rocksdb/db/range_tombstone_fragmenter.h

364 lines
14 KiB
C++

// Copyright (c) 2018-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
#include <list>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include "db/dbformat.h"
#include "db/pinned_iterators_manager.h"
#include "rocksdb/status.h"
#include "table/internal_iterator.h"
namespace ROCKSDB_NAMESPACE {
struct FragmentedRangeTombstoneList;
struct FragmentedRangeTombstoneListCache {
// ensure only the first reader needs to initialize l
std::mutex reader_mutex;
std::unique_ptr<FragmentedRangeTombstoneList> tombstones = nullptr;
// readers will first check this bool to avoid
std::atomic<bool> initialized = false;
};
struct FragmentedRangeTombstoneList {
public:
// A compact representation of a "stack" of range tombstone fragments, which
// start and end at the same user keys but have different sequence numbers.
// The members seq_start_idx and seq_end_idx are intended to be parameters to
// seq_iter().
// If user-defined timestamp is enabled, `start` and `end` should be user keys
// with timestamp, and the timestamps are set to max timestamp to be returned
// by parsed_start_key()/parsed_end_key(). seq_start_idx and seq_end_idx will
// also be used as parameters to ts_iter().
struct RangeTombstoneStack {
RangeTombstoneStack(const Slice& start, const Slice& end, size_t start_idx,
size_t end_idx)
: start_key(start),
end_key(end),
seq_start_idx(start_idx),
seq_end_idx(end_idx) {}
Slice start_key;
Slice end_key;
size_t seq_start_idx;
size_t seq_end_idx;
};
// Assumes unfragmented_tombstones->key() and unfragmented_tombstones->value()
// both contain timestamp if enabled.
FragmentedRangeTombstoneList(
std::unique_ptr<InternalIterator> unfragmented_tombstones,
const InternalKeyComparator& icmp, bool for_compaction = false,
const std::vector<SequenceNumber>& snapshots = {},
const bool tombstone_end_include_ts = true);
std::vector<RangeTombstoneStack>::const_iterator begin() const {
return tombstones_.begin();
}
std::vector<RangeTombstoneStack>::const_iterator end() const {
return tombstones_.end();
}
std::vector<SequenceNumber>::const_iterator seq_iter(size_t idx) const {
return std::next(tombstone_seqs_.begin(), idx);
}
std::vector<Slice>::const_iterator ts_iter(size_t idx) const {
return std::next(tombstone_timestamps_.begin(), idx);
}
std::vector<SequenceNumber>::const_iterator seq_begin() const {
return tombstone_seqs_.begin();
}
std::vector<SequenceNumber>::const_iterator seq_end() const {
return tombstone_seqs_.end();
}
bool empty() const { return tombstones_.empty(); }
// Returns true if the stored tombstones contain with one with a sequence
// number in [lower, upper].
// This method is not const as it internally lazy initialize a set of
// sequence numbers (`seq_set_`).
bool ContainsRange(SequenceNumber lower, SequenceNumber upper);
uint64_t num_unfragmented_tombstones() const {
return num_unfragmented_tombstones_;
}
uint64_t total_tombstone_payload_bytes() const {
return total_tombstone_payload_bytes_;
}
private:
// Given an ordered range tombstone iterator unfragmented_tombstones,
// "fragment" the tombstones into non-overlapping pieces. Each
// "non-overlapping piece" is a RangeTombstoneStack in tombstones_, which
// contains start_key, end_key, and indices that points to sequence numbers
// (in tombstone_seqs_) and timestamps (in tombstone_timestamps_). If
// for_compaction is true, then `snapshots` should be provided. Range
// tombstone fragments are dropped if they are not visible in any snapshot and
// user-defined timestamp is not enabled. That is, for each snapshot stripe
// [lower, upper], the range tombstone fragment with largest seqno in [lower,
// upper] is preserved, and all the other range tombstones are dropped.
void FragmentTombstones(
std::unique_ptr<InternalIterator> unfragmented_tombstones,
const InternalKeyComparator& icmp, bool for_compaction,
const std::vector<SequenceNumber>& snapshots);
std::vector<RangeTombstoneStack> tombstones_;
std::vector<SequenceNumber> tombstone_seqs_;
std::vector<Slice> tombstone_timestamps_;
std::once_flag seq_set_init_once_flag_;
std::set<SequenceNumber> seq_set_;
std::list<std::string> pinned_slices_;
PinnedIteratorsManager pinned_iters_mgr_;
uint64_t num_unfragmented_tombstones_;
uint64_t total_tombstone_payload_bytes_;
};
// FragmentedRangeTombstoneIterator converts an InternalIterator of a range-del
// meta block into an iterator over non-overlapping tombstone fragments. The
// tombstone fragmentation process should be more efficient than the range
// tombstone collapsing algorithm in RangeDelAggregator because this leverages
// the internal key ordering already provided by the input iterator, if
// applicable (when the iterator is unsorted, a new sorted iterator is created
// before proceeding). If there are few overlaps, creating a
// FragmentedRangeTombstoneIterator should be O(n), while the RangeDelAggregator
// tombstone collapsing is always O(n log n).
class FragmentedRangeTombstoneIterator : public InternalIterator {
public:
FragmentedRangeTombstoneIterator(FragmentedRangeTombstoneList* tombstones,
const InternalKeyComparator& icmp,
SequenceNumber upper_bound,
const Slice* ts_upper_bound = nullptr,
SequenceNumber lower_bound = 0);
FragmentedRangeTombstoneIterator(
const std::shared_ptr<FragmentedRangeTombstoneList>& tombstones,
const InternalKeyComparator& icmp, SequenceNumber upper_bound,
const Slice* ts_upper_bound = nullptr, SequenceNumber lower_bound = 0);
FragmentedRangeTombstoneIterator(
const std::shared_ptr<FragmentedRangeTombstoneListCache>& tombstones,
const InternalKeyComparator& icmp, SequenceNumber upper_bound,
const Slice* ts_upper_bound = nullptr, SequenceNumber lower_bound = 0);
void SetRangeDelReadSeqno(SequenceNumber read_seqno) override {
upper_bound_ = read_seqno;
}
void SeekToFirst() override;
void SeekToLast() override;
void SeekToTopFirst();
void SeekToTopLast();
// NOTE: Seek and SeekForPrev do not behave in the way InternalIterator
// seeking should behave. This is OK because they are not currently used, but
// eventually FragmentedRangeTombstoneIterator should no longer implement
// InternalIterator.
//
// Seeks to the range tombstone that covers target at a seqnum in the
// snapshot. If no such tombstone exists, seek to the earliest tombstone in
// the snapshot that ends after target.
void Seek(const Slice& target) override;
// Seeks to the range tombstone that covers target at a seqnum in the
// snapshot. If no such tombstone exists, seek to the latest tombstone in the
// snapshot that starts before target.
void SeekForPrev(const Slice& target) override;
void Next() override;
void Prev() override;
void TopNext();
void TopPrev();
bool Valid() const override;
// Note that key() and value() do not return correct timestamp.
// Caller should call timestamp() to get the current timestamp.
Slice key() const override {
MaybePinKey();
return current_start_key_.Encode();
}
Slice value() const override { return pos_->end_key; }
bool IsKeyPinned() const override { return false; }
bool IsValuePinned() const override { return true; }
Status status() const override { return Status::OK(); }
bool empty() const { return tombstones_->empty(); }
void Invalidate() {
pos_ = tombstones_->end();
seq_pos_ = tombstones_->seq_end();
pinned_pos_ = tombstones_->end();
pinned_seq_pos_ = tombstones_->seq_end();
}
RangeTombstone Tombstone(bool logical_strip_timestamp = false) const {
assert(Valid());
if (icmp_->user_comparator()->timestamp_size()) {
return RangeTombstone(start_key(), end_key(), seq(), timestamp(),
logical_strip_timestamp);
}
return RangeTombstone(start_key(), end_key(), seq());
}
// Note that start_key() and end_key() are not guaranteed to have the
// correct timestamp. User can call timestamp() to get the correct
// timestamp().
Slice start_key() const { return pos_->start_key; }
Slice end_key() const { return pos_->end_key; }
SequenceNumber seq() const { return *seq_pos_; }
Slice timestamp() const {
// seqno and timestamp are stored in the same order.
return *tombstones_->ts_iter(seq_pos_ - tombstones_->seq_begin());
}
// Current use case is by CompactionRangeDelAggregator to set
// full_history_ts_low_.
void SetTimestampUpperBound(const Slice* ts_upper_bound) {
ts_upper_bound_ = ts_upper_bound;
}
ParsedInternalKey parsed_start_key() const {
return ParsedInternalKey(pos_->start_key, seq(), kTypeRangeDeletion);
}
ParsedInternalKey parsed_end_key() const {
return ParsedInternalKey(pos_->end_key, kMaxSequenceNumber,
kTypeRangeDeletion);
}
// Return the max sequence number of a range tombstone that covers
// the given user key.
// If there is no covering tombstone, then 0 is returned.
SequenceNumber MaxCoveringTombstoneSeqnum(const Slice& user_key);
// Splits the iterator into n+1 iterators (where n is the number of
// snapshots), each providing a view over a "stripe" of sequence numbers. The
// iterators are keyed by the upper bound of their ranges (the provided
// snapshots + kMaxSequenceNumber).
//
// NOTE: the iterators in the returned map are no longer valid if their
// parent iterator is deleted, since they do not modify the refcount of the
// underlying tombstone list. Therefore, this map should be deleted before
// the parent iterator.
std::map<SequenceNumber, std::unique_ptr<FragmentedRangeTombstoneIterator>>
SplitBySnapshot(const std::vector<SequenceNumber>& snapshots);
SequenceNumber upper_bound() const { return upper_bound_; }
SequenceNumber lower_bound() const { return lower_bound_; }
uint64_t num_unfragmented_tombstones() const {
return tombstones_->num_unfragmented_tombstones();
}
uint64_t total_tombstone_payload_bytes() const {
return tombstones_->total_tombstone_payload_bytes();
}
private:
using RangeTombstoneStack = FragmentedRangeTombstoneList::RangeTombstoneStack;
struct RangeTombstoneStackStartComparator {
explicit RangeTombstoneStackStartComparator(const Comparator* c) : cmp(c) {}
bool operator()(const RangeTombstoneStack& a,
const RangeTombstoneStack& b) const {
return cmp->CompareWithoutTimestamp(a.start_key, b.start_key) < 0;
}
bool operator()(const RangeTombstoneStack& a, const Slice& b) const {
return cmp->CompareWithoutTimestamp(a.start_key, b) < 0;
}
bool operator()(const Slice& a, const RangeTombstoneStack& b) const {
return cmp->CompareWithoutTimestamp(a, b.start_key) < 0;
}
const Comparator* cmp;
};
struct RangeTombstoneStackEndComparator {
explicit RangeTombstoneStackEndComparator(const Comparator* c) : cmp(c) {}
bool operator()(const RangeTombstoneStack& a,
const RangeTombstoneStack& b) const {
return cmp->CompareWithoutTimestamp(a.end_key, b.end_key) < 0;
}
bool operator()(const RangeTombstoneStack& a, const Slice& b) const {
return cmp->CompareWithoutTimestamp(a.end_key, b) < 0;
}
bool operator()(const Slice& a, const RangeTombstoneStack& b) const {
return cmp->CompareWithoutTimestamp(a, b.end_key) < 0;
}
const Comparator* cmp;
};
void MaybePinKey() const {
if (pos_ != tombstones_->end() && seq_pos_ != tombstones_->seq_end() &&
(pinned_pos_ != pos_ || pinned_seq_pos_ != seq_pos_)) {
current_start_key_.Set(pos_->start_key, *seq_pos_, kTypeRangeDeletion);
pinned_pos_ = pos_;
pinned_seq_pos_ = seq_pos_;
}
}
void SeekToCoveringTombstone(const Slice& key);
void SeekForPrevToCoveringTombstone(const Slice& key);
void ScanForwardToVisibleTombstone();
void ScanBackwardToVisibleTombstone();
bool ValidPos() const {
return Valid() && seq_pos_ != tombstones_->seq_iter(pos_->seq_end_idx);
}
const RangeTombstoneStackStartComparator tombstone_start_cmp_;
const RangeTombstoneStackEndComparator tombstone_end_cmp_;
const InternalKeyComparator* icmp_;
const Comparator* ucmp_;
std::shared_ptr<FragmentedRangeTombstoneList> tombstones_ref_;
std::shared_ptr<FragmentedRangeTombstoneListCache> tombstones_cache_ref_;
FragmentedRangeTombstoneList* tombstones_;
SequenceNumber upper_bound_;
SequenceNumber lower_bound_;
// Only consider timestamps <= ts_upper_bound_.
const Slice* ts_upper_bound_;
std::vector<RangeTombstoneStack>::const_iterator pos_;
std::vector<SequenceNumber>::const_iterator seq_pos_;
mutable std::vector<RangeTombstoneStack>::const_iterator pinned_pos_;
mutable std::vector<SequenceNumber>::const_iterator pinned_seq_pos_;
mutable InternalKey current_start_key_;
// Check the current RangeTombstoneStack `pos_` against timestamp
// upper bound `ts_upper_bound_` and sequence number upper bound
// `upper_bound_`. Update the sequence number (and timestamp) pointer
// `seq_pos_` to the first valid position satisfying both bounds.
void SetMaxVisibleSeqAndTimestamp() {
seq_pos_ = std::lower_bound(tombstones_->seq_iter(pos_->seq_start_idx),
tombstones_->seq_iter(pos_->seq_end_idx),
upper_bound_, std::greater<SequenceNumber>());
if (ts_upper_bound_ && !ts_upper_bound_->empty()) {
auto ts_pos = std::lower_bound(
tombstones_->ts_iter(pos_->seq_start_idx),
tombstones_->ts_iter(pos_->seq_end_idx), *ts_upper_bound_,
[this](const Slice& s1, const Slice& s2) {
return ucmp_->CompareTimestamp(s1, s2) > 0;
});
auto ts_idx = ts_pos - tombstones_->ts_iter(pos_->seq_start_idx);
auto seq_idx = seq_pos_ - tombstones_->seq_iter(pos_->seq_start_idx);
if (seq_idx < ts_idx) {
// seq and ts are ordered in non-increasing order. Only updates seq_pos_
// to a larger index for smaller sequence number and timestamp.
seq_pos_ = tombstones_->seq_iter(pos_->seq_start_idx + ts_idx);
}
}
}
};
} // namespace ROCKSDB_NAMESPACE