rocksdb/cache/tiered_secondary_cache_test.cc
anand76 48589b961f Fix updating the capacity of a tiered cache (#11873)
Summary:
Updating the tiered cache (cache allocated using ```NewTieredCache()```) by calling ```SetCapacity()``` on it was not working properly. The initial creation would set the primary cache capacity to the combined primary and compressed secondary cache capacity. But ```SetCapacity()``` would just set the primary cache capacity, with no way to change the secondary cache capacity. Additionally, the API was confusing, since the primary and compressed secondary capacities would be specified separately during creation, but ```SetCapacity``` took the combined capacity.

With this fix, the user always specifies the total budget and compressed secondary cache ratio on creation. Subsequently, `SetCapacity` will distribute the new capacity across the two caches by the same ratio. The `NewTieredCache` API has been changed to take the total cache capacity (inclusive of both the primary and the compressed secondary cache) and the ratio of total capacity to allocate to the compressed cache. These are specified in `TieredCacheOptions`. Any capacity specified in `LRUCacheOptions`, `HyperClockCacheOptions` and `CompressedSecondaryCacheOptions` is ignored. A new API, `UpdateTieredCache` is provided to dynamically update the total capacity, ratio of compressed cache, and admission policy.

Tests:
New unit tests

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11873

Reviewed By: akankshamahajan15

Differential Revision: D49562250

Pulled By: anand1976

fbshipit-source-id: 57033bc713b68d5da6292207765a6b3dbe539ddf
2023-09-22 18:07:46 -07:00

646 lines
21 KiB
C++

// Copyright (c) Meta Platforms, Inc. and affiliates.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
#include "db/db_test_util.h"
#include "rocksdb/cache.h"
#include "rocksdb/secondary_cache.h"
#include "typed_cache.h"
#include "util/random.h"
namespace ROCKSDB_NAMESPACE {
class TestSecondaryCache : public SecondaryCache {
public:
explicit TestSecondaryCache(size_t capacity)
: cache_(NewLRUCache(capacity, 0, false, 0.5 /* high_pri_pool_ratio */,
nullptr, kDefaultToAdaptiveMutex,
kDontChargeCacheMetadata)),
num_insert_saved_(0),
num_hits_(0),
num_misses_(0) {}
const char* Name() const override { return "TestSecondaryCache"; }
Status Insert(const Slice& /*key*/, Cache::ObjectPtr /*value*/,
const Cache::CacheItemHelper* /*helper*/,
bool /*force_insert*/) override {
assert(false);
return Status::NotSupported();
}
Status InsertSaved(const Slice& key, const Slice& saved,
CompressionType type = kNoCompression,
CacheTier source = CacheTier::kVolatileTier) override {
CheckCacheKeyCommonPrefix(key);
size_t size;
char* buf;
Status s;
num_insert_saved_++;
size = saved.size();
buf = new char[size + sizeof(uint64_t) + 2 * sizeof(uint16_t)];
EncodeFixed64(buf, size);
buf += sizeof(uint64_t);
EncodeFixed16(buf, type);
buf += sizeof(uint16_t);
EncodeFixed16(buf, (uint16_t)source);
buf += sizeof(uint16_t);
memcpy(buf, saved.data(), size);
buf -= sizeof(uint64_t) + 2 * sizeof(uint16_t);
if (!s.ok()) {
delete[] buf;
return s;
}
return cache_.Insert(key, buf, size);
}
std::unique_ptr<SecondaryCacheResultHandle> Lookup(
const Slice& key, const Cache::CacheItemHelper* helper,
Cache::CreateContext* create_context, bool wait, bool /*advise_erase*/,
bool& kept_in_sec_cache) override {
std::string key_str = key.ToString();
TEST_SYNC_POINT_CALLBACK("TestSecondaryCache::Lookup", &key_str);
std::unique_ptr<SecondaryCacheResultHandle> secondary_handle;
kept_in_sec_cache = false;
TypedHandle* handle = cache_.Lookup(key);
if (handle) {
num_hits_++;
Cache::ObjectPtr value = nullptr;
size_t charge = 0;
Status s;
char* ptr = cache_.Value(handle);
CompressionType type;
CacheTier source;
size_t size = DecodeFixed64(ptr);
ptr += sizeof(uint64_t);
type = static_cast<CompressionType>(DecodeFixed16(ptr));
ptr += sizeof(uint16_t);
source = static_cast<CacheTier>(DecodeFixed16(ptr));
assert(source == CacheTier::kVolatileTier);
ptr += sizeof(uint16_t);
s = helper->create_cb(Slice(ptr, size), type, source, create_context,
/*alloc*/ nullptr, &value, &charge);
if (s.ok()) {
secondary_handle.reset(new TestSecondaryCacheResultHandle(
cache_.get(), handle, value, charge, /*ready=*/wait));
kept_in_sec_cache = true;
} else {
cache_.Release(handle);
}
} else {
num_misses_++;
}
return secondary_handle;
}
bool SupportForceErase() const override { return false; }
void Erase(const Slice& /*key*/) override {}
void WaitAll(std::vector<SecondaryCacheResultHandle*> handles) override {
for (SecondaryCacheResultHandle* handle : handles) {
TestSecondaryCacheResultHandle* sec_handle =
static_cast<TestSecondaryCacheResultHandle*>(handle);
EXPECT_FALSE(sec_handle->IsReady());
sec_handle->SetReady();
}
}
std::string GetPrintableOptions() const override { return ""; }
uint32_t num_insert_saved() { return num_insert_saved_; }
uint32_t num_hits() { return num_hits_; }
uint32_t num_misses() { return num_misses_; }
void CheckCacheKeyCommonPrefix(const Slice& key) {
Slice current_prefix(key.data(), OffsetableCacheKey::kCommonPrefixSize);
if (ckey_prefix_.empty()) {
ckey_prefix_ = current_prefix.ToString();
} else {
EXPECT_EQ(ckey_prefix_, current_prefix.ToString());
}
}
private:
class TestSecondaryCacheResultHandle : public SecondaryCacheResultHandle {
public:
TestSecondaryCacheResultHandle(Cache* cache, Cache::Handle* handle,
Cache::ObjectPtr value, size_t size,
bool ready)
: cache_(cache),
handle_(handle),
value_(value),
size_(size),
is_ready_(ready) {}
~TestSecondaryCacheResultHandle() override { cache_->Release(handle_); }
bool IsReady() override { return is_ready_; }
void Wait() override {}
Cache::ObjectPtr Value() override {
assert(is_ready_);
return value_;
}
size_t Size() override { return Value() ? size_ : 0; }
void SetReady() { is_ready_ = true; }
private:
Cache* cache_;
Cache::Handle* handle_;
Cache::ObjectPtr value_;
size_t size_;
bool is_ready_;
};
using SharedCache =
BasicTypedSharedCacheInterface<char[], CacheEntryRole::kMisc>;
using TypedHandle = SharedCache::TypedHandle;
SharedCache cache_;
uint32_t num_insert_saved_;
uint32_t num_hits_;
uint32_t num_misses_;
std::string ckey_prefix_;
};
class DBTieredSecondaryCacheTest : public DBTestBase {
public:
DBTieredSecondaryCacheTest()
: DBTestBase("db_tiered_secondary_cache_test", /*env_do_fsync=*/true) {}
std::shared_ptr<Cache> NewCache(size_t pri_capacity,
size_t compressed_capacity,
size_t nvm_capacity) {
LRUCacheOptions lru_opts;
TieredCacheOptions opts;
lru_opts.capacity = 0;
lru_opts.num_shard_bits = 0;
lru_opts.high_pri_pool_ratio = 0;
opts.cache_opts = &lru_opts;
opts.cache_type = PrimaryCacheType::kCacheTypeLRU;
opts.adm_policy = TieredAdmissionPolicy::kAdmPolicyThreeQueue;
opts.comp_cache_opts.capacity = 0;
opts.comp_cache_opts.num_shard_bits = 0;
opts.total_capacity = pri_capacity + compressed_capacity;
opts.compressed_secondary_ratio =
(double)compressed_capacity / opts.total_capacity;
nvm_sec_cache_.reset(new TestSecondaryCache(nvm_capacity));
opts.nvm_sec_cache = nvm_sec_cache_;
cache_ = NewTieredCache(opts);
assert(cache_ != nullptr);
#if 0
CacheWithSecondaryAdapter* adapter_cache_ =
static_cast<CacheWithSecondaryAdapter*>(cache_.get());
TieredSecondaryCache* tiered_cache_ =
static_cast<TieredSecondaryCache*>(
adapter_cache_->TEST_GetSecondaryCache());
#endif
return cache_;
}
TestSecondaryCache* nvm_sec_cache() { return nvm_sec_cache_.get(); }
private:
std::shared_ptr<Cache> cache_;
std::shared_ptr<TestSecondaryCache> nvm_sec_cache_;
};
// In this test, the block size is set to 4096. Each value is 1007 bytes, so
// each data block contains exactly 4 KV pairs. Metadata blocks are not
// cached, so we can accurately estimate the cache usage.
TEST_F(DBTieredSecondaryCacheTest, BasicTest) {
if (!LZ4_Supported()) {
ROCKSDB_GTEST_SKIP("This test requires LZ4 support.");
return;
}
BlockBasedTableOptions table_options;
// We want a block cache of size 5KB, and a compressed secondary cache of
// size 5KB. However, we specify a block cache size of 256KB here in order
// to take into account the cache reservation in the block cache on
// behalf of the compressed cache. The unit of cache reservation is 256KB.
// The effective block cache capacity will be calculated as 256 + 5 = 261KB,
// and 256KB will be reserved for the compressed cache, leaving 5KB for
// the primary block cache. We only have to worry about this here because
// the cache size is so small.
table_options.block_cache = NewCache(256 * 1024, 5 * 1024, 256 * 1024);
table_options.block_size = 4 * 1024;
table_options.cache_index_and_filter_blocks = false;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
// Disable paranoid_file_checks so that flush will not read back the newly
// written file
options.paranoid_file_checks = false;
DestroyAndReopen(options);
Random rnd(301);
const int N = 256;
for (int i = 0; i < N; i++) {
std::string p_v;
test::CompressibleString(&rnd, 0.5, 1007, &p_v);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
// The first 2 Gets, for keys 0 and 5, will load the corresponding data
// blocks as they will be cache misses. The nvm secondary cache will be
// warmed up with the compressed blocks
std::string v = Get(Key(0));
ASSERT_EQ(1007, v.size());
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 1u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 1u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 2u);
// At this point, the nvm cache is warmed up with the data blocks for 0
// and 5. The next Get will lookup the block in nvm and will be a hit.
// It will be created as a standalone entry in memory, and a placeholder
// will be inserted in the primary and compressed caches.
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 1u);
// For this Get, the primary and compressed only have placeholders for
// the required data block. So we will lookup the nvm cache and find the
// block there. This time, the block will be promoted to the primary
// block cache. No promotion to the compressed secondary cache happens,
// and it will retain the placeholder.
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 2u);
// This Get will find the data block in the primary cache.
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 2u);
// We repeat the sequence for key 5. This will end up evicting the block
// for 0 from the in-memory cache.
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 3u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 4u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 4u);
// This Get for key 0 will find the data block in nvm. Since the compressed
// cache still has the placeholder, the block (compressed) will be
// admitted. It is theh inserted into the primary as a standalone entry.
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 5u);
// This Get for key 0 will find the data block in the compressed secondary
// cache.
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 2u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 5u);
Destroy(options);
}
// This test is very similar to BasicTest, except it calls MultiGet rather
// than Get, in order to exercise the async lookup and WaitAll path.
TEST_F(DBTieredSecondaryCacheTest, BasicMultiGetTest) {
if (!LZ4_Supported()) {
ROCKSDB_GTEST_SKIP("This test requires LZ4 support.");
return;
}
BlockBasedTableOptions table_options;
table_options.block_cache = NewCache(260 * 1024, 10 * 1024, 256 * 1024);
table_options.block_size = 4 * 1024;
table_options.cache_index_and_filter_blocks = false;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.paranoid_file_checks = false;
DestroyAndReopen(options);
Random rnd(301);
const int N = 256;
for (int i = 0; i < N; i++) {
std::string p_v;
test::CompressibleString(&rnd, 0.5, 1007, &p_v);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
std::vector<std::string> keys;
std::vector<std::string> values;
keys.push_back(Key(0));
keys.push_back(Key(4));
keys.push_back(Key(8));
values = MultiGet(keys, /*snapshot=*/nullptr, /*async=*/true);
ASSERT_EQ(values.size(), keys.size());
for (auto value : values) {
ASSERT_EQ(1007, value.size());
}
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 3u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 3u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 0u);
keys.clear();
values.clear();
keys.push_back(Key(12));
keys.push_back(Key(16));
keys.push_back(Key(20));
values = MultiGet(keys, /*snapshot=*/nullptr, /*async=*/true);
ASSERT_EQ(values.size(), keys.size());
for (auto value : values) {
ASSERT_EQ(1007, value.size());
}
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 0u);
keys.clear();
values.clear();
keys.push_back(Key(0));
keys.push_back(Key(4));
keys.push_back(Key(8));
values = MultiGet(keys, /*snapshot=*/nullptr, /*async=*/true);
ASSERT_EQ(values.size(), keys.size());
for (auto value : values) {
ASSERT_EQ(1007, value.size());
}
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 3u);
keys.clear();
values.clear();
keys.push_back(Key(0));
keys.push_back(Key(4));
keys.push_back(Key(8));
values = MultiGet(keys, /*snapshot=*/nullptr, /*async=*/true);
ASSERT_EQ(values.size(), keys.size());
for (auto value : values) {
ASSERT_EQ(1007, value.size());
}
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 6u);
keys.clear();
values.clear();
keys.push_back(Key(0));
keys.push_back(Key(4));
keys.push_back(Key(8));
values = MultiGet(keys, /*snapshot=*/nullptr, /*async=*/true);
ASSERT_EQ(values.size(), keys.size());
for (auto value : values) {
ASSERT_EQ(1007, value.size());
}
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 6u);
keys.clear();
values.clear();
keys.push_back(Key(12));
keys.push_back(Key(16));
keys.push_back(Key(20));
values = MultiGet(keys, /*snapshot=*/nullptr, /*async=*/true);
ASSERT_EQ(values.size(), keys.size());
for (auto value : values) {
ASSERT_EQ(1007, value.size());
}
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 9u);
keys.clear();
values.clear();
keys.push_back(Key(12));
keys.push_back(Key(16));
keys.push_back(Key(20));
values = MultiGet(keys, /*snapshot=*/nullptr, /*async=*/true);
ASSERT_EQ(values.size(), keys.size());
for (auto value : values) {
ASSERT_EQ(1007, value.size());
}
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 12u);
keys.clear();
values.clear();
keys.push_back(Key(12));
keys.push_back(Key(16));
keys.push_back(Key(20));
values = MultiGet(keys, /*snapshot=*/nullptr, /*async=*/true);
ASSERT_EQ(values.size(), keys.size());
for (auto value : values) {
ASSERT_EQ(1007, value.size());
}
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 12u);
Destroy(options);
}
TEST_F(DBTieredSecondaryCacheTest, WaitAllTest) {
if (!LZ4_Supported()) {
ROCKSDB_GTEST_SKIP("This test requires LZ4 support.");
return;
}
BlockBasedTableOptions table_options;
table_options.block_cache = NewCache(250 * 1024, 20 * 1024, 256 * 1024);
table_options.block_size = 4 * 1024;
table_options.cache_index_and_filter_blocks = false;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.paranoid_file_checks = false;
DestroyAndReopen(options);
Random rnd(301);
const int N = 256;
for (int i = 0; i < N; i++) {
std::string p_v;
test::CompressibleString(&rnd, 0.5, 1007, &p_v);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
std::vector<std::string> keys;
std::vector<std::string> values;
keys.push_back(Key(0));
keys.push_back(Key(4));
keys.push_back(Key(8));
values = MultiGet(keys, /*snapshot=*/nullptr, /*async=*/true);
ASSERT_EQ(values.size(), keys.size());
for (auto value : values) {
ASSERT_EQ(1007, value.size());
}
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 3u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 3u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 0u);
keys.clear();
values.clear();
keys.push_back(Key(12));
keys.push_back(Key(16));
keys.push_back(Key(20));
values = MultiGet(keys, /*snapshot=*/nullptr, /*async=*/true);
ASSERT_EQ(values.size(), keys.size());
for (auto value : values) {
ASSERT_EQ(1007, value.size());
}
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 6u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 0u);
// Insert placeholders for 4 in primary and compressed
std::string val = Get(Key(4));
// Force placeholder 4 out of primary
keys.clear();
values.clear();
keys.push_back(Key(24));
keys.push_back(Key(28));
keys.push_back(Key(32));
keys.push_back(Key(36));
values = MultiGet(keys, /*snapshot=*/nullptr, /*async=*/true);
ASSERT_EQ(values.size(), keys.size());
for (auto value : values) {
ASSERT_EQ(1007, value.size());
}
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 10u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 10u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 1u);
// Now read 4 again. This will create a placeholder in primary, and insert
// in compressed secondary since it already has a placeholder
val = Get(Key(4));
// Now read 0, 4 and 8. While 4 is already in the compressed secondary
// cache, 0 and 8 will be read asynchronously from the nvm tier. The
// WaitAll will be called for all 3 blocks.
keys.clear();
values.clear();
keys.push_back(Key(0));
keys.push_back(Key(4));
keys.push_back(Key(8));
values = MultiGet(keys, /*snapshot=*/nullptr, /*async=*/true);
ASSERT_EQ(values.size(), keys.size());
for (auto value : values) {
ASSERT_EQ(1007, value.size());
}
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 10u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 10u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 4u);
Destroy(options);
}
// This test is for iteration. It iterates through a set of keys in two
// passes. First pass loads the compressed blocks into the nvm tier, and
// the second pass should hit all of those blocks.
TEST_F(DBTieredSecondaryCacheTest, IterateTest) {
if (!LZ4_Supported()) {
ROCKSDB_GTEST_SKIP("This test requires LZ4 support.");
return;
}
BlockBasedTableOptions table_options;
table_options.block_cache = NewCache(250 * 1024, 10 * 1024, 256 * 1024);
table_options.block_size = 4 * 1024;
table_options.cache_index_and_filter_blocks = false;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.paranoid_file_checks = false;
DestroyAndReopen(options);
Random rnd(301);
const int N = 256;
for (int i = 0; i < N; i++) {
std::string p_v;
test::CompressibleString(&rnd, 0.5, 1007, &p_v);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
ReadOptions ro;
ro.readahead_size = 256 * 1024;
auto iter = dbfull()->NewIterator(ro);
iter->SeekToFirst();
for (int i = 0; i < 31; ++i) {
ASSERT_EQ(Key(i), iter->key().ToString());
ASSERT_EQ(1007, iter->value().size());
iter->Next();
}
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 8u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 8u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 0u);
delete iter;
iter = dbfull()->NewIterator(ro);
iter->SeekToFirst();
for (int i = 0; i < 31; ++i) {
ASSERT_EQ(Key(i), iter->key().ToString());
ASSERT_EQ(1007, iter->value().size());
iter->Next();
}
ASSERT_EQ(nvm_sec_cache()->num_insert_saved(), 8u);
ASSERT_EQ(nvm_sec_cache()->num_misses(), 8u);
ASSERT_EQ(nvm_sec_cache()->num_hits(), 8u);
delete iter;
Destroy(options);
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}