrev("key_1");
ASSERT_EQ(IterStatus(iter.get()), "key_1->key_1_cf_0_val");
iter->Next();
ASSERT_EQ(IterStatus(iter.get()), "key_2->key_2_cf_1_val");
iter->SeekForPrev("key_x");
ASSERT_EQ(IterStatus(iter.get()), "key_4->key_4_cf_3_val");
iter->Prev();
ASSERT_EQ(IterStatus(iter.get()), "key_3->key_3_cf_2_val");
iter->Next();
ASSERT_EQ(IterStatus(iter.get()), "key_4->key_4_cf_3_val");
iter->Next();
ASSERT_EQ(IterStatus(iter.get()), "(invalid)");
}
}
{
// Case 2: Same key in multiple CFs
options = CurrentOptions(options);
DestroyAndReopen(options);
CreateAndReopenWithCF({"cf_1", "cf_2", "cf_3"}, options);
ASSERT_OK(Put(0, "key_1", "key_1_cf_0_val"));
ASSERT_OK(Put(3, "key_1", "key_1_cf_3_val"));
ASSERT_OK(Put(1, "key_2", "key_2_cf_1_val"));
ASSERT_OK(Put(2, "key_2", "key_2_cf_2_val"));
ASSERT_OK(Put(0, "key_3", "key_3_cf_0_val"));
ASSERT_OK(Put(1, "key_3", "key_3_cf_1_val"));
ASSERT_OK(Put(3, "key_3", "key_3_cf_3_val"));
std::vector<Slice> expected_keys = {"key_1", "key_2", "key_3"};
// Test for iteration over CFs default->1->2->3
std::vector<ColumnFamilyHandle*> cfhs_order_0_1_2_3 = {
handles_[0], handles_[1], handles_[2], handles_[3]};
std::vector<Slice> expected_values = {"key_1_cf_0_val", "key_2_cf_1_val",
"key_3_cf_0_val"};
verifyMultiCfIterator(cfhs_order_0_1_2_3, expected_keys, expected_values);
// Test for iteration over CFs 3->2->default_cf->1
std::vector<ColumnFamilyHandle*> cfhs_order_3_2_0_1 = {
handles_[3], handles_[2], handles_[0], handles_[1]};
expected_values = {"key_1_cf_3_val", "key_2_cf_2_val", "key_3_cf_3_val"};
verifyMultiCfIterator(cfhs_order_3_2_0_1, expected_keys, expected_values);
// Verify Seek()
{
std::unique_ptr<Iterator> iter =
db_->NewMultiCfIterator(ReadOptions(), cfhs_order_3_2_0_1);
iter->Seek("");
ASSERT_EQ(IterStatus(iter.get()), "key_1->key_1_cf_3_val");
iter->Seek("key_1");
ASSERT_EQ(IterStatus(iter.get()), "key_1->key_1_cf_3_val");
iter->Seek("key_2");
ASSERT_EQ(IterStatus(iter.get()), "key_2->key_2_cf_2_val");
iter->Next();
ASSERT_EQ(IterStatus(iter.get()), "key_3->key_3_cf_3_val");
iter->Seek("key_x");
ASSERT_EQ(IterStatus(iter.get()), "(invalid)");
}
// Verify SeekForPrev()
{
std::unique_ptr<Iterator> iter =
db_->NewMultiCfIterator(ReadOptions(), cfhs_order_3_2_0_1);
iter->SeekForPrev("");
ASSERT_EQ(IterStatus(iter.get()), "(invalid)");
iter->SeekForPrev("key_1");
ASSERT_EQ(IterStatus(iter.get()), "key_1->key_1_cf_3_val");
iter->Next();
ASSERT_EQ(IterStatus(iter.get()), "key_2->key_2_cf_2_val");
iter->SeekForPrev("key_x");
ASSERT_EQ(IterStatus(iter.get()), "key_3->key_3_cf_3_val");
iter->Next();
ASSERT_EQ(IterStatus(iter.get()), "(invalid)");
}
}
}
TEST_F(MultiCfIteratorTest, EmptyCfs) {
Options options = GetDefaultOptions();
{
// Case 1: No keys in any of the CFs
CreateAndReopenWithCF({"cf_1", "cf_2", "cf_3"}, options);
std::unique_ptr<Iterator> iter =
db_->NewMultiCfIterator(ReadOptions(), handles_);
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter.get()), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter.get()), "(invalid)");
iter->Seek("foo");
ASSERT_EQ(IterStatus(iter.get()), "(invalid)");
iter->SeekForPrev("foo");
ASSERT_EQ(IterStatus(iter.get()), "(invalid)");
ASSERT_OK(iter->status());
}
{
// Case 2: A single key exists in only one of the CF. Rest CFs are empty.
ASSERT_OK(Put(1, "key_1", "key_1_cf_1_val"));
std::unique_ptr<Iterator> iter =
db_->NewMultiCfIterator(ReadOptions(), handles_);
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter.get()), "key_1->key_1_cf_1_val");
iter->Next();
ASSERT_EQ(IterStatus(iter.get()), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter.get()), "key_1->key_1_cf_1_val");
iter->Prev();
ASSERT_EQ(IterStatus(iter.get()), "(invalid)");
}
{
// Case 3: same key exists in all of the CFs except one (cf_2)
ASSERT_OK(Put(0, "key_1", "key_1_cf_0_val"));
ASSERT_OK(Put(3, "key_1", "key_1_cf_3_val"));
// handles_ are in the order of 0->1->2->3. We should expect value from cf_0
std::unique_ptr<Iterator> iter =
db_->NewMultiCfIterator(ReadOptions(), handles_);
iter->SeekToFirst();
ASSERT_EQ(IterStatus(iter.get()), "key_1->key_1_cf_0_val");
iter->Next();
ASSERT_EQ(IterStatus(iter.get()), "(invalid)");
iter->SeekToLast();
ASSERT_EQ(IterStatus(iter.get()), "key_1->key_1_cf_0_val");
iter->Prev();
ASSERT_EQ(IterStatus(iter.get()), "(invalid)");
}
}
TEST_F(MultiCfIteratorTest, WideColumns) {
// Set up the DB and Column Families
Options options = GetDefaultOptions();
CreateAndReopenWithCF({"cf_1", "cf_2", "cf_3"}, options);
constexpr char key_1[] = "key_1";
WideColumns key_1_columns_in_cf_2{
{kDefaultWideColumnName, "cf_2_col_val_0_key_1"},
{"cf_2_col_name_1", "cf_2_col_val_1_key_1"},
{"cf_2_col_name_2", "cf_2_col_val_2_key_1"}};
WideColumns key_1_columns_in_cf_3{
{"cf_3_col_name_1", "cf_3_col_val_1_key_1"},
{"cf_3_col_name_2", "cf_3_col_val_2_key_1"},
{"cf_3_col_name_3", "cf_3_col_val_3_key_1"}};
constexpr char key_2[] = "key_2";
WideColumns key_2_columns_in_cf_1{
{"cf_1_col_name_1", "cf_1_col_val_1_key_2"}};
WideColumns key_2_columns_in_cf_2{
{"cf_2_col_name_1", "cf_2_col_val_1_key_2"},
{"cf_2_col_name_2", "cf_2_col_val_2_key_2"}};
constexpr char key_3[] = "key_3";
WideColumns key_3_columns_in_cf_1{
{"cf_1_col_name_1", "cf_1_col_val_1_key_3"}};
WideColumns key_3_columns_in_cf_3{
{"cf_3_col_name_1", "cf_3_col_val_1_key_3"}};
constexpr char key_4[] = "key_4";
WideColumns key_4_columns_in_cf_0{
{"cf_0_col_name_1", "cf_0_col_val_1_key_4"}};
WideColumns key_4_columns_in_cf_2{
{"cf_2_col_name_1", "cf_2_col_val_1_key_4"}};
// Use AttributeGroup PutEntity API to insert them together
AttributeGroups key_1_attribute_groups{
AttributeGroup(handles_[2], key_1_columns_in_cf_2),
AttributeGroup(handles_[3], key_1_columns_in_cf_3)};
AttributeGroups key_2_attribute_groups{
AttributeGroup(handles_[1], key_2_columns_in_cf_1),
AttributeGroup(handles_[2], key_2_columns_in_cf_2)};
AttributeGroups key_3_attribute_groups{
AttributeGroup(handles_[1], key_3_columns_in_cf_1),
AttributeGroup(handles_[3], key_3_columns_in_cf_3)};
AttributeGroups key_4_attribute_groups{
AttributeGroup(handles_[0], key_4_columns_in_cf_0),
AttributeGroup(handles_[2], key_4_columns_in_cf_2)};
ASSERT_OK(db_->PutEntity(WriteOptions(), key_1, key_1_attribute_groups));
ASSERT_OK(db_->PutEntity(WriteOptions(), key_2, key_2_attribute_groups));
ASSERT_OK(db_->PutEntity(WriteOptions(), key_3, key_3_attribute_groups));
ASSERT_OK(db_->PutEntity(WriteOptions(), key_4, key_4_attribute_groups));
// Test for iteration over CF default->1->2->3
std::vector<ColumnFamilyHandle*> cfhs_order_0_1_2_3 = {
handles_[0], handles_[1], handles_[2], handles_[3]};
std::vector<Slice> expected_keys = {key_1, key_2, key_3, key_4};
// Pick what DBIter would return for value() in the first CF that key exists
// Since value for kDefaultWideColumnName only exists for key_1, rest will
// return empty value
std::vector<Slice> expected_values = {"cf_2_col_val_0_key_1", "", "", ""};
// Pick columns from the first CF that the key exists and value is stored as
// wide column
std::vector<WideColumns> expected_wide_columns = {
{{kDefaultWideColumnName, "cf_2_col_val_0_key_1"},
{"cf_2_col_name_1", "cf_2_col_val_1_key_1"},
{"cf_2_col_name_2", "cf_2_col_val_2_key_1"}},
{{"cf_1_col_name_1", "cf_1_col_val_1_key_2"}},
{{"cf_1_col_name_1", "cf_1_col_val_1_key_3"}},
{{"cf_0_col_name_1", "cf_0_col_val_1_key_4"}}};
verifyMultiCfIterator(cfhs_order_0_1_2_3, expected_keys, expected_values,
expected_wide_columns);
}
TEST_F(MultiCfIteratorTest, DifferentComparatorsInMultiCFs) {
// This test creates two column families with two different comparators.
// Attempting to create the MultiCFIterator should fail.
Options options = GetDefaultOptions();
options.create_if_missing = true;
DestroyAndReopen(options);
options.comparator = BytewiseComparator();
CreateColumnFamilies({"cf_forward"}, options);
options.comparator = ReverseBytewiseComparator();
CreateColumnFamilies({"cf_reverse"}, options);
ASSERT_OK(Put(0, "key_1", "value_1"));
ASSERT_OK(Put(0, "key_2", "value_2"));
ASSERT_OK(Put(0, "key_3", "value_3"));
ASSERT_OK(Put(1, "key_1", "value_1"));
ASSERT_OK(Put(1, "key_2", "value_2"));
ASSERT_OK(Put(1, "key_3", "value_3"));
verifyExpectedKeys(handles_[0], {"key_1", "key_2", "key_3"});
verifyExpectedKeys(handles_[1], {"key_3", "key_2", "key_1"});
std::unique_ptr<Iterator> iter =
db_->NewMultiCfIterator(ReadOptions(), handles_);
ASSERT_NOK(iter->status());
ASSERT_TRUE(iter->status().IsInvalidArgument());
}
TEST_F(MultiCfIteratorTest, CustomComparatorsInMultiCFs) {
// This test creates two column families with the same custom test
// comparators (but instantiated independently). Attempting to create the
// MultiCFIterator should not fail.
Options options = GetDefaultOptions();
options.create_if_missing = true;
DestroyAndReopen(options);
static auto comparator_1 =
std::make_unique<test::SimpleSuffixReverseComparator>(
test::SimpleSuffixReverseComparator());
static auto comparator_2 =
std::make_unique<test::SimpleSuffixReverseComparator>(
test::SimpleSuffixReverseComparator());
ASSERT_NE(comparator_1, comparator_2);
options.comparator = comparator_1.get();
CreateColumnFamilies({"cf_1"}, options);
options.comparator = comparator_2.get();
CreateColumnFamilies({"cf_2"}, options);
ASSERT_OK(Put(0, "key_001_001", "value_0_3"));
ASSERT_OK(Put(0, "key_001_002", "value_0_2"));
ASSERT_OK(Put(0, "key_001_003", "value_0_1"));
ASSERT_OK(Put(0, "key_002_001", "value_0_6"));
ASSERT_OK(Put(0, "key_002_002", "value_0_5"));
ASSERT_OK(Put(0, "key_002_003", "value_0_4"));
ASSERT_OK(Put(1, "key_001_001", "value_1_3"));
ASSERT_OK(Put(1, "key_001_002", "value_1_2"));
ASSERT_OK(Put(1, "key_001_003", "value_1_1"));
ASSERT_OK(Put(1, "key_003_004", "value_1_6"));
ASSERT_OK(Put(1, "key_003_005", "value_1_5"));
ASSERT_OK(Put(1, "key_003_006", "value_1_4"));
verifyExpectedKeys(
handles_[0], {"key_001_003", "key_001_002", "key_001_001", "key_002_003",
"key_002_002", "key_002_001"});
verifyExpectedKeys(
handles_[1], {"key_001_003", "key_001_002", "key_001_001", "key_003_006",
"key_003_005", "key_003_004"});
std::vector<Slice> expected_keys = {
"key_001_003", "key_001_002", "key_001_001", "key_002_003", "key_002_002",
"key_002_001", "key_003_006", "key_003_005", "key_003_004"};
std::vector<Slice> expected_values = {"value_0_1", "value_0_2", "value_0_3",
"value_0_4", "value_0_5", "value_0_6",
"value_1_4", "value_1_5", "value_1_6"};
int i = 0;
std::unique_ptr<Iterator> iter =
db_->NewMultiCfIterator(ReadOptions(), handles_);
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ASSERT_EQ(expected_keys[i], iter->key());
ASSERT_EQ(expected_values[i], iter->value());
++i;
}
ASSERT_OK(iter->status());
}
TEST_F(MultiCfIteratorTest, DISABLED_IterateAttributeGroups) {
// Set up the DB and Column Families
Options options = GetDefaultOptions();
CreateAndReopenWithCF({"cf_1", "cf_2", "cf_3"}, options);
constexpr char key_1[] = "key_1";
WideColumns key_1_columns_in_cf_2{
{kDefaultWideColumnName, "cf_2_col_val_0_key_1"},
{"cf_2_col_name_1", "cf_2_col_val_1_key_1"},
{"cf_2_col_name_2", "cf_2_col_val_2_key_1"}};
WideColumns key_1_columns_in_cf_3{
{"cf_3_col_name_1", "cf_3_col_val_1_key_1"},
{"cf_3_col_name_2", "cf_3_col_val_2_key_1"},
{"cf_3_col_name_3", "cf_3_col_val_3_key_1"}};
constexpr char key_2[] = "key_2";
WideColumns key_2_columns_in_cf_1{
{"cf_1_col_name_1", "cf_1_col_val_1_key_2"}};
WideColumns key_2_columns_in_cf_2{
{"cf_2_col_name_1", "cf_2_col_val_1_key_2"},
{"cf_2_col_name_2", "cf_2_col_val_2_key_2"}};
constexpr char key_3[] = "key_3";
WideColumns key_3_columns_in_cf_1{
{"cf_1_col_name_1", "cf_1_col_val_1_key_3"}};
WideColumns key_3_columns_in_cf_3{
{"cf_3_col_name_1", "cf_3_col_val_1_key_3"}};
constexpr char key_4[] = "key_4";
WideColumns key_4_columns_in_cf_0{
{"cf_0_col_name_1", "cf_0_col_val_1_key_4"}};
WideColumns key_4_columns_in_cf_2{
{"cf_2_col_name_1", "cf_2_col_val_1_key_4"}};
AttributeGroups key_1_attribute_groups{
AttributeGroup(handles_[2], key_1_columns_in_cf_2),
AttributeGroup(handles_[3], key_1_columns_in_cf_3)};
AttributeGroups key_2_attribute_groups{
AttributeGroup(handles_[1], key_2_columns_in_cf_1),
AttributeGroup(handles_[2], key_2_columns_in_cf_2)};
AttributeGroups key_3_attribute_groups{
AttributeGroup(handles_[1], key_3_columns_in_cf_1),
AttributeGroup(handles_[3], key_3_columns_in_cf_3)};
AttributeGroups key_4_attribute_groups{
AttributeGroup(handles_[0], key_4_columns_in_cf_0),
AttributeGroup(handles_[2], key_4_columns_in_cf_2)};
ASSERT_OK(db_->PutEntity(WriteOptions(), key_1, key_1_attribute_groups));
ASSERT_OK(db_->PutEntity(WriteOptions(), key_2, key_2_attribute_groups));
ASSERT_OK(db_->PutEntity(WriteOptions(), key_3, key_3_attribute_groups));
ASSERT_OK(db_->PutEntity(WriteOptions(), key_4, key_4_attribute_groups));
// Test for iteration over CF default->1->2->3
std::vector<ColumnFamilyHandle*> cfhs_order_0_1_2_3 = {
handles_[0], handles_[1], handles_[2], handles_[3]};
std::vector<Slice> expected_keys = {key_1, key_2, key_3, key_4};
std::vector<AttributeGroups> expected_attribute_groups = {
key_1_attribute_groups, key_2_attribute_groups, key_3_attribute_groups,
key_4_attribute_groups};
verifyMultiCfIterator(
cfhs_order_0_1_2_3, expected_keys, std::nullopt /* expected_values */,
std::nullopt /* expected_wide_columns */, expected_attribute_groups);
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}