rocksdb/cache/lru_cache.h
sdong c78a87cd71 Avoid malloc_usable_size() call inside LRU Cache mutex (#10026)
Summary:
In LRU Cache mutex, we sometimes call malloc_usable_size() to calculate memory used by the metadata object. We prevent it by saving the charge + metadata size, rather than charge, inside the metadata itself. Within the mutex, usually only total charge is needed so we don't need to repeat.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10026

Test Plan: Run existing tests.

Reviewed By: pdillinger

Differential Revision: D36556253

fbshipit-source-id: f60c96d13cde3af77732e5548e4eac4182fa9801
2022-05-24 13:31:16 -07:00

503 lines
18 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <memory>
#include <string>
#include "cache/sharded_cache.h"
#include "port/lang.h"
#include "port/malloc.h"
#include "port/port.h"
#include "rocksdb/secondary_cache.h"
#include "util/autovector.h"
namespace ROCKSDB_NAMESPACE {
namespace lru_cache {
// LRU cache implementation. This class is not thread-safe.
// An entry is a variable length heap-allocated structure.
// Entries are referenced by cache and/or by any external entity.
// The cache keeps all its entries in a hash table. Some elements
// are also stored on LRU list.
//
// LRUHandle can be in these states:
// 1. Referenced externally AND in hash table.
// In that case the entry is *not* in the LRU list
// (refs >= 1 && in_cache == true)
// 2. Not referenced externally AND in hash table.
// In that case the entry is in the LRU list and can be freed.
// (refs == 0 && in_cache == true)
// 3. Referenced externally AND not in hash table.
// In that case the entry is not in the LRU list and not in hash table.
// The entry can be freed when refs becomes 0.
// (refs >= 1 && in_cache == false)
//
// All newly created LRUHandles are in state 1. If you call
// LRUCacheShard::Release on entry in state 1, it will go into state 2.
// To move from state 1 to state 3, either call LRUCacheShard::Erase or
// LRUCacheShard::Insert with the same key (but possibly different value).
// To move from state 2 to state 1, use LRUCacheShard::Lookup.
// Before destruction, make sure that no handles are in state 1. This means
// that any successful LRUCacheShard::Lookup/LRUCacheShard::Insert have a
// matching LRUCache::Release (to move into state 2) or LRUCacheShard::Erase
// (to move into state 3).
struct LRUHandle {
void* value;
union Info {
Info() {}
~Info() {}
Cache::DeleterFn deleter;
const ShardedCache::CacheItemHelper* helper;
} info_;
// An entry is not added to the LRUHandleTable until the secondary cache
// lookup is complete, so its safe to have this union.
union {
LRUHandle* next_hash;
SecondaryCacheResultHandle* sec_handle;
};
LRUHandle* next;
LRUHandle* prev;
size_t total_charge; // TODO(opt): Only allow uint32_t?
size_t key_length;
// The hash of key(). Used for fast sharding and comparisons.
uint32_t hash;
// The number of external refs to this entry. The cache itself is not counted.
uint32_t refs;
enum Flags : uint8_t {
// Whether this entry is referenced by the hash table.
IN_CACHE = (1 << 0),
// Whether this entry is high priority entry.
IS_HIGH_PRI = (1 << 1),
// Whether this entry is in high-pri pool.
IN_HIGH_PRI_POOL = (1 << 2),
// Whether this entry has had any lookups (hits).
HAS_HIT = (1 << 3),
// Can this be inserted into the secondary cache.
IS_SECONDARY_CACHE_COMPATIBLE = (1 << 4),
// Is the handle still being read from a lower tier.
IS_PENDING = (1 << 5),
// Whether this handle is still in a lower tier
IS_IN_SECONDARY_CACHE = (1 << 6),
};
uint8_t flags;
#ifdef __SANITIZE_THREAD__
// TSAN can report a false data race on flags, where one thread is writing
// to one of the mutable bits and another thread is reading this immutable
// bit. So precisely suppress that TSAN warning, we separate out this bit
// during TSAN runs.
bool is_secondary_cache_compatible_for_tsan;
#endif // __SANITIZE_THREAD__
// Beginning of the key (MUST BE THE LAST FIELD IN THIS STRUCT!)
char key_data[1];
Slice key() const { return Slice(key_data, key_length); }
// Increase the reference count by 1.
void Ref() { refs++; }
// Just reduce the reference count by 1. Return true if it was last reference.
bool Unref() {
assert(refs > 0);
refs--;
return refs == 0;
}
// Return true if there are external refs, false otherwise.
bool HasRefs() const { return refs > 0; }
bool InCache() const { return flags & IN_CACHE; }
bool IsHighPri() const { return flags & IS_HIGH_PRI; }
bool InHighPriPool() const { return flags & IN_HIGH_PRI_POOL; }
bool HasHit() const { return flags & HAS_HIT; }
bool IsSecondaryCacheCompatible() const {
#ifdef __SANITIZE_THREAD__
return is_secondary_cache_compatible_for_tsan;
#else
return flags & IS_SECONDARY_CACHE_COMPATIBLE;
#endif // __SANITIZE_THREAD__
}
bool IsPending() const { return flags & IS_PENDING; }
bool IsInSecondaryCache() const { return flags & IS_IN_SECONDARY_CACHE; }
void SetInCache(bool in_cache) {
if (in_cache) {
flags |= IN_CACHE;
} else {
flags &= ~IN_CACHE;
}
}
void SetPriority(Cache::Priority priority) {
if (priority == Cache::Priority::HIGH) {
flags |= IS_HIGH_PRI;
} else {
flags &= ~IS_HIGH_PRI;
}
}
void SetInHighPriPool(bool in_high_pri_pool) {
if (in_high_pri_pool) {
flags |= IN_HIGH_PRI_POOL;
} else {
flags &= ~IN_HIGH_PRI_POOL;
}
}
void SetHit() { flags |= HAS_HIT; }
void SetSecondaryCacheCompatible(bool compat) {
if (compat) {
flags |= IS_SECONDARY_CACHE_COMPATIBLE;
} else {
flags &= ~IS_SECONDARY_CACHE_COMPATIBLE;
}
#ifdef __SANITIZE_THREAD__
is_secondary_cache_compatible_for_tsan = compat;
#endif // __SANITIZE_THREAD__
}
void SetIncomplete(bool incomp) {
if (incomp) {
flags |= IS_PENDING;
} else {
flags &= ~IS_PENDING;
}
}
void SetIsInSecondaryCache(bool is_in_secondary_cache) {
if (is_in_secondary_cache) {
flags |= IS_IN_SECONDARY_CACHE;
} else {
flags &= ~IS_IN_SECONDARY_CACHE;
}
}
void Free() {
assert(refs == 0);
#ifdef __SANITIZE_THREAD__
// Here we can safely assert they are the same without a data race reported
assert(((flags & IS_SECONDARY_CACHE_COMPATIBLE) != 0) ==
is_secondary_cache_compatible_for_tsan);
#endif // __SANITIZE_THREAD__
if (!IsSecondaryCacheCompatible() && info_.deleter) {
(*info_.deleter)(key(), value);
} else if (IsSecondaryCacheCompatible()) {
if (IsPending()) {
assert(sec_handle != nullptr);
SecondaryCacheResultHandle* tmp_sec_handle = sec_handle;
tmp_sec_handle->Wait();
value = tmp_sec_handle->Value();
delete tmp_sec_handle;
}
if (value) {
(*info_.helper->del_cb)(key(), value);
}
}
delete[] reinterpret_cast<char*>(this);
}
inline size_t CalcuMetaCharge(
CacheMetadataChargePolicy metadata_charge_policy) const {
if (metadata_charge_policy != kFullChargeCacheMetadata) {
return 0;
} else {
#ifdef ROCKSDB_MALLOC_USABLE_SIZE
return malloc_usable_size(
const_cast<void*>(static_cast<const void*>(this)));
#else
// This is the size that is used when a new handle is created.
return sizeof(LRUHandle) - 1 + key_length;
#endif
}
}
// Calculate the memory usage by metadata.
inline void CalcTotalCharge(
size_t charge, CacheMetadataChargePolicy metadata_charge_policy) {
total_charge = charge + CalcuMetaCharge(metadata_charge_policy);
}
inline size_t GetCharge(
CacheMetadataChargePolicy metadata_charge_policy) const {
size_t meta_charge = CalcuMetaCharge(metadata_charge_policy);
assert(total_charge >= meta_charge);
return total_charge - meta_charge;
}
};
// We provide our own simple hash table since it removes a whole bunch
// of porting hacks and is also faster than some of the built-in hash
// table implementations in some of the compiler/runtime combinations
// we have tested. E.g., readrandom speeds up by ~5% over the g++
// 4.4.3's builtin hashtable.
class LRUHandleTable {
public:
// If the table uses more hash bits than `max_upper_hash_bits`,
// it will eat into the bits used for sharding, which are constant
// for a given LRUHandleTable.
explicit LRUHandleTable(int max_upper_hash_bits);
~LRUHandleTable();
LRUHandle* Lookup(const Slice& key, uint32_t hash);
LRUHandle* Insert(LRUHandle* h);
LRUHandle* Remove(const Slice& key, uint32_t hash);
template <typename T>
void ApplyToEntriesRange(T func, uint32_t index_begin, uint32_t index_end) {
for (uint32_t i = index_begin; i < index_end; i++) {
LRUHandle* h = list_[i];
while (h != nullptr) {
auto n = h->next_hash;
assert(h->InCache());
func(h);
h = n;
}
}
}
int GetLengthBits() const { return length_bits_; }
private:
// Return a pointer to slot that points to a cache entry that
// matches key/hash. If there is no such cache entry, return a
// pointer to the trailing slot in the corresponding linked list.
LRUHandle** FindPointer(const Slice& key, uint32_t hash);
void Resize();
// Number of hash bits (upper because lower bits used for sharding)
// used for table index. Length == 1 << length_bits_
int length_bits_;
// The table consists of an array of buckets where each bucket is
// a linked list of cache entries that hash into the bucket.
std::unique_ptr<LRUHandle*[]> list_;
// Number of elements currently in the table.
uint32_t elems_;
// Set from max_upper_hash_bits (see constructor).
const int max_length_bits_;
};
// A single shard of sharded cache.
class ALIGN_AS(CACHE_LINE_SIZE) LRUCacheShard final : public CacheShard {
public:
LRUCacheShard(size_t capacity, bool strict_capacity_limit,
double high_pri_pool_ratio, bool use_adaptive_mutex,
CacheMetadataChargePolicy metadata_charge_policy,
int max_upper_hash_bits,
const std::shared_ptr<SecondaryCache>& secondary_cache);
virtual ~LRUCacheShard() override = default;
// Separate from constructor so caller can easily make an array of LRUCache
// if current usage is more than new capacity, the function will attempt to
// free the needed space.
virtual void SetCapacity(size_t capacity) override;
// Set the flag to reject insertion if cache if full.
virtual void SetStrictCapacityLimit(bool strict_capacity_limit) override;
// Set percentage of capacity reserved for high-pri cache entries.
void SetHighPriorityPoolRatio(double high_pri_pool_ratio);
// Like Cache methods, but with an extra "hash" parameter.
virtual Status Insert(const Slice& key, uint32_t hash, void* value,
size_t charge, Cache::DeleterFn deleter,
Cache::Handle** handle,
Cache::Priority priority) override {
return Insert(key, hash, value, charge, deleter, nullptr, handle, priority);
}
virtual Status Insert(const Slice& key, uint32_t hash, void* value,
const Cache::CacheItemHelper* helper, size_t charge,
Cache::Handle** handle,
Cache::Priority priority) override {
assert(helper);
return Insert(key, hash, value, charge, nullptr, helper, handle, priority);
}
// If helper_cb is null, the values of the following arguments don't matter.
virtual Cache::Handle* Lookup(const Slice& key, uint32_t hash,
const ShardedCache::CacheItemHelper* helper,
const ShardedCache::CreateCallback& create_cb,
ShardedCache::Priority priority, bool wait,
Statistics* stats) override;
virtual Cache::Handle* Lookup(const Slice& key, uint32_t hash) override {
return Lookup(key, hash, nullptr, nullptr, Cache::Priority::LOW, true,
nullptr);
}
virtual bool Release(Cache::Handle* handle, bool /*useful*/,
bool erase_if_last_ref) override {
return Release(handle, erase_if_last_ref);
}
virtual bool IsReady(Cache::Handle* /*handle*/) override;
virtual void Wait(Cache::Handle* /*handle*/) override {}
virtual bool Ref(Cache::Handle* handle) override;
virtual bool Release(Cache::Handle* handle,
bool erase_if_last_ref = false) override;
virtual void Erase(const Slice& key, uint32_t hash) override;
// Although in some platforms the update of size_t is atomic, to make sure
// GetUsage() and GetPinnedUsage() work correctly under any platform, we'll
// protect them with mutex_.
virtual size_t GetUsage() const override;
virtual size_t GetPinnedUsage() const override;
virtual void ApplyToSomeEntries(
const std::function<void(const Slice& key, void* value, size_t charge,
DeleterFn deleter)>& callback,
uint32_t average_entries_per_lock, uint32_t* state) override;
virtual void EraseUnRefEntries() override;
virtual std::string GetPrintableOptions() const override;
void TEST_GetLRUList(LRUHandle** lru, LRUHandle** lru_low_pri);
// Retrieves number of elements in LRU, for unit test purpose only.
// Not threadsafe.
size_t TEST_GetLRUSize();
// Retrieves high pri pool ratio
double GetHighPriPoolRatio();
private:
friend class LRUCache;
// Insert an item into the hash table and, if handle is null, insert into
// the LRU list. Older items are evicted as necessary. If the cache is full
// and free_handle_on_fail is true, the item is deleted and handle is set to
// nullptr.
Status InsertItem(LRUHandle* item, Cache::Handle** handle,
bool free_handle_on_fail);
Status Insert(const Slice& key, uint32_t hash, void* value, size_t charge,
DeleterFn deleter, const Cache::CacheItemHelper* helper,
Cache::Handle** handle, Cache::Priority priority);
// Promote an item looked up from the secondary cache to the LRU cache.
// The item may be still in the secondary cache.
// It is only inserted into the hash table and not the LRU list, and only
// if the cache is not at full capacity, as is the case during Insert. The
// caller should hold a reference on the LRUHandle. When the caller releases
// the last reference, the item is added to the LRU list.
// The item is promoted to the high pri or low pri pool as specified by the
// caller in Lookup.
void Promote(LRUHandle* e);
void LRU_Remove(LRUHandle* e);
void LRU_Insert(LRUHandle* e);
// Overflow the last entry in high-pri pool to low-pri pool until size of
// high-pri pool is no larger than the size specify by high_pri_pool_pct.
void MaintainPoolSize();
// Free some space following strict LRU policy until enough space
// to hold (usage_ + charge) is freed or the lru list is empty
// This function is not thread safe - it needs to be executed while
// holding the mutex_.
void EvictFromLRU(size_t charge, autovector<LRUHandle*>* deleted);
// Initialized before use.
size_t capacity_;
// Memory size for entries in high-pri pool.
size_t high_pri_pool_usage_;
// Whether to reject insertion if cache reaches its full capacity.
bool strict_capacity_limit_;
// Ratio of capacity reserved for high priority cache entries.
double high_pri_pool_ratio_;
// High-pri pool size, equals to capacity * high_pri_pool_ratio.
// Remember the value to avoid recomputing each time.
double high_pri_pool_capacity_;
// Dummy head of LRU list.
// lru.prev is newest entry, lru.next is oldest entry.
// LRU contains items which can be evicted, ie reference only by cache
LRUHandle lru_;
// Pointer to head of low-pri pool in LRU list.
LRUHandle* lru_low_pri_;
// ------------^^^^^^^^^^^^^-----------
// Not frequently modified data members
// ------------------------------------
//
// We separate data members that are updated frequently from the ones that
// are not frequently updated so that they don't share the same cache line
// which will lead into false cache sharing
//
// ------------------------------------
// Frequently modified data members
// ------------vvvvvvvvvvvvv-----------
LRUHandleTable table_;
// Memory size for entries residing in the cache.
size_t usage_;
// Memory size for entries residing only in the LRU list.
size_t lru_usage_;
// mutex_ protects the following state.
// We don't count mutex_ as the cache's internal state so semantically we
// don't mind mutex_ invoking the non-const actions.
mutable port::Mutex mutex_;
std::shared_ptr<SecondaryCache> secondary_cache_;
};
class LRUCache
#ifdef NDEBUG
final
#endif
: public ShardedCache {
public:
LRUCache(size_t capacity, int num_shard_bits, bool strict_capacity_limit,
double high_pri_pool_ratio,
std::shared_ptr<MemoryAllocator> memory_allocator = nullptr,
bool use_adaptive_mutex = kDefaultToAdaptiveMutex,
CacheMetadataChargePolicy metadata_charge_policy =
kDontChargeCacheMetadata,
const std::shared_ptr<SecondaryCache>& secondary_cache = nullptr);
virtual ~LRUCache();
virtual const char* Name() const override { return "LRUCache"; }
virtual CacheShard* GetShard(uint32_t shard) override;
virtual const CacheShard* GetShard(uint32_t shard) const override;
virtual void* Value(Handle* handle) override;
virtual size_t GetCharge(Handle* handle) const override;
virtual uint32_t GetHash(Handle* handle) const override;
virtual DeleterFn GetDeleter(Handle* handle) const override;
virtual void DisownData() override;
virtual void WaitAll(std::vector<Handle*>& handles) override;
// Retrieves number of elements in LRU, for unit test purpose only.
size_t TEST_GetLRUSize();
// Retrieves high pri pool ratio.
double GetHighPriPoolRatio();
private:
LRUCacheShard* shards_ = nullptr;
int num_shards_ = 0;
std::shared_ptr<SecondaryCache> secondary_cache_;
};
} // namespace lru_cache
using LRUCache = lru_cache::LRUCache;
using LRUHandle = lru_cache::LRUHandle;
using LRUCacheShard = lru_cache::LRUCacheShard;
} // namespace ROCKSDB_NAMESPACE