rocksdb/table/table_test.cc

4753 lines
176 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "block_fetcher.h"
#include "cache/lru_cache.h"
#include "db/dbformat.h"
#include "db/memtable.h"
#include "db/write_batch_internal.h"
#include "memtable/stl_wrappers.h"
#include "meta_blocks.h"
#include "monitoring/statistics.h"
#include "port/port.h"
#include "rocksdb/cache.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/file_checksum.h"
#include "rocksdb/file_system.h"
#include "rocksdb/iterator.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/statistics.h"
#include "rocksdb/write_buffer_manager.h"
#include "table/block_based/block.h"
#include "table/block_based/block_based_table_builder.h"
#include "table/block_based/block_based_table_factory.h"
#include "table/block_based/block_based_table_reader.h"
#include "table/block_based/block_builder.h"
#include "table/block_based/flush_block_policy.h"
#include "table/format.h"
#include "table/get_context.h"
#include "table/internal_iterator.h"
#include "table/plain/plain_table_factory.h"
#include "table/scoped_arena_iterator.h"
#include "table/sst_file_writer_collectors.h"
#include "test_util/sync_point.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/compression.h"
#include "util/file_checksum_helper.h"
#include "util/random.h"
#include "util/string_util.h"
#include "utilities/merge_operators.h"
namespace ROCKSDB_NAMESPACE {
extern const uint64_t kLegacyBlockBasedTableMagicNumber;
extern const uint64_t kLegacyPlainTableMagicNumber;
extern const uint64_t kBlockBasedTableMagicNumber;
extern const uint64_t kPlainTableMagicNumber;
namespace {
const std::string kDummyValue(10000, 'o');
// DummyPropertiesCollector used to test BlockBasedTableProperties
class DummyPropertiesCollector : public TablePropertiesCollector {
public:
const char* Name() const override { return "DummyPropertiesCollector"; }
Status Finish(UserCollectedProperties* /*properties*/) override {
return Status::OK();
}
Status Add(const Slice& /*user_key*/, const Slice& /*value*/) override {
return Status::OK();
}
UserCollectedProperties GetReadableProperties() const override {
return UserCollectedProperties{};
}
};
class DummyPropertiesCollectorFactory1
: public TablePropertiesCollectorFactory {
public:
TablePropertiesCollector* CreateTablePropertiesCollector(
TablePropertiesCollectorFactory::Context /*context*/) override {
return new DummyPropertiesCollector();
}
const char* Name() const override {
return "DummyPropertiesCollectorFactory1";
}
};
class DummyPropertiesCollectorFactory2
: public TablePropertiesCollectorFactory {
public:
TablePropertiesCollector* CreateTablePropertiesCollector(
TablePropertiesCollectorFactory::Context /*context*/) override {
return new DummyPropertiesCollector();
}
const char* Name() const override {
return "DummyPropertiesCollectorFactory2";
}
};
// Return reverse of "key".
// Used to test non-lexicographic comparators.
std::string Reverse(const Slice& key) {
auto rev = key.ToString();
std::reverse(rev.begin(), rev.end());
return rev;
}
class ReverseKeyComparator : public Comparator {
public:
const char* Name() const override {
return "rocksdb.ReverseBytewiseComparator";
}
int Compare(const Slice& a, const Slice& b) const override {
return BytewiseComparator()->Compare(Reverse(a), Reverse(b));
}
void FindShortestSeparator(std::string* start,
const Slice& limit) const override {
std::string s = Reverse(*start);
std::string l = Reverse(limit);
BytewiseComparator()->FindShortestSeparator(&s, l);
*start = Reverse(s);
}
void FindShortSuccessor(std::string* key) const override {
std::string s = Reverse(*key);
BytewiseComparator()->FindShortSuccessor(&s);
*key = Reverse(s);
}
};
ReverseKeyComparator reverse_key_comparator;
void Increment(const Comparator* cmp, std::string* key) {
if (cmp == BytewiseComparator()) {
key->push_back('\0');
} else {
assert(cmp == &reverse_key_comparator);
std::string rev = Reverse(*key);
rev.push_back('\0');
*key = Reverse(rev);
}
}
const auto kUnknownColumnFamily =
TablePropertiesCollectorFactory::Context::kUnknownColumnFamily;
} // namespace
// Helper class for tests to unify the interface between
// BlockBuilder/TableBuilder and Block/Table.
class Constructor {
public:
explicit Constructor(const Comparator* cmp)
: data_(stl_wrappers::LessOfComparator(cmp)) {}
virtual ~Constructor() { }
void Add(const std::string& key, const Slice& value) {
data_[key] = value.ToString();
}
// Finish constructing the data structure with all the keys that have
// been added so far. Returns the keys in sorted order in "*keys"
// and stores the key/value pairs in "*kvmap"
void Finish(const Options& options, const ImmutableOptions& ioptions,
const MutableCFOptions& moptions,
const BlockBasedTableOptions& table_options,
const InternalKeyComparator& internal_comparator,
std::vector<std::string>* keys, stl_wrappers::KVMap* kvmap) {
last_internal_key_ = &internal_comparator;
*kvmap = data_;
keys->clear();
for (const auto& kv : data_) {
keys->push_back(kv.first);
}
data_.clear();
Status s = FinishImpl(options, ioptions, moptions, table_options,
internal_comparator, *kvmap);
ASSERT_TRUE(s.ok()) << s.ToString();
}
// Construct the data structure from the data in "data"
virtual Status FinishImpl(const Options& options,
const ImmutableOptions& ioptions,
const MutableCFOptions& moptions,
const BlockBasedTableOptions& table_options,
const InternalKeyComparator& internal_comparator,
const stl_wrappers::KVMap& data) = 0;
virtual InternalIterator* NewIterator(
const SliceTransform* prefix_extractor = nullptr) const = 0;
virtual const stl_wrappers::KVMap& data() { return data_; }
virtual bool IsArenaMode() const { return false; }
virtual DB* db() const { return nullptr; } // Overridden in DBConstructor
virtual bool AnywayDeleteIterator() const { return false; }
protected:
const InternalKeyComparator* last_internal_key_;
private:
stl_wrappers::KVMap data_;
};
// A helper class that converts internal format keys into user keys
class KeyConvertingIterator : public InternalIterator {
public:
explicit KeyConvertingIterator(InternalIterator* iter,
bool arena_mode = false)
: iter_(iter), arena_mode_(arena_mode) {}
~KeyConvertingIterator() override {
if (arena_mode_) {
iter_->~InternalIterator();
} else {
delete iter_;
}
}
bool Valid() const override { return iter_->Valid() && status_.ok(); }
void Seek(const Slice& target) override {
ParsedInternalKey ikey(target, kMaxSequenceNumber, kTypeValue);
std::string encoded;
AppendInternalKey(&encoded, ikey);
iter_->Seek(encoded);
}
void SeekForPrev(const Slice& target) override {
ParsedInternalKey ikey(target, kMaxSequenceNumber, kTypeValue);
std::string encoded;
AppendInternalKey(&encoded, ikey);
iter_->SeekForPrev(encoded);
}
void SeekToFirst() override { iter_->SeekToFirst(); }
void SeekToLast() override { iter_->SeekToLast(); }
void Next() override { iter_->Next(); }
void Prev() override { iter_->Prev(); }
IterBoundCheck UpperBoundCheckResult() override {
return iter_->UpperBoundCheckResult();
}
Slice key() const override {
assert(Valid());
ParsedInternalKey parsed_key;
Status pik_status =
ParseInternalKey(iter_->key(), &parsed_key, true /* log_err_key */);
if (!pik_status.ok()) {
status_ = pik_status;
return Slice(status_.getState());
}
return parsed_key.user_key;
}
Slice value() const override { return iter_->value(); }
Status status() const override {
return status_.ok() ? iter_->status() : status_;
}
private:
mutable Status status_;
InternalIterator* iter_;
bool arena_mode_;
// No copying allowed
KeyConvertingIterator(const KeyConvertingIterator&);
void operator=(const KeyConvertingIterator&);
};
// `BlockConstructor` APIs always accept/return user keys.
class BlockConstructor : public Constructor {
public:
explicit BlockConstructor(const Comparator* cmp)
: Constructor(cmp), comparator_(cmp), block_(nullptr) {}
~BlockConstructor() override { delete block_; }
Status FinishImpl(const Options& /*options*/,
const ImmutableOptions& /*ioptions*/,
const MutableCFOptions& /*moptions*/,
const BlockBasedTableOptions& table_options,
const InternalKeyComparator& /*internal_comparator*/,
const stl_wrappers::KVMap& kv_map) override {
delete block_;
block_ = nullptr;
BlockBuilder builder(table_options.block_restart_interval);
for (const auto& kv : kv_map) {
// `DataBlockIter` assumes it reads only internal keys. `BlockConstructor`
// clients provide user keys, so we need to convert to internal key format
// before writing the data block.
ParsedInternalKey ikey(kv.first, kMaxSequenceNumber, kTypeValue);
std::string encoded;
AppendInternalKey(&encoded, ikey);
builder.Add(encoded, kv.second);
}
// Open the block
data_ = builder.Finish().ToString();
BlockContents contents;
contents.data = data_;
block_ = new Block(std::move(contents));
return Status::OK();
}
InternalIterator* NewIterator(
const SliceTransform* /*prefix_extractor*/) const override {
// `DataBlockIter` returns the internal keys it reads.
// `KeyConvertingIterator` converts them to user keys before they are
// exposed to the `BlockConstructor` clients.
return new KeyConvertingIterator(
block_->NewDataIterator(comparator_, kDisableGlobalSequenceNumber));
}
private:
const Comparator* comparator_;
std::string data_;
Block* block_;
BlockConstructor();
};
class TableConstructor : public Constructor {
public:
explicit TableConstructor(const Comparator* cmp,
bool convert_to_internal_key = false,
int level = -1, SequenceNumber largest_seqno = 0)
: Constructor(cmp),
largest_seqno_(largest_seqno),
convert_to_internal_key_(convert_to_internal_key),
level_(level) {
env_ = ROCKSDB_NAMESPACE::Env::Default();
}
~TableConstructor() override { Reset(); }
Status FinishImpl(const Options& options, const ImmutableOptions& ioptions,
const MutableCFOptions& moptions,
const BlockBasedTableOptions& /*table_options*/,
const InternalKeyComparator& internal_comparator,
const stl_wrappers::KVMap& kv_map) override {
Reset();
soptions.use_mmap_reads = ioptions.allow_mmap_reads;
std::unique_ptr<FSWritableFile> sink(new test::StringSink());
file_writer_.reset(new WritableFileWriter(
std::move(sink), "" /* don't care */, FileOptions()));
std::unique_ptr<TableBuilder> builder;
IntTblPropCollectorFactories int_tbl_prop_collector_factories;
if (largest_seqno_ != 0) {
// Pretend that it's an external file written by SstFileWriter.
int_tbl_prop_collector_factories.emplace_back(
new SstFileWriterPropertiesCollectorFactory(2 /* version */,
0 /* global_seqno*/));
}
std::string column_family_name;
builder.reset(ioptions.table_factory->NewTableBuilder(
TableBuilderOptions(ioptions, moptions, internal_comparator,
&int_tbl_prop_collector_factories,
options.compression, options.compression_opts,
kUnknownColumnFamily, column_family_name, level_),
file_writer_.get()));
for (const auto& kv : kv_map) {
if (convert_to_internal_key_) {
ParsedInternalKey ikey(kv.first, kMaxSequenceNumber, kTypeValue);
std::string encoded;
AppendInternalKey(&encoded, ikey);
builder->Add(encoded, kv.second);
} else {
builder->Add(kv.first, kv.second);
}
EXPECT_OK(builder->status());
}
Status s = builder->Finish();
EXPECT_OK(file_writer_->Flush());
EXPECT_TRUE(s.ok()) << s.ToString();
EXPECT_EQ(TEST_GetSink()->contents().size(), builder->FileSize());
// Open the table
uniq_id_ = cur_uniq_id_++;
std::unique_ptr<FSRandomAccessFile> source(new test::StringSource(
TEST_GetSink()->contents(), uniq_id_, ioptions.allow_mmap_reads));
file_reader_.reset(new RandomAccessFileReader(std::move(source), "test"));
const bool kSkipFilters = true;
const bool kImmortal = true;
return ioptions.table_factory->NewTableReader(
TableReaderOptions(ioptions, moptions.prefix_extractor.get(), soptions,
internal_comparator, !kSkipFilters, !kImmortal,
false, level_, largest_seqno_, &block_cache_tracer_,
moptions.write_buffer_size, "", uniq_id_),
std::move(file_reader_), TEST_GetSink()->contents().size(),
&table_reader_);
}
InternalIterator* NewIterator(
const SliceTransform* prefix_extractor) const override {
InternalIterator* iter = table_reader_->NewIterator(
read_options_, prefix_extractor, /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized);
if (convert_to_internal_key_) {
return new KeyConvertingIterator(iter);
} else {
return iter;
}
}
uint64_t ApproximateOffsetOf(const Slice& key) const {
if (convert_to_internal_key_) {
InternalKey ikey(key, kMaxSequenceNumber, kTypeValue);
const Slice skey = ikey.Encode();
return table_reader_->ApproximateOffsetOf(
skey, TableReaderCaller::kUncategorized);
}
return table_reader_->ApproximateOffsetOf(
key, TableReaderCaller::kUncategorized);
}
virtual Status Reopen(const ImmutableOptions& ioptions,
const MutableCFOptions& moptions) {
std::unique_ptr<FSRandomAccessFile> source(new test::StringSource(
TEST_GetSink()->contents(), uniq_id_, ioptions.allow_mmap_reads));
file_reader_.reset(new RandomAccessFileReader(std::move(source), "test"));
return ioptions.table_factory->NewTableReader(
TableReaderOptions(ioptions, moptions.prefix_extractor.get(), soptions,
*last_internal_key_),
std::move(file_reader_), TEST_GetSink()->contents().size(),
&table_reader_);
}
virtual TableReader* GetTableReader() { return table_reader_.get(); }
bool AnywayDeleteIterator() const override {
return convert_to_internal_key_;
}
void ResetTableReader() { table_reader_.reset(); }
bool ConvertToInternalKey() { return convert_to_internal_key_; }
test::StringSink* TEST_GetSink() {
return static_cast<test::StringSink*>(file_writer_->writable_file());
}
BlockCacheTracer block_cache_tracer_;
private:
void Reset() {
uniq_id_ = 0;
table_reader_.reset();
file_writer_.reset();
file_reader_.reset();
}
const ReadOptions read_options_;
uint64_t uniq_id_;
std::unique_ptr<WritableFileWriter> file_writer_;
std::unique_ptr<RandomAccessFileReader> file_reader_;
std::unique_ptr<TableReader> table_reader_;
SequenceNumber largest_seqno_;
bool convert_to_internal_key_;
int level_;
TableConstructor();
static uint64_t cur_uniq_id_;
EnvOptions soptions;
Env* env_;
};
uint64_t TableConstructor::cur_uniq_id_ = 1;
class MemTableConstructor: public Constructor {
public:
explicit MemTableConstructor(const Comparator* cmp, WriteBufferManager* wb)
: Constructor(cmp),
internal_comparator_(cmp),
write_buffer_manager_(wb),
table_factory_(new SkipListFactory) {
options_.memtable_factory = table_factory_;
ImmutableOptions ioptions(options_);
memtable_ =
new MemTable(internal_comparator_, ioptions, MutableCFOptions(options_),
wb, kMaxSequenceNumber, 0 /* column_family_id */);
memtable_->Ref();
}
~MemTableConstructor() override { delete memtable_->Unref(); }
Status FinishImpl(const Options&, const ImmutableOptions& ioptions,
const MutableCFOptions& /*moptions*/,
const BlockBasedTableOptions& /*table_options*/,
const InternalKeyComparator& /*internal_comparator*/,
const stl_wrappers::KVMap& kv_map) override {
delete memtable_->Unref();
ImmutableOptions mem_ioptions(ioptions);
memtable_ = new MemTable(internal_comparator_, mem_ioptions,
MutableCFOptions(options_), write_buffer_manager_,
kMaxSequenceNumber, 0 /* column_family_id */);
memtable_->Ref();
int seq = 1;
for (const auto& kv : kv_map) {
Status s = memtable_->Add(seq, kTypeValue, kv.first, kv.second,
nullptr /* kv_prot_info */);
if (!s.ok()) {
return s;
}
seq++;
}
return Status::OK();
}
InternalIterator* NewIterator(
const SliceTransform* /*prefix_extractor*/) const override {
return new KeyConvertingIterator(
memtable_->NewIterator(ReadOptions(), &arena_), true);
}
bool AnywayDeleteIterator() const override { return true; }
bool IsArenaMode() const override { return true; }
private:
mutable Arena arena_;
InternalKeyComparator internal_comparator_;
Options options_;
WriteBufferManager* write_buffer_manager_;
MemTable* memtable_;
std::shared_ptr<SkipListFactory> table_factory_;
};
class InternalIteratorFromIterator : public InternalIterator {
public:
explicit InternalIteratorFromIterator(Iterator* it) : it_(it) {}
bool Valid() const override { return it_->Valid(); }
void Seek(const Slice& target) override { it_->Seek(target); }
void SeekForPrev(const Slice& target) override { it_->SeekForPrev(target); }
void SeekToFirst() override { it_->SeekToFirst(); }
void SeekToLast() override { it_->SeekToLast(); }
void Next() override { it_->Next(); }
void Prev() override { it_->Prev(); }
Slice key() const override { return it_->key(); }
Slice value() const override { return it_->value(); }
Status status() const override { return it_->status(); }
private:
std::unique_ptr<Iterator> it_;
};
class DBConstructor: public Constructor {
public:
explicit DBConstructor(const Comparator* cmp)
: Constructor(cmp),
comparator_(cmp) {
db_ = nullptr;
NewDB();
}
~DBConstructor() override { delete db_; }
Status FinishImpl(const Options& /*options*/,
const ImmutableOptions& /*ioptions*/,
const MutableCFOptions& /*moptions*/,
const BlockBasedTableOptions& /*table_options*/,
const InternalKeyComparator& /*internal_comparator*/,
const stl_wrappers::KVMap& kv_map) override {
delete db_;
db_ = nullptr;
NewDB();
for (const auto& kv : kv_map) {
WriteBatch batch;
EXPECT_OK(batch.Put(kv.first, kv.second));
EXPECT_TRUE(db_->Write(WriteOptions(), &batch).ok());
}
return Status::OK();
}
InternalIterator* NewIterator(
const SliceTransform* /*prefix_extractor*/) const override {
return new InternalIteratorFromIterator(db_->NewIterator(ReadOptions()));
}
DB* db() const override { return db_; }
private:
void NewDB() {
std::string name = test::PerThreadDBPath("table_testdb");
Options options;
options.comparator = comparator_;
Status status = DestroyDB(name, options);
ASSERT_TRUE(status.ok()) << status.ToString();
options.create_if_missing = true;
options.error_if_exists = true;
options.write_buffer_size = 10000; // Something small to force merging
status = DB::Open(options, name, &db_);
ASSERT_TRUE(status.ok()) << status.ToString();
}
const Comparator* comparator_;
DB* db_;
};
enum TestType {
BLOCK_BASED_TABLE_TEST,
#ifndef ROCKSDB_LITE
PLAIN_TABLE_SEMI_FIXED_PREFIX,
PLAIN_TABLE_FULL_STR_PREFIX,
PLAIN_TABLE_TOTAL_ORDER,
#endif // !ROCKSDB_LITE
BLOCK_TEST,
MEMTABLE_TEST,
DB_TEST
};
struct TestArgs {
TestType type;
bool reverse_compare;
int restart_interval;
CompressionType compression;
uint32_t compression_parallel_threads;
uint32_t format_version;
bool use_mmap;
};
std::ostream& operator<<(std::ostream& os, const TestArgs& args) {
os << "type: " << args.type << " reverse_compare: " << args.reverse_compare
<< " restart_interval: " << args.restart_interval
<< " compression: " << args.compression
<< " compression_parallel_threads: " << args.compression_parallel_threads
<< " format_version: " << args.format_version
<< " use_mmap: " << args.use_mmap;
return os;
}
static std::vector<TestArgs> GenerateArgList() {
std::vector<TestArgs> test_args;
std::vector<TestType> test_types = {
BLOCK_BASED_TABLE_TEST,
#ifndef ROCKSDB_LITE
PLAIN_TABLE_SEMI_FIXED_PREFIX,
PLAIN_TABLE_FULL_STR_PREFIX,
PLAIN_TABLE_TOTAL_ORDER,
#endif // !ROCKSDB_LITE
BLOCK_TEST,
MEMTABLE_TEST, DB_TEST};
std::vector<bool> reverse_compare_types = {false, true};
std::vector<int> restart_intervals = {16, 1, 1024};
std::vector<uint32_t> compression_parallel_threads = {1, 4};
// Only add compression if it is supported
std::vector<std::pair<CompressionType, bool>> compression_types;
compression_types.emplace_back(kNoCompression, false);
if (Snappy_Supported()) {
compression_types.emplace_back(kSnappyCompression, false);
}
if (Zlib_Supported()) {
compression_types.emplace_back(kZlibCompression, false);
compression_types.emplace_back(kZlibCompression, true);
}
if (BZip2_Supported()) {
compression_types.emplace_back(kBZip2Compression, false);
compression_types.emplace_back(kBZip2Compression, true);
}
if (LZ4_Supported()) {
compression_types.emplace_back(kLZ4Compression, false);
compression_types.emplace_back(kLZ4Compression, true);
compression_types.emplace_back(kLZ4HCCompression, false);
compression_types.emplace_back(kLZ4HCCompression, true);
}
if (XPRESS_Supported()) {
compression_types.emplace_back(kXpressCompression, false);
compression_types.emplace_back(kXpressCompression, true);
}
if (ZSTD_Supported()) {
compression_types.emplace_back(kZSTD, false);
compression_types.emplace_back(kZSTD, true);
}
for (auto test_type : test_types) {
for (auto reverse_compare : reverse_compare_types) {
#ifndef ROCKSDB_LITE
if (test_type == PLAIN_TABLE_SEMI_FIXED_PREFIX ||
test_type == PLAIN_TABLE_FULL_STR_PREFIX ||
test_type == PLAIN_TABLE_TOTAL_ORDER) {
// Plain table doesn't use restart index or compression.
TestArgs one_arg;
one_arg.type = test_type;
one_arg.reverse_compare = reverse_compare;
one_arg.restart_interval = restart_intervals[0];
one_arg.compression = compression_types[0].first;
one_arg.compression_parallel_threads = 1;
one_arg.format_version = 0;
one_arg.use_mmap = true;
test_args.push_back(one_arg);
one_arg.use_mmap = false;
test_args.push_back(one_arg);
continue;
}
#endif // !ROCKSDB_LITE
for (auto restart_interval : restart_intervals) {
for (auto compression_type : compression_types) {
for (auto num_threads : compression_parallel_threads) {
TestArgs one_arg;
one_arg.type = test_type;
one_arg.reverse_compare = reverse_compare;
one_arg.restart_interval = restart_interval;
one_arg.compression = compression_type.first;
one_arg.compression_parallel_threads = num_threads;
one_arg.format_version = compression_type.second ? 2 : 1;
one_arg.use_mmap = false;
test_args.push_back(one_arg);
}
}
}
}
}
return test_args;
}
// In order to make all tests run for plain table format, including
// those operating on empty keys, create a new prefix transformer which
// return fixed prefix if the slice is not shorter than the prefix length,
// and the full slice if it is shorter.
class FixedOrLessPrefixTransform : public SliceTransform {
private:
const size_t prefix_len_;
public:
explicit FixedOrLessPrefixTransform(size_t prefix_len) :
prefix_len_(prefix_len) {
}
const char* Name() const override { return "rocksdb.FixedPrefix"; }
Slice Transform(const Slice& src) const override {
assert(InDomain(src));
if (src.size() < prefix_len_) {
return src;
}
return Slice(src.data(), prefix_len_);
}
bool InDomain(const Slice& /*src*/) const override { return true; }
bool InRange(const Slice& dst) const override {
return (dst.size() <= prefix_len_);
}
bool FullLengthEnabled(size_t* /*len*/) const override { return false; }
};
class HarnessTest : public testing::Test {
public:
explicit HarnessTest(const TestArgs& args)
: args_(args),
ioptions_(options_),
moptions_(options_),
write_buffer_(options_.db_write_buffer_size),
support_prev_(true),
only_support_prefix_seek_(false) {
options_.compression = args_.compression;
options_.compression_opts.parallel_threads =
args_.compression_parallel_threads;
// Use shorter block size for tests to exercise block boundary
// conditions more.
if (args_.reverse_compare) {
options_.comparator = &reverse_key_comparator;
}
internal_comparator_.reset(
new test::PlainInternalKeyComparator(options_.comparator));
options_.allow_mmap_reads = args_.use_mmap;
switch (args_.type) {
case BLOCK_BASED_TABLE_TEST:
table_options_.flush_block_policy_factory.reset(
new FlushBlockBySizePolicyFactory());
table_options_.block_size = 256;
table_options_.block_restart_interval = args_.restart_interval;
table_options_.index_block_restart_interval = args_.restart_interval;
table_options_.format_version = args_.format_version;
options_.table_factory.reset(
new BlockBasedTableFactory(table_options_));
constructor_.reset(new TableConstructor(
options_.comparator, true /* convert_to_internal_key_ */));
internal_comparator_.reset(
new InternalKeyComparator(options_.comparator));
break;
// Plain table is not supported in ROCKSDB_LITE
#ifndef ROCKSDB_LITE
case PLAIN_TABLE_SEMI_FIXED_PREFIX:
support_prev_ = false;
only_support_prefix_seek_ = true;
options_.prefix_extractor.reset(new FixedOrLessPrefixTransform(2));
options_.table_factory.reset(NewPlainTableFactory());
constructor_.reset(new TableConstructor(
options_.comparator, true /* convert_to_internal_key_ */));
internal_comparator_.reset(
new InternalKeyComparator(options_.comparator));
break;
case PLAIN_TABLE_FULL_STR_PREFIX:
support_prev_ = false;
only_support_prefix_seek_ = true;
options_.prefix_extractor.reset(NewNoopTransform());
options_.table_factory.reset(NewPlainTableFactory());
constructor_.reset(new TableConstructor(
options_.comparator, true /* convert_to_internal_key_ */));
internal_comparator_.reset(
new InternalKeyComparator(options_.comparator));
break;
case PLAIN_TABLE_TOTAL_ORDER:
support_prev_ = false;
only_support_prefix_seek_ = false;
options_.prefix_extractor = nullptr;
{
PlainTableOptions plain_table_options;
plain_table_options.user_key_len = kPlainTableVariableLength;
plain_table_options.bloom_bits_per_key = 0;
plain_table_options.hash_table_ratio = 0;
options_.table_factory.reset(
NewPlainTableFactory(plain_table_options));
}
constructor_.reset(new TableConstructor(
options_.comparator, true /* convert_to_internal_key_ */));
internal_comparator_.reset(
new InternalKeyComparator(options_.comparator));
break;
#endif // !ROCKSDB_LITE
case BLOCK_TEST:
table_options_.block_size = 256;
options_.table_factory.reset(
new BlockBasedTableFactory(table_options_));
constructor_.reset(new BlockConstructor(options_.comparator));
break;
case MEMTABLE_TEST:
table_options_.block_size = 256;
options_.table_factory.reset(
new BlockBasedTableFactory(table_options_));
constructor_.reset(
new MemTableConstructor(options_.comparator, &write_buffer_));
break;
case DB_TEST:
table_options_.block_size = 256;
options_.table_factory.reset(
new BlockBasedTableFactory(table_options_));
constructor_.reset(new DBConstructor(options_.comparator));
break;
}
ioptions_ = ImmutableOptions(options_);
moptions_ = MutableCFOptions(options_);
}
void Add(const std::string& key, const std::string& value) {
constructor_->Add(key, value);
}
void Test(Random* rnd) {
std::vector<std::string> keys;
stl_wrappers::KVMap data;
constructor_->Finish(options_, ioptions_, moptions_, table_options_,
*internal_comparator_, &keys, &data);
TestForwardScan(keys, data);
if (support_prev_) {
TestBackwardScan(keys, data);
}
TestRandomAccess(rnd, keys, data);
}
void TestForwardScan(const std::vector<std::string>& /*keys*/,
const stl_wrappers::KVMap& data) {
InternalIterator* iter = constructor_->NewIterator();
ASSERT_TRUE(!iter->Valid());
iter->SeekToFirst();
ASSERT_OK(iter->status());
for (stl_wrappers::KVMap::const_iterator model_iter = data.begin();
model_iter != data.end(); ++model_iter) {
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
iter->Next();
ASSERT_OK(iter->status());
}
ASSERT_TRUE(!iter->Valid());
ASSERT_OK(iter->status());
if (constructor_->IsArenaMode() && !constructor_->AnywayDeleteIterator()) {
iter->~InternalIterator();
} else {
delete iter;
}
}
void TestBackwardScan(const std::vector<std::string>& /*keys*/,
const stl_wrappers::KVMap& data) {
InternalIterator* iter = constructor_->NewIterator();
ASSERT_TRUE(!iter->Valid());
iter->SeekToLast();
ASSERT_OK(iter->status());
for (stl_wrappers::KVMap::const_reverse_iterator model_iter = data.rbegin();
model_iter != data.rend(); ++model_iter) {
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
iter->Prev();
ASSERT_OK(iter->status());
}
ASSERT_TRUE(!iter->Valid());
ASSERT_OK(iter->status());
if (constructor_->IsArenaMode() && !constructor_->AnywayDeleteIterator()) {
iter->~InternalIterator();
} else {
delete iter;
}
}
void TestRandomAccess(Random* rnd, const std::vector<std::string>& keys,
const stl_wrappers::KVMap& data) {
static const bool kVerbose = false;
InternalIterator* iter = constructor_->NewIterator();
ASSERT_TRUE(!iter->Valid());
stl_wrappers::KVMap::const_iterator model_iter = data.begin();
if (kVerbose) fprintf(stderr, "---\n");
for (int i = 0; i < 200; i++) {
const int toss = rnd->Uniform(support_prev_ ? 5 : 3);
switch (toss) {
case 0: {
if (iter->Valid()) {
if (kVerbose) fprintf(stderr, "Next\n");
iter->Next();
ASSERT_OK(iter->status());
++model_iter;
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
}
break;
}
case 1: {
if (kVerbose) fprintf(stderr, "SeekToFirst\n");
iter->SeekToFirst();
ASSERT_OK(iter->status());
model_iter = data.begin();
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
break;
}
case 2: {
std::string key = PickRandomKey(rnd, keys);
model_iter = data.lower_bound(key);
if (kVerbose) fprintf(stderr, "Seek '%s'\n",
EscapeString(key).c_str());
iter->Seek(Slice(key));
ASSERT_OK(iter->status());
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
break;
}
case 3: {
if (iter->Valid()) {
if (kVerbose) fprintf(stderr, "Prev\n");
iter->Prev();
ASSERT_OK(iter->status());
if (model_iter == data.begin()) {
model_iter = data.end(); // Wrap around to invalid value
} else {
--model_iter;
}
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
}
break;
}
case 4: {
if (kVerbose) fprintf(stderr, "SeekToLast\n");
iter->SeekToLast();
ASSERT_OK(iter->status());
if (keys.empty()) {
model_iter = data.end();
} else {
std::string last = data.rbegin()->first;
model_iter = data.lower_bound(last);
}
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
break;
}
}
}
if (constructor_->IsArenaMode() && !constructor_->AnywayDeleteIterator()) {
iter->~InternalIterator();
} else {
delete iter;
}
}
std::string ToString(const stl_wrappers::KVMap& data,
const stl_wrappers::KVMap::const_iterator& it) {
if (it == data.end()) {
return "END";
} else {
return "'" + it->first + "->" + it->second + "'";
}
}
std::string ToString(const stl_wrappers::KVMap& data,
const stl_wrappers::KVMap::const_reverse_iterator& it) {
if (it == data.rend()) {
return "END";
} else {
return "'" + it->first + "->" + it->second + "'";
}
}
std::string ToString(const InternalIterator* it) {
if (!it->Valid()) {
return "END";
} else {
return "'" + it->key().ToString() + "->" + it->value().ToString() + "'";
}
}
std::string PickRandomKey(Random* rnd, const std::vector<std::string>& keys) {
if (keys.empty()) {
return "foo";
} else {
const int index = rnd->Uniform(static_cast<int>(keys.size()));
std::string result = keys[index];
switch (rnd->Uniform(support_prev_ ? 3 : 1)) {
case 0:
// Return an existing key
break;
case 1: {
// Attempt to return something smaller than an existing key
if (result.size() > 0 && result[result.size() - 1] > '\0'
&& (!only_support_prefix_seek_
|| options_.prefix_extractor->Transform(result).size()
< result.size())) {
result[result.size() - 1]--;
}
break;
}
case 2: {
// Return something larger than an existing key
Increment(options_.comparator, &result);
break;
}
}
return result;
}
}
// Returns nullptr if not running against a DB
DB* db() const { return constructor_->db(); }
private:
TestArgs args_;
Options options_;
ImmutableOptions ioptions_;
MutableCFOptions moptions_;
BlockBasedTableOptions table_options_;
std::unique_ptr<Constructor> constructor_;
WriteBufferManager write_buffer_;
bool support_prev_;
bool only_support_prefix_seek_;
std::shared_ptr<InternalKeyComparator> internal_comparator_;
};
class ParameterizedHarnessTest : public HarnessTest,
public testing::WithParamInterface<TestArgs> {
public:
ParameterizedHarnessTest() : HarnessTest(GetParam()) {}
};
INSTANTIATE_TEST_CASE_P(TableTest, ParameterizedHarnessTest,
::testing::ValuesIn(GenerateArgList()));
class DBHarnessTest : public HarnessTest {
public:
DBHarnessTest()
: HarnessTest(TestArgs{DB_TEST, /* reverse_compare */ false,
/* restart_interval */ 16, kNoCompression,
/* compression_parallel_threads */ 1,
/* format_version */ 0, /* use_mmap */ false}) {}
};
static bool Between(uint64_t val, uint64_t low, uint64_t high) {
bool result = (val >= low) && (val <= high);
if (!result) {
fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n",
(unsigned long long)(val),
(unsigned long long)(low),
(unsigned long long)(high));
}
return result;
}
// Tests against all kinds of tables
class TableTest : public testing::Test {
public:
const InternalKeyComparator& GetPlainInternalComparator(
const Comparator* comp) {
if (!plain_internal_comparator) {
plain_internal_comparator.reset(
new test::PlainInternalKeyComparator(comp));
}
return *plain_internal_comparator;
}
void IndexTest(BlockBasedTableOptions table_options);
private:
std::unique_ptr<InternalKeyComparator> plain_internal_comparator;
};
class GeneralTableTest : public TableTest {};
class BlockBasedTableTest
: public TableTest,
virtual public ::testing::WithParamInterface<uint32_t> {
public:
BlockBasedTableTest() : format_(GetParam()) {
env_ = ROCKSDB_NAMESPACE::Env::Default();
}
BlockBasedTableOptions GetBlockBasedTableOptions() {
BlockBasedTableOptions options;
options.format_version = format_;
return options;
}
void SetupTracingTest(TableConstructor* c) {
test_path_ = test::PerThreadDBPath("block_based_table_tracing_test");
EXPECT_OK(env_->CreateDir(test_path_));
trace_file_path_ = test_path_ + "/block_cache_trace_file";
TraceOptions trace_opt;
std::unique_ptr<TraceWriter> trace_writer;
EXPECT_OK(NewFileTraceWriter(env_, EnvOptions(), trace_file_path_,
&trace_writer));
// Always return Status::OK().
assert(c->block_cache_tracer_
.StartTrace(env_->GetSystemClock().get(), trace_opt,
std::move(trace_writer))
.ok());
{
std::string user_key = "k01";
InternalKey internal_key(user_key, 0, kTypeValue);
std::string encoded_key = internal_key.Encode().ToString();
c->Add(encoded_key, kDummyValue);
}
{
std::string user_key = "k02";
InternalKey internal_key(user_key, 0, kTypeValue);
std::string encoded_key = internal_key.Encode().ToString();
c->Add(encoded_key, kDummyValue);
}
}
void VerifyBlockAccessTrace(
TableConstructor* c,
const std::vector<BlockCacheTraceRecord>& expected_records) {
c->block_cache_tracer_.EndTrace();
{
std::unique_ptr<TraceReader> trace_reader;
Status s =
NewFileTraceReader(env_, EnvOptions(), trace_file_path_, &trace_reader);
EXPECT_OK(s);
BlockCacheTraceReader reader(std::move(trace_reader));
BlockCacheTraceHeader header;
EXPECT_OK(reader.ReadHeader(&header));
uint32_t index = 0;
while (s.ok()) {
BlockCacheTraceRecord access;
s = reader.ReadAccess(&access);
if (!s.ok()) {
break;
}
ASSERT_LT(index, expected_records.size());
EXPECT_NE("", access.block_key);
EXPECT_EQ(access.block_type, expected_records[index].block_type);
EXPECT_GT(access.block_size, 0);
EXPECT_EQ(access.caller, expected_records[index].caller);
EXPECT_EQ(access.no_insert, expected_records[index].no_insert);
EXPECT_EQ(access.is_cache_hit, expected_records[index].is_cache_hit);
// Get
if (access.caller == TableReaderCaller::kUserGet) {
EXPECT_EQ(access.referenced_key,
expected_records[index].referenced_key);
EXPECT_EQ(access.get_id, expected_records[index].get_id);
EXPECT_EQ(access.get_from_user_specified_snapshot,
expected_records[index].get_from_user_specified_snapshot);
if (access.block_type == TraceType::kBlockTraceDataBlock) {
EXPECT_GT(access.referenced_data_size, 0);
EXPECT_GT(access.num_keys_in_block, 0);
EXPECT_EQ(access.referenced_key_exist_in_block,
expected_records[index].referenced_key_exist_in_block);
}
} else {
EXPECT_EQ(access.referenced_key, "");
EXPECT_EQ(access.get_id, 0);
EXPECT_TRUE(access.get_from_user_specified_snapshot == Boolean::kFalse);
EXPECT_EQ(access.referenced_data_size, 0);
EXPECT_EQ(access.num_keys_in_block, 0);
EXPECT_TRUE(access.referenced_key_exist_in_block == Boolean::kFalse);
}
index++;
}
EXPECT_EQ(index, expected_records.size());
}
EXPECT_OK(env_->DeleteFile(trace_file_path_));
EXPECT_OK(env_->DeleteDir(test_path_));
}
protected:
uint64_t IndexUncompressedHelper(bool indexCompress);
private:
uint32_t format_;
Env* env_;
std::string trace_file_path_;
std::string test_path_;
};
class PlainTableTest : public TableTest {};
class TablePropertyTest : public testing::Test {};
class BBTTailPrefetchTest : public TableTest {};
// The helper class to test the file checksum
class FileChecksumTestHelper {
public:
FileChecksumTestHelper(bool convert_to_internal_key = false)
: convert_to_internal_key_(convert_to_internal_key) {
}
~FileChecksumTestHelper() {}
void CreateWriteableFile() {
sink_ = new test::StringSink();
std::unique_ptr<FSWritableFile> holder(sink_);
file_writer_.reset(new WritableFileWriter(
std::move(holder), "" /* don't care */, FileOptions()));
}
void SetFileChecksumGenerator(FileChecksumGenerator* checksum_generator) {
if (file_writer_ != nullptr) {
file_writer_->TEST_SetFileChecksumGenerator(checksum_generator);
} else {
delete checksum_generator;
}
}
WritableFileWriter* GetFileWriter() { return file_writer_.get(); }
Status ResetTableBuilder(std::unique_ptr<TableBuilder>&& builder) {
assert(builder != nullptr);
table_builder_ = std::move(builder);
return Status::OK();
}
void AddKVtoKVMap(int num_entries) {
Random rnd(test::RandomSeed());
for (int i = 0; i < num_entries; i++) {
std::string v = rnd.RandomString(100);
kv_map_[test::RandomKey(&rnd, 20)] = v;
}
}
Status WriteKVAndFlushTable() {
for (const auto& kv : kv_map_) {
if (convert_to_internal_key_) {
ParsedInternalKey ikey(kv.first, kMaxSequenceNumber, kTypeValue);
std::string encoded;
AppendInternalKey(&encoded, ikey);
table_builder_->Add(encoded, kv.second);
} else {
table_builder_->Add(kv.first, kv.second);
}
EXPECT_TRUE(table_builder_->status().ok());
}
Status s = table_builder_->Finish();
EXPECT_OK(file_writer_->Flush());
EXPECT_OK(s);
EXPECT_EQ(sink_->contents().size(), table_builder_->FileSize());
return s;
}
std::string GetFileChecksum() {
EXPECT_OK(file_writer_->Close());
return table_builder_->GetFileChecksum();
}
const char* GetFileChecksumFuncName() {
return table_builder_->GetFileChecksumFuncName();
}
Status CalculateFileChecksum(FileChecksumGenerator* file_checksum_generator,
std::string* checksum) {
assert(file_checksum_generator != nullptr);
cur_uniq_id_ = checksum_uniq_id_++;
test::StringSink* ss_rw =
static_cast<test::StringSink*>(file_writer_->writable_file());
std::unique_ptr<FSRandomAccessFile> source(
new test::StringSource(ss_rw->contents()));
file_reader_.reset(new RandomAccessFileReader(std::move(source), "test"));
std::unique_ptr<char[]> scratch(new char[2048]);
Slice result;
uint64_t offset = 0;
Status s;
s = file_reader_->Read(IOOptions(), offset, 2048, &result, scratch.get(),
nullptr, false);
if (!s.ok()) {
return s;
}
while (result.size() != 0) {
file_checksum_generator->Update(scratch.get(), result.size());
offset += static_cast<uint64_t>(result.size());
s = file_reader_->Read(IOOptions(), offset, 2048, &result, scratch.get(),
nullptr, false);
if (!s.ok()) {
return s;
}
}
EXPECT_EQ(offset, static_cast<uint64_t>(table_builder_->FileSize()));
file_checksum_generator->Finalize();
*checksum = file_checksum_generator->GetChecksum();
return Status::OK();
}
private:
bool convert_to_internal_key_;
uint64_t cur_uniq_id_;
std::unique_ptr<WritableFileWriter> file_writer_;
std::unique_ptr<RandomAccessFileReader> file_reader_;
std::unique_ptr<TableBuilder> table_builder_;
stl_wrappers::KVMap kv_map_;
test::StringSink* sink_ = nullptr;
static uint64_t checksum_uniq_id_;
};
uint64_t FileChecksumTestHelper::checksum_uniq_id_ = 1;
INSTANTIATE_TEST_CASE_P(FormatDef, BlockBasedTableTest,
testing::Values(test::kDefaultFormatVersion));
INSTANTIATE_TEST_CASE_P(FormatLatest, BlockBasedTableTest,
testing::Values(test::kLatestFormatVersion));
// This test serves as the living tutorial for the prefix scan of user collected
// properties.
TEST_F(TablePropertyTest, PrefixScanTest) {
UserCollectedProperties props{{"num.111.1", "1"},
{"num.111.2", "2"},
{"num.111.3", "3"},
{"num.333.1", "1"},
{"num.333.2", "2"},
{"num.333.3", "3"},
{"num.555.1", "1"},
{"num.555.2", "2"},
{"num.555.3", "3"}, };
// prefixes that exist
for (const std::string& prefix : {"num.111", "num.333", "num.555"}) {
int num = 0;
for (auto pos = props.lower_bound(prefix);
pos != props.end() &&
pos->first.compare(0, prefix.size(), prefix) == 0;
++pos) {
++num;
auto key = prefix + "." + ToString(num);
ASSERT_EQ(key, pos->first);
ASSERT_EQ(ToString(num), pos->second);
}
ASSERT_EQ(3, num);
}
// prefixes that don't exist
for (const std::string& prefix :
{"num.000", "num.222", "num.444", "num.666"}) {
auto pos = props.lower_bound(prefix);
ASSERT_TRUE(pos == props.end() ||
pos->first.compare(0, prefix.size(), prefix) != 0);
}
}
// This test include all the basic checks except those for index size and block
// size, which will be conducted in separated unit tests.
TEST_P(BlockBasedTableTest, BasicBlockBasedTableProperties) {
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
c.Add("a1", "val1");
c.Add("b2", "val2");
c.Add("c3", "val3");
c.Add("d4", "val4");
c.Add("e5", "val5");
c.Add("f6", "val6");
c.Add("g7", "val7");
c.Add("h8", "val8");
c.Add("j9", "val9");
uint64_t diff_internal_user_bytes = 9 * 8; // 8 is seq size, 9 k-v totally
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
options.compression = kNoCompression;
options.statistics = CreateDBStatistics();
options.statistics->set_stats_level(StatsLevel::kAll);
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_restart_interval = 1;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
ImmutableOptions ioptions(options);
MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
ASSERT_EQ(options.statistics->getTickerCount(NUMBER_BLOCK_NOT_COMPRESSED), 0);
auto& props = *c.GetTableReader()->GetTableProperties();
ASSERT_EQ(kvmap.size(), props.num_entries);
auto raw_key_size = kvmap.size() * 2ul;
auto raw_value_size = kvmap.size() * 4ul;
ASSERT_EQ(raw_key_size + diff_internal_user_bytes, props.raw_key_size);
ASSERT_EQ(raw_value_size, props.raw_value_size);
ASSERT_EQ(1ul, props.num_data_blocks);
ASSERT_EQ("", props.filter_policy_name); // no filter policy is used
// Verify data size.
BlockBuilder block_builder(1);
for (const auto& item : kvmap) {
block_builder.Add(item.first, item.second);
}
Slice content = block_builder.Finish();
ASSERT_EQ(content.size() + kBlockTrailerSize + diff_internal_user_bytes,
props.data_size);
c.ResetTableReader();
}
#ifdef SNAPPY
uint64_t BlockBasedTableTest::IndexUncompressedHelper(bool compressed) {
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
constexpr size_t kNumKeys = 10000;
for (size_t k = 0; k < kNumKeys; ++k) {
c.Add("key" + ToString(k), "val" + ToString(k));
}
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
options.compression = kSnappyCompression;
options.statistics = CreateDBStatistics();
options.statistics->set_stats_level(StatsLevel::kAll);
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_restart_interval = 1;
table_options.enable_index_compression = compressed;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
ImmutableOptions ioptions(options);
MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
c.ResetTableReader();
return options.statistics->getTickerCount(NUMBER_BLOCK_COMPRESSED);
}
TEST_P(BlockBasedTableTest, IndexUncompressed) {
uint64_t tbl1_compressed_cnt = IndexUncompressedHelper(true);
uint64_t tbl2_compressed_cnt = IndexUncompressedHelper(false);
// tbl1_compressed_cnt should include 1 index block
EXPECT_EQ(tbl2_compressed_cnt + 1, tbl1_compressed_cnt);
}
#endif // SNAPPY
TEST_P(BlockBasedTableTest, BlockBasedTableProperties2) {
TableConstructor c(&reverse_key_comparator);
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
{
Options options;
options.compression = CompressionType::kNoCompression;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
auto& props = *c.GetTableReader()->GetTableProperties();
// Default comparator
ASSERT_EQ("leveldb.BytewiseComparator", props.comparator_name);
// No merge operator
ASSERT_EQ("nullptr", props.merge_operator_name);
// No prefix extractor
ASSERT_EQ("nullptr", props.prefix_extractor_name);
// No property collectors
ASSERT_EQ("[]", props.property_collectors_names);
// No filter policy is used
ASSERT_EQ("", props.filter_policy_name);
// Compression type == that set:
ASSERT_EQ("NoCompression", props.compression_name);
c.ResetTableReader();
}
{
Options options;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.comparator = &reverse_key_comparator;
options.merge_operator = MergeOperators::CreateUInt64AddOperator();
options.prefix_extractor.reset(NewNoopTransform());
options.table_properties_collector_factories.emplace_back(
new DummyPropertiesCollectorFactory1());
options.table_properties_collector_factories.emplace_back(
new DummyPropertiesCollectorFactory2());
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
auto& props = *c.GetTableReader()->GetTableProperties();
ASSERT_EQ("rocksdb.ReverseBytewiseComparator", props.comparator_name);
ASSERT_EQ("UInt64AddOperator", props.merge_operator_name);
ASSERT_EQ("rocksdb.Noop", props.prefix_extractor_name);
ASSERT_EQ(
"[DummyPropertiesCollectorFactory1,DummyPropertiesCollectorFactory2]",
props.property_collectors_names);
ASSERT_EQ("", props.filter_policy_name); // no filter policy is used
c.ResetTableReader();
}
}
TEST_P(BlockBasedTableTest, RangeDelBlock) {
TableConstructor c(BytewiseComparator());
std::vector<std::string> keys = {"1pika", "2chu"};
std::vector<std::string> vals = {"p", "c"};
std::vector<RangeTombstone> expected_tombstones = {
{"1pika", "2chu", 0},
{"2chu", "c", 1},
{"2chu", "c", 0},
{"c", "p", 0},
};
for (int i = 0; i < 2; i++) {
RangeTombstone t(keys[i], vals[i], i);
std::pair<InternalKey, Slice> p = t.Serialize();
c.Add(p.first.Encode().ToString(), p.second);
}
std::vector<std::string> sorted_keys;
stl_wrappers::KVMap kvmap;
Options options;
options.compression = kNoCompression;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_restart_interval = 1;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
std::unique_ptr<InternalKeyComparator> internal_cmp(
new InternalKeyComparator(options.comparator));
c.Finish(options, ioptions, moptions, table_options, *internal_cmp,
&sorted_keys, &kvmap);
for (int j = 0; j < 2; ++j) {
std::unique_ptr<InternalIterator> iter(
c.GetTableReader()->NewRangeTombstoneIterator(ReadOptions()));
if (j > 0) {
// For second iteration, delete the table reader object and verify the
// iterator can still access its metablock's range tombstones.
c.ResetTableReader();
}
ASSERT_FALSE(iter->Valid());
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
for (size_t i = 0; i < expected_tombstones.size(); i++) {
ASSERT_TRUE(iter->Valid());
ParsedInternalKey parsed_key;
ASSERT_OK(
ParseInternalKey(iter->key(), &parsed_key, true /* log_err_key */));
RangeTombstone t(parsed_key, iter->value());
const auto& expected_t = expected_tombstones[i];
ASSERT_EQ(t.start_key_, expected_t.start_key_);
ASSERT_EQ(t.end_key_, expected_t.end_key_);
ASSERT_EQ(t.seq_, expected_t.seq_);
iter->Next();
}
ASSERT_TRUE(!iter->Valid());
}
}
TEST_P(BlockBasedTableTest, FilterPolicyNameProperties) {
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
c.Add("a1", "val1");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.filter_policy.reset(NewBloomFilterPolicy(10));
Options options;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
auto& props = *c.GetTableReader()->GetTableProperties();
ASSERT_EQ("rocksdb.BuiltinBloomFilter", props.filter_policy_name);
c.ResetTableReader();
}
//
// BlockBasedTableTest::PrefetchTest
//
void AssertKeysInCache(BlockBasedTable* table_reader,
const std::vector<std::string>& keys_in_cache,
const std::vector<std::string>& keys_not_in_cache,
bool convert = false) {
if (convert) {
for (auto key : keys_in_cache) {
InternalKey ikey(key, kMaxSequenceNumber, kTypeValue);
ASSERT_TRUE(table_reader->TEST_KeyInCache(ReadOptions(), ikey.Encode()));
}
for (auto key : keys_not_in_cache) {
InternalKey ikey(key, kMaxSequenceNumber, kTypeValue);
ASSERT_TRUE(!table_reader->TEST_KeyInCache(ReadOptions(), ikey.Encode()));
}
} else {
for (auto key : keys_in_cache) {
ASSERT_TRUE(table_reader->TEST_KeyInCache(ReadOptions(), key));
}
for (auto key : keys_not_in_cache) {
ASSERT_TRUE(!table_reader->TEST_KeyInCache(ReadOptions(), key));
}
}
}
void PrefetchRange(TableConstructor* c, Options* opt,
BlockBasedTableOptions* table_options, const char* key_begin,
const char* key_end,
const std::vector<std::string>& keys_in_cache,
const std::vector<std::string>& keys_not_in_cache,
const Status expected_status = Status::OK()) {
// reset the cache and reopen the table
table_options->block_cache = NewLRUCache(16 * 1024 * 1024, 4);
opt->table_factory.reset(NewBlockBasedTableFactory(*table_options));
const ImmutableOptions ioptions2(*opt);
const MutableCFOptions moptions(*opt);
ASSERT_OK(c->Reopen(ioptions2, moptions));
// prefetch
auto* table_reader = dynamic_cast<BlockBasedTable*>(c->GetTableReader());
Status s;
std::unique_ptr<Slice> begin, end;
std::unique_ptr<InternalKey> i_begin, i_end;
if (key_begin != nullptr) {
if (c->ConvertToInternalKey()) {
i_begin.reset(new InternalKey(key_begin, kMaxSequenceNumber, kTypeValue));
begin.reset(new Slice(i_begin->Encode()));
} else {
begin.reset(new Slice(key_begin));
}
}
if (key_end != nullptr) {
if (c->ConvertToInternalKey()) {
i_end.reset(new InternalKey(key_end, kMaxSequenceNumber, kTypeValue));
end.reset(new Slice(i_end->Encode()));
} else {
end.reset(new Slice(key_end));
}
}
s = table_reader->Prefetch(begin.get(), end.get());
ASSERT_TRUE(s.code() == expected_status.code());
// assert our expectation in cache warmup
AssertKeysInCache(table_reader, keys_in_cache, keys_not_in_cache,
c->ConvertToInternalKey());
c->ResetTableReader();
}
TEST_P(BlockBasedTableTest, PrefetchTest) {
// The purpose of this test is to test the prefetching operation built into
// BlockBasedTable.
Options opt;
std::unique_ptr<InternalKeyComparator> ikc;
ikc.reset(new test::PlainInternalKeyComparator(opt.comparator));
opt.compression = kNoCompression;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_size = 1024;
// big enough so we don't ever lose cached values.
table_options.block_cache = NewLRUCache(16 * 1024 * 1024, 4);
opt.table_factory.reset(NewBlockBasedTableFactory(table_options));
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
c.Add("k01", "hello");
c.Add("k02", "hello2");
c.Add("k03", std::string(10000, 'x'));
c.Add("k04", std::string(200000, 'x'));
c.Add("k05", std::string(300000, 'x'));
c.Add("k06", "hello3");
c.Add("k07", std::string(100000, 'x'));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableOptions ioptions(opt);
const MutableCFOptions moptions(opt);
c.Finish(opt, ioptions, moptions, table_options, *ikc, &keys, &kvmap);
c.ResetTableReader();
// We get the following data spread :
//
// Data block Index
// ========================
// [ k01 k02 k03 ] k03
// [ k04 ] k04
// [ k05 ] k05
// [ k06 k07 ] k07
// Simple
PrefetchRange(&c, &opt, &table_options,
/*key_range=*/"k01", "k05",
/*keys_in_cache=*/{"k01", "k02", "k03", "k04", "k05"},
/*keys_not_in_cache=*/{"k06", "k07"});
PrefetchRange(&c, &opt, &table_options, "k01", "k01", {"k01", "k02", "k03"},
{"k04", "k05", "k06", "k07"});
// odd
PrefetchRange(&c, &opt, &table_options, "a", "z",
{"k01", "k02", "k03", "k04", "k05", "k06", "k07"}, {});
PrefetchRange(&c, &opt, &table_options, "k00", "k00", {"k01", "k02", "k03"},
{"k04", "k05", "k06", "k07"});
// Edge cases
PrefetchRange(&c, &opt, &table_options, "k00", "k06",
{"k01", "k02", "k03", "k04", "k05", "k06", "k07"}, {});
PrefetchRange(&c, &opt, &table_options, "k00", "zzz",
{"k01", "k02", "k03", "k04", "k05", "k06", "k07"}, {});
// null keys
PrefetchRange(&c, &opt, &table_options, nullptr, nullptr,
{"k01", "k02", "k03", "k04", "k05", "k06", "k07"}, {});
PrefetchRange(&c, &opt, &table_options, "k04", nullptr,
{"k04", "k05", "k06", "k07"}, {"k01", "k02", "k03"});
PrefetchRange(&c, &opt, &table_options, nullptr, "k05",
{"k01", "k02", "k03", "k04", "k05"}, {"k06", "k07"});
// invalid
PrefetchRange(&c, &opt, &table_options, "k06", "k00", {}, {},
Status::InvalidArgument(Slice("k06 "), Slice("k07")));
c.ResetTableReader();
}
TEST_P(BlockBasedTableTest, TotalOrderSeekOnHashIndex) {
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
for (int i = 0; i <= 5; ++i) {
Options options;
// Make each key/value an individual block
table_options.block_size = 64;
switch (i) {
case 0:
// Binary search index
table_options.index_type = BlockBasedTableOptions::kBinarySearch;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
break;
case 1:
// Hash search index
table_options.index_type = BlockBasedTableOptions::kHashSearch;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(4));
break;
case 2:
// Hash search index with hash_index_allow_collision
table_options.index_type = BlockBasedTableOptions::kHashSearch;
table_options.hash_index_allow_collision = true;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(4));
break;
case 3:
// Hash search index with filter policy
table_options.index_type = BlockBasedTableOptions::kHashSearch;
table_options.filter_policy.reset(NewBloomFilterPolicy(10));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(4));
break;
case 4:
// Two-level index
table_options.index_type = BlockBasedTableOptions::kTwoLevelIndexSearch;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
break;
case 5:
// Binary search with first key
table_options.index_type =
BlockBasedTableOptions::kBinarySearchWithFirstKey;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
break;
}
TableConstructor c(BytewiseComparator(),
true /* convert_to_internal_key_ */);
c.Add("aaaa1", std::string('a', 56));
c.Add("bbaa1", std::string('a', 56));
c.Add("cccc1", std::string('a', 56));
c.Add("bbbb1", std::string('a', 56));
c.Add("baaa1", std::string('a', 56));
c.Add("abbb1", std::string('a', 56));
c.Add("cccc2", std::string('a', 56));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
auto props = c.GetTableReader()->GetTableProperties();
ASSERT_EQ(7u, props->num_data_blocks);
auto* reader = c.GetTableReader();
ReadOptions ro;
ro.total_order_seek = true;
std::unique_ptr<InternalIterator> iter(reader->NewIterator(
ro, moptions.prefix_extractor.get(), /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized));
iter->Seek(InternalKey("b", 0, kTypeValue).Encode());
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("baaa1", ExtractUserKey(iter->key()).ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bbaa1", ExtractUserKey(iter->key()).ToString());
iter->Seek(InternalKey("bb", 0, kTypeValue).Encode());
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bbaa1", ExtractUserKey(iter->key()).ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bbbb1", ExtractUserKey(iter->key()).ToString());
iter->Seek(InternalKey("bbb", 0, kTypeValue).Encode());
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bbbb1", ExtractUserKey(iter->key()).ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("cccc1", ExtractUserKey(iter->key()).ToString());
}
}
TEST_P(BlockBasedTableTest, NoopTransformSeek) {
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.filter_policy.reset(NewBloomFilterPolicy(10));
Options options;
options.comparator = BytewiseComparator();
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewNoopTransform());
TableConstructor c(options.comparator);
// To tickle the PrefixMayMatch bug it is important that the
// user-key is a single byte so that the index key exactly matches
// the user-key.
InternalKey key("a", 1, kTypeValue);
c.Add(key.Encode().ToString(), "b");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
const InternalKeyComparator internal_comparator(options.comparator);
c.Finish(options, ioptions, moptions, table_options, internal_comparator,
&keys, &kvmap);
auto* reader = c.GetTableReader();
for (int i = 0; i < 2; ++i) {
ReadOptions ro;
ro.total_order_seek = (i == 0);
std::unique_ptr<InternalIterator> iter(reader->NewIterator(
ro, moptions.prefix_extractor.get(), /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized));
iter->Seek(key.Encode());
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("a", ExtractUserKey(iter->key()).ToString());
}
}
TEST_P(BlockBasedTableTest, SkipPrefixBloomFilter) {
// if DB is opened with a prefix extractor of a different name,
// prefix bloom is skipped when read the file
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.filter_policy.reset(NewBloomFilterPolicy(2));
table_options.whole_key_filtering = false;
Options options;
options.comparator = BytewiseComparator();
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
TableConstructor c(options.comparator);
InternalKey key("abcdefghijk", 1, kTypeValue);
c.Add(key.Encode().ToString(), "test");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
const InternalKeyComparator internal_comparator(options.comparator);
c.Finish(options, ioptions, moptions, table_options, internal_comparator,
&keys, &kvmap);
// TODO(Zhongyi): update test to use MutableCFOptions
options.prefix_extractor.reset(NewFixedPrefixTransform(9));
const ImmutableOptions new_ioptions(options);
const MutableCFOptions new_moptions(options);
ASSERT_OK(c.Reopen(new_ioptions, new_moptions));
auto reader = c.GetTableReader();
ReadOptions read_options;
std::unique_ptr<InternalIterator> db_iter(reader->NewIterator(
read_options, new_moptions.prefix_extractor.get(), /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized));
// Test point lookup
// only one kv
for (auto& kv : kvmap) {
db_iter->Seek(kv.first);
ASSERT_TRUE(db_iter->Valid());
ASSERT_OK(db_iter->status());
ASSERT_EQ(db_iter->key(), kv.first);
ASSERT_EQ(db_iter->value(), kv.second);
}
}
void AddInternalKey(TableConstructor* c, const std::string& prefix,
std::string value = "v", int /*suffix_len*/ = 800) {
static Random rnd(1023);
InternalKey k(prefix + rnd.RandomString(800), 0, kTypeValue);
c->Add(k.Encode().ToString(), value);
}
void TableTest::IndexTest(BlockBasedTableOptions table_options) {
TableConstructor c(BytewiseComparator());
// keys with prefix length 3, make sure the key/value is big enough to fill
// one block
AddInternalKey(&c, "0015");
AddInternalKey(&c, "0035");
AddInternalKey(&c, "0054");
AddInternalKey(&c, "0055");
AddInternalKey(&c, "0056");
AddInternalKey(&c, "0057");
AddInternalKey(&c, "0058");
AddInternalKey(&c, "0075");
AddInternalKey(&c, "0076");
AddInternalKey(&c, "0095");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
options.prefix_extractor.reset(NewFixedPrefixTransform(3));
table_options.block_size = 1700;
table_options.block_cache = NewLRUCache(1024, 4);
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
std::unique_ptr<InternalKeyComparator> comparator(
new InternalKeyComparator(BytewiseComparator()));
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options, *comparator, &keys,
&kvmap);
auto reader = c.GetTableReader();
auto props = reader->GetTableProperties();
ASSERT_EQ(5u, props->num_data_blocks);
// TODO(Zhongyi): update test to use MutableCFOptions
ReadOptions read_options;
std::unique_ptr<InternalIterator> index_iter(reader->NewIterator(
read_options, moptions.prefix_extractor.get(), /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized));
// -- Find keys do not exist, but have common prefix.
std::vector<std::string> prefixes = {"001", "003", "005", "007", "009"};
std::vector<std::string> lower_bound = {
keys[0], keys[1], keys[2], keys[7], keys[9],
};
// find the lower bound of the prefix
for (size_t i = 0; i < prefixes.size(); ++i) {
index_iter->Seek(InternalKey(prefixes[i], 0, kTypeValue).Encode());
ASSERT_OK(index_iter->status());
ASSERT_TRUE(index_iter->Valid());
// seek the first element in the block
ASSERT_EQ(lower_bound[i], index_iter->key().ToString());
ASSERT_EQ("v", index_iter->value().ToString());
}
// find the upper bound of prefixes
std::vector<std::string> upper_bound = {keys[1], keys[2], keys[7], keys[9], };
// find existing keys
for (const auto& item : kvmap) {
auto ukey = ExtractUserKey(item.first).ToString();
index_iter->Seek(ukey);
// ASSERT_OK(regular_iter->status());
ASSERT_OK(index_iter->status());
// ASSERT_TRUE(regular_iter->Valid());
ASSERT_TRUE(index_iter->Valid());
ASSERT_EQ(item.first, index_iter->key().ToString());
ASSERT_EQ(item.second, index_iter->value().ToString());
}
for (size_t i = 0; i < prefixes.size(); ++i) {
// the key is greater than any existing keys.
auto key = prefixes[i] + "9";
index_iter->Seek(InternalKey(key, 0, kTypeValue).Encode());
ASSERT_TRUE(index_iter->status().ok() || index_iter->status().IsNotFound());
ASSERT_TRUE(!index_iter->status().IsNotFound() || !index_iter->Valid());
if (i == prefixes.size() - 1) {
// last key
ASSERT_TRUE(!index_iter->Valid());
} else {
ASSERT_TRUE(index_iter->Valid());
// seek the first element in the block
ASSERT_EQ(upper_bound[i], index_iter->key().ToString());
ASSERT_EQ("v", index_iter->value().ToString());
}
}
// find keys with prefix that don't match any of the existing prefixes.
std::vector<std::string> non_exist_prefixes = {"002", "004", "006", "008"};
for (const auto& prefix : non_exist_prefixes) {
index_iter->Seek(InternalKey(prefix, 0, kTypeValue).Encode());
// regular_iter->Seek(prefix);
ASSERT_OK(index_iter->status());
// Seek to non-existing prefixes should yield either invalid, or a
// key with prefix greater than the target.
if (index_iter->Valid()) {
Slice ukey = ExtractUserKey(index_iter->key());
Slice ukey_prefix = options.prefix_extractor->Transform(ukey);
ASSERT_TRUE(BytewiseComparator()->Compare(prefix, ukey_prefix) < 0);
}
}
for (const auto& prefix : non_exist_prefixes) {
index_iter->SeekForPrev(InternalKey(prefix, 0, kTypeValue).Encode());
// regular_iter->Seek(prefix);
ASSERT_OK(index_iter->status());
// Seek to non-existing prefixes should yield either invalid, or a
// key with prefix greater than the target.
if (index_iter->Valid()) {
Slice ukey = ExtractUserKey(index_iter->key());
Slice ukey_prefix = options.prefix_extractor->Transform(ukey);
ASSERT_TRUE(BytewiseComparator()->Compare(prefix, ukey_prefix) > 0);
}
}
{
// Test reseek case. It should impact partitioned index more.
ReadOptions ro;
ro.total_order_seek = true;
std::unique_ptr<InternalIterator> index_iter2(reader->NewIterator(
ro, moptions.prefix_extractor.get(), /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized));
// Things to cover in partitioned index:
// 1. Both of Seek() and SeekToLast() has optimization to prevent
// rereek leaf index block if it remains to the same one, and
// they reuse the same variable.
// 2. When Next() or Prev() is called, the block moves, so the
// optimization should kick in only with the current one.
index_iter2->Seek(InternalKey("0055", 0, kTypeValue).Encode());
ASSERT_TRUE(index_iter2->Valid());
ASSERT_EQ("0055", index_iter2->key().ToString().substr(0, 4));
index_iter2->SeekToLast();
ASSERT_TRUE(index_iter2->Valid());
ASSERT_EQ("0095", index_iter2->key().ToString().substr(0, 4));
index_iter2->Seek(InternalKey("0055", 0, kTypeValue).Encode());
ASSERT_TRUE(index_iter2->Valid());
ASSERT_EQ("0055", index_iter2->key().ToString().substr(0, 4));
index_iter2->SeekToLast();
ASSERT_TRUE(index_iter2->Valid());
ASSERT_EQ("0095", index_iter2->key().ToString().substr(0, 4));
index_iter2->Prev();
ASSERT_TRUE(index_iter2->Valid());
index_iter2->Prev();
ASSERT_TRUE(index_iter2->Valid());
ASSERT_EQ("0075", index_iter2->key().ToString().substr(0, 4));
index_iter2->Seek(InternalKey("0095", 0, kTypeValue).Encode());
ASSERT_TRUE(index_iter2->Valid());
ASSERT_EQ("0095", index_iter2->key().ToString().substr(0, 4));
index_iter2->Prev();
ASSERT_TRUE(index_iter2->Valid());
index_iter2->Prev();
ASSERT_TRUE(index_iter2->Valid());
ASSERT_EQ("0075", index_iter2->key().ToString().substr(0, 4));
index_iter2->SeekToLast();
ASSERT_TRUE(index_iter2->Valid());
ASSERT_EQ("0095", index_iter2->key().ToString().substr(0, 4));
index_iter2->Seek(InternalKey("0095", 0, kTypeValue).Encode());
ASSERT_TRUE(index_iter2->Valid());
ASSERT_EQ("0095", index_iter2->key().ToString().substr(0, 4));
index_iter2->Prev();
ASSERT_TRUE(index_iter2->Valid());
index_iter2->Prev();
ASSERT_TRUE(index_iter2->Valid());
ASSERT_EQ("0075", index_iter2->key().ToString().substr(0, 4));
index_iter2->Seek(InternalKey("0075", 0, kTypeValue).Encode());
ASSERT_TRUE(index_iter2->Valid());
ASSERT_EQ("0075", index_iter2->key().ToString().substr(0, 4));
index_iter2->Next();
ASSERT_TRUE(index_iter2->Valid());
index_iter2->Next();
ASSERT_TRUE(index_iter2->Valid());
ASSERT_EQ("0095", index_iter2->key().ToString().substr(0, 4));
index_iter2->SeekToLast();
ASSERT_TRUE(index_iter2->Valid());
ASSERT_EQ("0095", index_iter2->key().ToString().substr(0, 4));
}
c.ResetTableReader();
}
TEST_P(BlockBasedTableTest, BinaryIndexTest) {
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.index_type = BlockBasedTableOptions::kBinarySearch;
IndexTest(table_options);
}
TEST_P(BlockBasedTableTest, HashIndexTest) {
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.index_type = BlockBasedTableOptions::kHashSearch;
IndexTest(table_options);
}
TEST_P(BlockBasedTableTest, PartitionIndexTest) {
const int max_index_keys = 5;
const int est_max_index_key_value_size = 32;
const int est_max_index_size = max_index_keys * est_max_index_key_value_size;
for (int i = 1; i <= est_max_index_size + 1; i++) {
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.index_type = BlockBasedTableOptions::kTwoLevelIndexSearch;
table_options.metadata_block_size = i;
IndexTest(table_options);
}
}
TEST_P(BlockBasedTableTest, IndexSeekOptimizationIncomplete) {
std::unique_ptr<InternalKeyComparator> comparator(
new InternalKeyComparator(BytewiseComparator()));
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
Options options;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
TableConstructor c(BytewiseComparator());
AddInternalKey(&c, "pika");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
c.Finish(options, ioptions, moptions, table_options, *comparator, &keys,
&kvmap);
ASSERT_EQ(1, keys.size());
auto reader = c.GetTableReader();
ReadOptions ropt;
ropt.read_tier = ReadTier::kBlockCacheTier;
std::unique_ptr<InternalIterator> iter(reader->NewIterator(
ropt, /*prefix_extractor=*/nullptr, /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized));
auto ikey = [](Slice user_key) {
return InternalKey(user_key, 0, kTypeValue).Encode().ToString();
};
iter->Seek(ikey("pika"));
ASSERT_FALSE(iter->Valid());
ASSERT_TRUE(iter->status().IsIncomplete());
// This used to crash at some point.
iter->Seek(ikey("pika"));
ASSERT_FALSE(iter->Valid());
ASSERT_TRUE(iter->status().IsIncomplete());
}
TEST_P(BlockBasedTableTest, BinaryIndexWithFirstKey1) {
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.index_type = BlockBasedTableOptions::kBinarySearchWithFirstKey;
IndexTest(table_options);
}
class CustomFlushBlockPolicy : public FlushBlockPolicyFactory,
public FlushBlockPolicy {
public:
explicit CustomFlushBlockPolicy(std::vector<int> keys_per_block)
: keys_per_block_(keys_per_block) {}
const char* Name() const override { return "CustomFlushBlockPolicy"; }
FlushBlockPolicy* NewFlushBlockPolicy(const BlockBasedTableOptions&,
const BlockBuilder&) const override {
return new CustomFlushBlockPolicy(keys_per_block_);
}
bool Update(const Slice&, const Slice&) override {
if (keys_in_current_block_ >= keys_per_block_.at(current_block_idx_)) {
++current_block_idx_;
keys_in_current_block_ = 1;
return true;
}
++keys_in_current_block_;
return false;
}
std::vector<int> keys_per_block_;
int current_block_idx_ = 0;
int keys_in_current_block_ = 0;
};
TEST_P(BlockBasedTableTest, BinaryIndexWithFirstKey2) {
for (int use_first_key = 0; use_first_key < 2; ++use_first_key) {
SCOPED_TRACE("use_first_key = " + std::to_string(use_first_key));
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.index_type =
use_first_key ? BlockBasedTableOptions::kBinarySearchWithFirstKey
: BlockBasedTableOptions::kBinarySearch;
table_options.block_cache = NewLRUCache(10000); // fits all blocks
table_options.index_shortening =
BlockBasedTableOptions::IndexShorteningMode::kNoShortening;
table_options.flush_block_policy_factory =
std::make_shared<CustomFlushBlockPolicy>(std::vector<int>{2, 1, 3, 2});
Options options;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.statistics = CreateDBStatistics();
Statistics* stats = options.statistics.get();
std::unique_ptr<InternalKeyComparator> comparator(
new InternalKeyComparator(BytewiseComparator()));
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
TableConstructor c(BytewiseComparator());
// Block 0.
AddInternalKey(&c, "aaaa", "v0");
AddInternalKey(&c, "aaac", "v1");
// Block 1.
AddInternalKey(&c, "aaca", "v2");
// Block 2.
AddInternalKey(&c, "caaa", "v3");
AddInternalKey(&c, "caac", "v4");
AddInternalKey(&c, "caae", "v5");
// Block 3.
AddInternalKey(&c, "ccaa", "v6");
AddInternalKey(&c, "ccac", "v7");
// Write the file.
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
c.Finish(options, ioptions, moptions, table_options, *comparator, &keys,
&kvmap);
ASSERT_EQ(8, keys.size());
auto reader = c.GetTableReader();
auto props = reader->GetTableProperties();
ASSERT_EQ(4u, props->num_data_blocks);
ReadOptions read_options;
std::unique_ptr<InternalIterator> iter(reader->NewIterator(
read_options, /*prefix_extractor=*/nullptr, /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized,
/*compaction_readahead_size=*/0, /*allow_unprepared_value=*/true));
// Shouldn't have read data blocks before iterator is seeked.
EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_MISS));
EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
auto ikey = [](Slice user_key) {
return InternalKey(user_key, 0, kTypeValue).Encode().ToString();
};
// Seek to a key between blocks. If index contains first key, we shouldn't
// read any data blocks until value is requested.
iter->Seek(ikey("aaba"));
ASSERT_TRUE(iter->Valid());
EXPECT_EQ(keys[2], iter->key().ToString());
EXPECT_EQ(use_first_key ? 0 : 1,
stats->getTickerCount(BLOCK_CACHE_DATA_MISS));
ASSERT_TRUE(iter->PrepareValue());
EXPECT_EQ("v2", iter->value().ToString());
EXPECT_EQ(1, stats->getTickerCount(BLOCK_CACHE_DATA_MISS));
EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
// Seek to the middle of a block. The block should be read right away.
iter->Seek(ikey("caab"));
ASSERT_TRUE(iter->Valid());
EXPECT_EQ(keys[4], iter->key().ToString());
EXPECT_EQ(2, stats->getTickerCount(BLOCK_CACHE_DATA_MISS));
EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
ASSERT_TRUE(iter->PrepareValue());
EXPECT_EQ("v4", iter->value().ToString());
EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
// Seek to just before the same block and don't access value.
// The iterator should keep pinning the block contents.
iter->Seek(ikey("baaa"));
ASSERT_TRUE(iter->Valid());
EXPECT_EQ(keys[3], iter->key().ToString());
EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
// Seek to the same block again to check that the block is still pinned.
iter->Seek(ikey("caae"));
ASSERT_TRUE(iter->Valid());
EXPECT_EQ(keys[5], iter->key().ToString());
EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
ASSERT_TRUE(iter->PrepareValue());
EXPECT_EQ("v5", iter->value().ToString());
EXPECT_EQ(2, stats->getTickerCount(BLOCK_CACHE_DATA_MISS));
EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
// Step forward and fall through to the next block. Don't access value.
iter->Next();
ASSERT_TRUE(iter->Valid());
EXPECT_EQ(keys[6], iter->key().ToString());
EXPECT_EQ(use_first_key ? 2 : 3,
stats->getTickerCount(BLOCK_CACHE_DATA_MISS));
EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
// Step forward again. Block should be read.
iter->Next();
ASSERT_TRUE(iter->Valid());
EXPECT_EQ(keys[7], iter->key().ToString());
EXPECT_EQ(3, stats->getTickerCount(BLOCK_CACHE_DATA_MISS));
ASSERT_TRUE(iter->PrepareValue());
EXPECT_EQ("v7", iter->value().ToString());
EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
// Step forward and reach the end.
iter->Next();
EXPECT_FALSE(iter->Valid());
EXPECT_EQ(3, stats->getTickerCount(BLOCK_CACHE_DATA_MISS));
EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
// Seek to a single-key block and step forward without accessing value.
iter->Seek(ikey("aaca"));
ASSERT_TRUE(iter->Valid());
EXPECT_EQ(keys[2], iter->key().ToString());
EXPECT_EQ(use_first_key ? 0 : 1,
stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
iter->Next();
ASSERT_TRUE(iter->Valid());
EXPECT_EQ(keys[3], iter->key().ToString());
EXPECT_EQ(use_first_key ? 1 : 2,
stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
ASSERT_TRUE(iter->PrepareValue());
EXPECT_EQ("v3", iter->value().ToString());
EXPECT_EQ(2, stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
EXPECT_EQ(3, stats->getTickerCount(BLOCK_CACHE_DATA_MISS));
// Seek between blocks and step back without accessing value.
iter->Seek(ikey("aaca"));
ASSERT_TRUE(iter->Valid());
EXPECT_EQ(keys[2], iter->key().ToString());
EXPECT_EQ(use_first_key ? 2 : 3,
stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
EXPECT_EQ(3, stats->getTickerCount(BLOCK_CACHE_DATA_MISS));
iter->Prev();
ASSERT_TRUE(iter->Valid());
EXPECT_EQ(keys[1], iter->key().ToString());
EXPECT_EQ(use_first_key ? 2 : 3,
stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
// All blocks are in cache now, there'll be no more misses ever.
EXPECT_EQ(4, stats->getTickerCount(BLOCK_CACHE_DATA_MISS));
ASSERT_TRUE(iter->PrepareValue());
EXPECT_EQ("v1", iter->value().ToString());
// Next into the next block again.
iter->Next();
ASSERT_TRUE(iter->Valid());
EXPECT_EQ(keys[2], iter->key().ToString());
EXPECT_EQ(use_first_key ? 2 : 4,
stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
// Seek to first and step back without accessing value.
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
EXPECT_EQ(keys[0], iter->key().ToString());
EXPECT_EQ(use_first_key ? 2 : 5,
stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
iter->Prev();
EXPECT_FALSE(iter->Valid());
EXPECT_EQ(use_first_key ? 2 : 5,
stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
// Do some SeekForPrev() and SeekToLast() just to cover all methods.
iter->SeekForPrev(ikey("caad"));
ASSERT_TRUE(iter->Valid());
EXPECT_EQ(keys[4], iter->key().ToString());
EXPECT_EQ(use_first_key ? 3 : 6,
stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
ASSERT_TRUE(iter->PrepareValue());
EXPECT_EQ("v4", iter->value().ToString());
EXPECT_EQ(use_first_key ? 3 : 6,
stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
iter->SeekToLast();
ASSERT_TRUE(iter->Valid());
EXPECT_EQ(keys[7], iter->key().ToString());
EXPECT_EQ(use_first_key ? 4 : 7,
stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
ASSERT_TRUE(iter->PrepareValue());
EXPECT_EQ("v7", iter->value().ToString());
EXPECT_EQ(use_first_key ? 4 : 7,
stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
EXPECT_EQ(4, stats->getTickerCount(BLOCK_CACHE_DATA_MISS));
c.ResetTableReader();
}
}
TEST_P(BlockBasedTableTest, BinaryIndexWithFirstKeyGlobalSeqno) {
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.index_type = BlockBasedTableOptions::kBinarySearchWithFirstKey;
table_options.block_cache = NewLRUCache(10000);
Options options;
options.statistics = CreateDBStatistics();
Statistics* stats = options.statistics.get();
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
std::unique_ptr<InternalKeyComparator> comparator(
new InternalKeyComparator(BytewiseComparator()));
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
TableConstructor c(BytewiseComparator(), /* convert_to_internal_key */ false,
/* level */ -1, /* largest_seqno */ 42);
c.Add(InternalKey("b", 0, kTypeValue).Encode().ToString(), "x");
c.Add(InternalKey("c", 0, kTypeValue).Encode().ToString(), "y");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
c.Finish(options, ioptions, moptions, table_options, *comparator, &keys,
&kvmap);
ASSERT_EQ(2, keys.size());
auto reader = c.GetTableReader();
auto props = reader->GetTableProperties();
ASSERT_EQ(1u, props->num_data_blocks);
ReadOptions read_options;
std::unique_ptr<InternalIterator> iter(reader->NewIterator(
read_options, /*prefix_extractor=*/nullptr, /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized,
/*compaction_readahead_size=*/0, /*allow_unprepared_value=*/true));
iter->Seek(InternalKey("a", 0, kTypeValue).Encode().ToString());
ASSERT_TRUE(iter->Valid());
EXPECT_EQ(InternalKey("b", 42, kTypeValue).Encode().ToString(),
iter->key().ToString());
EXPECT_NE(keys[0], iter->key().ToString());
// Key should have been served from index, without reading data blocks.
EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_MISS));
ASSERT_TRUE(iter->PrepareValue());
EXPECT_EQ("x", iter->value().ToString());
EXPECT_EQ(1, stats->getTickerCount(BLOCK_CACHE_DATA_MISS));
EXPECT_EQ(0, stats->getTickerCount(BLOCK_CACHE_DATA_HIT));
EXPECT_EQ(InternalKey("b", 42, kTypeValue).Encode().ToString(),
iter->key().ToString());
c.ResetTableReader();
}
// It's very hard to figure out the index block size of a block accurately.
// To make sure we get the index size, we just make sure as key number
// grows, the filter block size also grows.
TEST_P(BlockBasedTableTest, IndexSizeStat) {
uint64_t last_index_size = 0;
// we need to use random keys since the pure human readable texts
// may be well compressed, resulting insignifcant change of index
// block size.
Random rnd(test::RandomSeed());
std::vector<std::string> keys;
for (int i = 0; i < 100; ++i) {
keys.push_back(rnd.RandomString(10000));
}
// Each time we load one more key to the table. the table index block
// size is expected to be larger than last time's.
for (size_t i = 1; i < keys.size(); ++i) {
TableConstructor c(BytewiseComparator(),
true /* convert_to_internal_key_ */);
for (size_t j = 0; j < i; ++j) {
c.Add(keys[j], "val");
}
std::vector<std::string> ks;
stl_wrappers::KVMap kvmap;
Options options;
options.compression = kNoCompression;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_restart_interval = 1;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &ks, &kvmap);
auto index_size = c.GetTableReader()->GetTableProperties()->index_size;
ASSERT_GT(index_size, last_index_size);
last_index_size = index_size;
c.ResetTableReader();
}
}
TEST_P(BlockBasedTableTest, NumBlockStat) {
Random rnd(test::RandomSeed());
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
Options options;
options.compression = kNoCompression;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_restart_interval = 1;
table_options.block_size = 1000;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
for (int i = 0; i < 10; ++i) {
// the key/val are slightly smaller than block size, so that each block
// holds roughly one key/value pair.
c.Add(rnd.RandomString(900), "val");
}
std::vector<std::string> ks;
stl_wrappers::KVMap kvmap;
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &ks, &kvmap);
ASSERT_EQ(kvmap.size(),
c.GetTableReader()->GetTableProperties()->num_data_blocks);
c.ResetTableReader();
}
TEST_P(BlockBasedTableTest, TracingGetTest) {
TableConstructor c(BytewiseComparator());
Options options;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
options.create_if_missing = true;
table_options.block_cache = NewLRUCache(1024 * 1024, 0);
table_options.cache_index_and_filter_blocks = true;
table_options.filter_policy.reset(NewBloomFilterPolicy(10, true));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
SetupTracingTest(&c);
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
ImmutableOptions ioptions(options);
MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
std::string user_key = "k01";
InternalKey internal_key(user_key, 0, kTypeValue);
std::string encoded_key = internal_key.Encode().ToString();
for (uint32_t i = 1; i <= 2; i++) {
PinnableSlice value;
GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, user_key, &value, nullptr,
nullptr, true, nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr, /*tracing_get_id=*/i);
get_perf_context()->Reset();
ASSERT_OK(c.GetTableReader()->Get(ReadOptions(), encoded_key, &get_context,
moptions.prefix_extractor.get()));
ASSERT_EQ(get_context.State(), GetContext::kFound);
ASSERT_EQ(value.ToString(), kDummyValue);
}
// Verify traces.
std::vector<BlockCacheTraceRecord> expected_records;
// The first two records should be prefetching index and filter blocks.
BlockCacheTraceRecord record;
record.block_type = TraceType::kBlockTraceIndexBlock;
record.caller = TableReaderCaller::kPrefetch;
record.is_cache_hit = Boolean::kFalse;
record.no_insert = Boolean::kFalse;
expected_records.push_back(record);
record.block_type = TraceType::kBlockTraceFilterBlock;
expected_records.push_back(record);
// Then we should have three records for one index, one filter, and one data
// block access.
record.get_id = 1;
record.block_type = TraceType::kBlockTraceIndexBlock;
record.caller = TableReaderCaller::kUserGet;
record.get_from_user_specified_snapshot = Boolean::kFalse;
record.referenced_key = encoded_key;
record.referenced_key_exist_in_block = Boolean::kTrue;
record.is_cache_hit = Boolean::kTrue;
expected_records.push_back(record);
record.block_type = TraceType::kBlockTraceFilterBlock;
expected_records.push_back(record);
record.is_cache_hit = Boolean::kFalse;
record.block_type = TraceType::kBlockTraceDataBlock;
expected_records.push_back(record);
// The second get should all observe cache hits.
record.is_cache_hit = Boolean::kTrue;
record.get_id = 2;
record.block_type = TraceType::kBlockTraceIndexBlock;
record.caller = TableReaderCaller::kUserGet;
record.get_from_user_specified_snapshot = Boolean::kFalse;
record.referenced_key = encoded_key;
expected_records.push_back(record);
record.block_type = TraceType::kBlockTraceFilterBlock;
expected_records.push_back(record);
record.block_type = TraceType::kBlockTraceDataBlock;
expected_records.push_back(record);
VerifyBlockAccessTrace(&c, expected_records);
c.ResetTableReader();
}
TEST_P(BlockBasedTableTest, TracingApproximateOffsetOfTest) {
TableConstructor c(BytewiseComparator());
Options options;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
options.create_if_missing = true;
table_options.block_cache = NewLRUCache(1024 * 1024, 0);
table_options.cache_index_and_filter_blocks = true;
table_options.filter_policy.reset(NewBloomFilterPolicy(10, true));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
SetupTracingTest(&c);
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
ImmutableOptions ioptions(options);
MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
for (uint32_t i = 1; i <= 2; i++) {
std::string user_key = "k01";
InternalKey internal_key(user_key, 0, kTypeValue);
std::string encoded_key = internal_key.Encode().ToString();
c.GetTableReader()->ApproximateOffsetOf(
encoded_key, TableReaderCaller::kUserApproximateSize);
}
// Verify traces.
std::vector<BlockCacheTraceRecord> expected_records;
// The first two records should be prefetching index and filter blocks.
BlockCacheTraceRecord record;
record.block_type = TraceType::kBlockTraceIndexBlock;
record.caller = TableReaderCaller::kPrefetch;
record.is_cache_hit = Boolean::kFalse;
record.no_insert = Boolean::kFalse;
expected_records.push_back(record);
record.block_type = TraceType::kBlockTraceFilterBlock;
expected_records.push_back(record);
// Then we should have two records for only index blocks.
record.block_type = TraceType::kBlockTraceIndexBlock;
record.caller = TableReaderCaller::kUserApproximateSize;
record.is_cache_hit = Boolean::kTrue;
expected_records.push_back(record);
expected_records.push_back(record);
VerifyBlockAccessTrace(&c, expected_records);
c.ResetTableReader();
}
TEST_P(BlockBasedTableTest, TracingIterator) {
TableConstructor c(BytewiseComparator());
Options options;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
options.create_if_missing = true;
table_options.block_cache = NewLRUCache(1024 * 1024, 0);
table_options.cache_index_and_filter_blocks = true;
table_options.filter_policy.reset(NewBloomFilterPolicy(10, true));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
SetupTracingTest(&c);
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
ImmutableOptions ioptions(options);
MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
for (uint32_t i = 1; i <= 2; i++) {
ReadOptions read_options;
std::unique_ptr<InternalIterator> iter(c.GetTableReader()->NewIterator(
read_options, moptions.prefix_extractor.get(), /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUserIterator));
iter->SeekToFirst();
while (iter->Valid()) {
iter->key();
iter->value();
iter->Next();
}
ASSERT_OK(iter->status());
iter.reset();
}
// Verify traces.
std::vector<BlockCacheTraceRecord> expected_records;
// The first two records should be prefetching index and filter blocks.
BlockCacheTraceRecord record;
record.block_type = TraceType::kBlockTraceIndexBlock;
record.caller = TableReaderCaller::kPrefetch;
record.is_cache_hit = Boolean::kFalse;
record.no_insert = Boolean::kFalse;
expected_records.push_back(record);
record.block_type = TraceType::kBlockTraceFilterBlock;
expected_records.push_back(record);
// Then we should have three records for index and two data block access.
record.block_type = TraceType::kBlockTraceIndexBlock;
record.caller = TableReaderCaller::kUserIterator;
record.is_cache_hit = Boolean::kTrue;
expected_records.push_back(record);
record.block_type = TraceType::kBlockTraceDataBlock;
record.is_cache_hit = Boolean::kFalse;
expected_records.push_back(record);
expected_records.push_back(record);
// When we iterate this file for the second time, we should observe all cache
// hits.
record.block_type = TraceType::kBlockTraceIndexBlock;
record.is_cache_hit = Boolean::kTrue;
expected_records.push_back(record);
record.block_type = TraceType::kBlockTraceDataBlock;
expected_records.push_back(record);
expected_records.push_back(record);
VerifyBlockAccessTrace(&c, expected_records);
c.ResetTableReader();
}
// A simple tool that takes the snapshot of block cache statistics.
class BlockCachePropertiesSnapshot {
public:
explicit BlockCachePropertiesSnapshot(Statistics* statistics) {
block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_MISS);
block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_HIT);
index_block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_INDEX_MISS);
index_block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_INDEX_HIT);
data_block_cache_miss = statistics->getTickerCount(BLOCK_CACHE_DATA_MISS);
data_block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_DATA_HIT);
filter_block_cache_miss =
statistics->getTickerCount(BLOCK_CACHE_FILTER_MISS);
filter_block_cache_hit = statistics->getTickerCount(BLOCK_CACHE_FILTER_HIT);
block_cache_bytes_read = statistics->getTickerCount(BLOCK_CACHE_BYTES_READ);
block_cache_bytes_write =
statistics->getTickerCount(BLOCK_CACHE_BYTES_WRITE);
}
void AssertIndexBlockStat(int64_t expected_index_block_cache_miss,
int64_t expected_index_block_cache_hit) {
ASSERT_EQ(expected_index_block_cache_miss, index_block_cache_miss);
ASSERT_EQ(expected_index_block_cache_hit, index_block_cache_hit);
}
void AssertFilterBlockStat(int64_t expected_filter_block_cache_miss,
int64_t expected_filter_block_cache_hit) {
ASSERT_EQ(expected_filter_block_cache_miss, filter_block_cache_miss);
ASSERT_EQ(expected_filter_block_cache_hit, filter_block_cache_hit);
}
// Check if the fetched props matches the expected ones.
// TODO(kailiu) Use this only when you disabled filter policy!
void AssertEqual(int64_t expected_index_block_cache_miss,
int64_t expected_index_block_cache_hit,
int64_t expected_data_block_cache_miss,
int64_t expected_data_block_cache_hit) const {
ASSERT_EQ(expected_index_block_cache_miss, index_block_cache_miss);
ASSERT_EQ(expected_index_block_cache_hit, index_block_cache_hit);
ASSERT_EQ(expected_data_block_cache_miss, data_block_cache_miss);
ASSERT_EQ(expected_data_block_cache_hit, data_block_cache_hit);
ASSERT_EQ(expected_index_block_cache_miss + expected_data_block_cache_miss,
block_cache_miss);
ASSERT_EQ(expected_index_block_cache_hit + expected_data_block_cache_hit,
block_cache_hit);
}
int64_t GetCacheBytesRead() { return block_cache_bytes_read; }
int64_t GetCacheBytesWrite() { return block_cache_bytes_write; }
private:
int64_t block_cache_miss = 0;
int64_t block_cache_hit = 0;
int64_t index_block_cache_miss = 0;
int64_t index_block_cache_hit = 0;
int64_t data_block_cache_miss = 0;
int64_t data_block_cache_hit = 0;
int64_t filter_block_cache_miss = 0;
int64_t filter_block_cache_hit = 0;
int64_t block_cache_bytes_read = 0;
int64_t block_cache_bytes_write = 0;
};
// Make sure, by default, index/filter blocks were pre-loaded (meaning we won't
// use block cache to store them).
TEST_P(BlockBasedTableTest, BlockCacheDisabledTest) {
Options options;
options.create_if_missing = true;
options.statistics = CreateDBStatistics();
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_cache = NewLRUCache(1024, 4);
table_options.filter_policy.reset(NewBloomFilterPolicy(10));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
c.Add("key", "value");
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
// preloading filter/index blocks is enabled.
auto reader = dynamic_cast<BlockBasedTable*>(c.GetTableReader());
ASSERT_FALSE(reader->TEST_FilterBlockInCache());
ASSERT_FALSE(reader->TEST_IndexBlockInCache());
{
// nothing happens in the beginning
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertIndexBlockStat(0, 0);
props.AssertFilterBlockStat(0, 0);
}
{
GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, Slice(), nullptr, nullptr,
nullptr, true, nullptr, nullptr);
// a hack that just to trigger BlockBasedTable::GetFilter.
ASSERT_OK(reader->Get(ReadOptions(), "non-exist-key", &get_context,
moptions.prefix_extractor.get()));
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertIndexBlockStat(0, 0);
props.AssertFilterBlockStat(0, 0);
}
}
// Due to the difficulities of the intersaction between statistics, this test
// only tests the case when "index block is put to block cache"
TEST_P(BlockBasedTableTest, FilterBlockInBlockCache) {
// -- Table construction
Options options;
options.create_if_missing = true;
options.statistics = CreateDBStatistics();
// Enable the cache for index/filter blocks
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
LRUCacheOptions co;
co.capacity = 2048;
co.num_shard_bits = 2;
co.metadata_charge_policy = kDontChargeCacheMetadata;
table_options.block_cache = NewLRUCache(co);
table_options.cache_index_and_filter_blocks = true;
options.table_factory.reset(new BlockBasedTableFactory(table_options));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
c.Add("key", "value");
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
// preloading filter/index blocks is prohibited.
auto* reader = dynamic_cast<BlockBasedTable*>(c.GetTableReader());
ASSERT_FALSE(reader->TEST_FilterBlockInCache());
ASSERT_TRUE(reader->TEST_IndexBlockInCache());
// -- PART 1: Open with regular block cache.
// Since block_cache is disabled, no cache activities will be involved.
std::unique_ptr<InternalIterator> iter;
int64_t last_cache_bytes_read = 0;
// At first, no block will be accessed.
{
BlockCachePropertiesSnapshot props(options.statistics.get());
// index will be added to block cache.
props.AssertEqual(1, // index block miss
0, 0, 0);
ASSERT_EQ(props.GetCacheBytesRead(), 0);
ASSERT_EQ(props.GetCacheBytesWrite(),
static_cast<int64_t>(table_options.block_cache->GetUsage()));
last_cache_bytes_read = props.GetCacheBytesRead();
}
// Only index block will be accessed
{
iter.reset(c.NewIterator(moptions.prefix_extractor.get()));
BlockCachePropertiesSnapshot props(options.statistics.get());
// NOTE: to help better highlight the "detla" of each ticker, I use
// <last_value> + <added_value> to indicate the increment of changed
// value; other numbers remain the same.
props.AssertEqual(1, 0 + 1, // index block hit
0, 0);
// Cache hit, bytes read from cache should increase
ASSERT_GT(props.GetCacheBytesRead(), last_cache_bytes_read);
ASSERT_EQ(props.GetCacheBytesWrite(),
static_cast<int64_t>(table_options.block_cache->GetUsage()));
last_cache_bytes_read = props.GetCacheBytesRead();
}
// Only data block will be accessed
{
iter->SeekToFirst();
ASSERT_OK(iter->status());
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertEqual(1, 1, 0 + 1, // data block miss
0);
// Cache miss, Bytes read from cache should not change
ASSERT_EQ(props.GetCacheBytesRead(), last_cache_bytes_read);
ASSERT_EQ(props.GetCacheBytesWrite(),
static_cast<int64_t>(table_options.block_cache->GetUsage()));
last_cache_bytes_read = props.GetCacheBytesRead();
}
// Data block will be in cache
{
iter.reset(c.NewIterator(moptions.prefix_extractor.get()));
iter->SeekToFirst();
ASSERT_OK(iter->status());
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertEqual(1, 1 + 1, /* index block hit */
1, 0 + 1 /* data block hit */);
// Cache hit, bytes read from cache should increase
ASSERT_GT(props.GetCacheBytesRead(), last_cache_bytes_read);
ASSERT_EQ(props.GetCacheBytesWrite(),
static_cast<int64_t>(table_options.block_cache->GetUsage()));
}
// release the iterator so that the block cache can reset correctly.
iter.reset();
c.ResetTableReader();
// -- PART 2: Open with very small block cache
// In this test, no block will ever get hit since the block cache is
// too small to fit even one entry.
table_options.block_cache = NewLRUCache(1, 4);
options.statistics = CreateDBStatistics();
options.table_factory.reset(new BlockBasedTableFactory(table_options));
const ImmutableOptions ioptions2(options);
const MutableCFOptions moptions2(options);
ASSERT_OK(c.Reopen(ioptions2, moptions2));
{
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertEqual(1, // index block miss
0, 0, 0);
// Cache miss, Bytes read from cache should not change
ASSERT_EQ(props.GetCacheBytesRead(), 0);
}
{
// Both index and data block get accessed.
// It first cache index block then data block. But since the cache size
// is only 1, index block will be purged after data block is inserted.
iter.reset(c.NewIterator(moptions2.prefix_extractor.get()));
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertEqual(1 + 1, // index block miss
0, 0, // data block miss
0);
// Cache hit, bytes read from cache should increase
ASSERT_EQ(props.GetCacheBytesRead(), 0);
}
{
// SeekToFirst() accesses data block. With similar reason, we expect data
// block's cache miss.
iter->SeekToFirst();
ASSERT_OK(iter->status());
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertEqual(2, 0, 0 + 1, // data block miss
0);
// Cache miss, Bytes read from cache should not change
ASSERT_EQ(props.GetCacheBytesRead(), 0);
}
iter.reset();
c.ResetTableReader();
// -- PART 3: Open table with bloom filter enabled but not in SST file
table_options.block_cache = NewLRUCache(4096, 4);
table_options.cache_index_and_filter_blocks = false;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
TableConstructor c3(BytewiseComparator());
std::string user_key = "k01";
InternalKey internal_key(user_key, 0, kTypeValue);
c3.Add(internal_key.Encode().ToString(), "hello");
ImmutableOptions ioptions3(options);
MutableCFOptions moptions3(options);
// Generate table without filter policy
c3.Finish(options, ioptions3, moptions3, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
c3.ResetTableReader();
// Open table with filter policy
table_options.filter_policy.reset(NewBloomFilterPolicy(1));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
options.statistics = CreateDBStatistics();
ImmutableOptions ioptions4(options);
MutableCFOptions moptions4(options);
ASSERT_OK(c3.Reopen(ioptions4, moptions4));
reader = dynamic_cast<BlockBasedTable*>(c3.GetTableReader());
ASSERT_FALSE(reader->TEST_FilterBlockInCache());
PinnableSlice value;
GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, user_key, &value, nullptr,
nullptr, true, nullptr, nullptr);
ASSERT_OK(reader->Get(ReadOptions(), internal_key.Encode(), &get_context,
moptions4.prefix_extractor.get()));
ASSERT_STREQ(value.data(), "hello");
BlockCachePropertiesSnapshot props(options.statistics.get());
props.AssertFilterBlockStat(0, 0);
c3.ResetTableReader();
}
void ValidateBlockSizeDeviation(int value, int expected) {
BlockBasedTableOptions table_options;
table_options.block_size_deviation = value;
BlockBasedTableFactory* factory = new BlockBasedTableFactory(table_options);
const BlockBasedTableOptions* normalized_table_options =
factory->GetOptions<BlockBasedTableOptions>();
ASSERT_EQ(normalized_table_options->block_size_deviation, expected);
delete factory;
}
void ValidateBlockRestartInterval(int value, int expected) {
BlockBasedTableOptions table_options;
table_options.block_restart_interval = value;
BlockBasedTableFactory* factory = new BlockBasedTableFactory(table_options);
const BlockBasedTableOptions* normalized_table_options =
factory->GetOptions<BlockBasedTableOptions>();
ASSERT_EQ(normalized_table_options->block_restart_interval, expected);
delete factory;
}
TEST_P(BlockBasedTableTest, InvalidOptions) {
// invalid values for block_size_deviation (<0 or >100) are silently set to 0
ValidateBlockSizeDeviation(-10, 0);
ValidateBlockSizeDeviation(-1, 0);
ValidateBlockSizeDeviation(0, 0);
ValidateBlockSizeDeviation(1, 1);
ValidateBlockSizeDeviation(99, 99);
ValidateBlockSizeDeviation(100, 100);
ValidateBlockSizeDeviation(101, 0);
ValidateBlockSizeDeviation(1000, 0);
// invalid values for block_restart_interval (<1) are silently set to 1
ValidateBlockRestartInterval(-10, 1);
ValidateBlockRestartInterval(-1, 1);
ValidateBlockRestartInterval(0, 1);
ValidateBlockRestartInterval(1, 1);
ValidateBlockRestartInterval(2, 2);
ValidateBlockRestartInterval(1000, 1000);
}
TEST_P(BlockBasedTableTest, BlockReadCountTest) {
// bloom_filter_type = 0 -- block-based filter
// bloom_filter_type = 0 -- full filter
for (int bloom_filter_type = 0; bloom_filter_type < 2; ++bloom_filter_type) {
for (int index_and_filter_in_cache = 0; index_and_filter_in_cache < 2;
++index_and_filter_in_cache) {
Options options;
options.create_if_missing = true;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_cache = NewLRUCache(1, 0);
table_options.cache_index_and_filter_blocks = index_and_filter_in_cache;
table_options.filter_policy.reset(
NewBloomFilterPolicy(10, bloom_filter_type == 0));
options.table_factory.reset(new BlockBasedTableFactory(table_options));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
TableConstructor c(BytewiseComparator());
std::string user_key = "k04";
InternalKey internal_key(user_key, 0, kTypeValue);
std::string encoded_key = internal_key.Encode().ToString();
c.Add(encoded_key, "hello");
ImmutableOptions ioptions(options);
MutableCFOptions moptions(options);
// Generate table with filter policy
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
auto reader = c.GetTableReader();
PinnableSlice value;
{
GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, user_key, &value, nullptr,
nullptr, true, nullptr, nullptr);
get_perf_context()->Reset();
ASSERT_OK(reader->Get(ReadOptions(), encoded_key, &get_context,
moptions.prefix_extractor.get()));
if (index_and_filter_in_cache) {
// data, index and filter block
ASSERT_EQ(get_perf_context()->block_read_count, 3);
ASSERT_EQ(get_perf_context()->index_block_read_count, 1);
ASSERT_EQ(get_perf_context()->filter_block_read_count, 1);
} else {
// just the data block
ASSERT_EQ(get_perf_context()->block_read_count, 1);
}
ASSERT_EQ(get_context.State(), GetContext::kFound);
ASSERT_STREQ(value.data(), "hello");
}
// Get non-existing key
user_key = "does-not-exist";
internal_key = InternalKey(user_key, 0, kTypeValue);
encoded_key = internal_key.Encode().ToString();
value.Reset();
{
GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, user_key, &value, nullptr,
nullptr, true, nullptr, nullptr);
get_perf_context()->Reset();
ASSERT_OK(reader->Get(ReadOptions(), encoded_key, &get_context,
moptions.prefix_extractor.get()));
ASSERT_EQ(get_context.State(), GetContext::kNotFound);
}
if (index_and_filter_in_cache) {
if (bloom_filter_type == 0) {
// with block-based, we read index and then the filter
ASSERT_EQ(get_perf_context()->block_read_count, 2);
ASSERT_EQ(get_perf_context()->index_block_read_count, 1);
ASSERT_EQ(get_perf_context()->filter_block_read_count, 1);
} else {
// with full-filter, we read filter first and then we stop
ASSERT_EQ(get_perf_context()->block_read_count, 1);
ASSERT_EQ(get_perf_context()->filter_block_read_count, 1);
}
} else {
// filter is already in memory and it figures out that the key doesn't
// exist
ASSERT_EQ(get_perf_context()->block_read_count, 0);
}
}
}
}
TEST_P(BlockBasedTableTest, BlockCacheLeak) {
// Check that when we reopen a table we don't lose access to blocks already
// in the cache. This test checks whether the Table actually makes use of the
// unique ID from the file.
Options opt;
std::unique_ptr<InternalKeyComparator> ikc;
ikc.reset(new test::PlainInternalKeyComparator(opt.comparator));
opt.compression = kNoCompression;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.block_size = 1024;
// big enough so we don't ever lose cached values.
table_options.block_cache = NewLRUCache(16 * 1024 * 1024, 4);
opt.table_factory.reset(NewBlockBasedTableFactory(table_options));
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
c.Add("k01", "hello");
c.Add("k02", "hello2");
c.Add("k03", std::string(10000, 'x'));
c.Add("k04", std::string(200000, 'x'));
c.Add("k05", std::string(300000, 'x'));
c.Add("k06", "hello3");
c.Add("k07", std::string(100000, 'x'));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableOptions ioptions(opt);
const MutableCFOptions moptions(opt);
c.Finish(opt, ioptions, moptions, table_options, *ikc, &keys, &kvmap);
std::unique_ptr<InternalIterator> iter(
c.NewIterator(moptions.prefix_extractor.get()));
iter->SeekToFirst();
while (iter->Valid()) {
iter->key();
iter->value();
iter->Next();
}
ASSERT_OK(iter->status());
iter.reset();
const ImmutableOptions ioptions1(opt);
const MutableCFOptions moptions1(opt);
ASSERT_OK(c.Reopen(ioptions1, moptions1));
auto table_reader = dynamic_cast<BlockBasedTable*>(c.GetTableReader());
for (const std::string& key : keys) {
InternalKey ikey(key, kMaxSequenceNumber, kTypeValue);
ASSERT_TRUE(table_reader->TEST_KeyInCache(ReadOptions(), ikey.Encode()));
}
c.ResetTableReader();
// rerun with different block cache
table_options.block_cache = NewLRUCache(16 * 1024 * 1024, 4);
opt.table_factory.reset(NewBlockBasedTableFactory(table_options));
const ImmutableOptions ioptions2(opt);
const MutableCFOptions moptions2(opt);
ASSERT_OK(c.Reopen(ioptions2, moptions2));
table_reader = dynamic_cast<BlockBasedTable*>(c.GetTableReader());
for (const std::string& key : keys) {
InternalKey ikey(key, kMaxSequenceNumber, kTypeValue);
ASSERT_TRUE(!table_reader->TEST_KeyInCache(ReadOptions(), ikey.Encode()));
}
c.ResetTableReader();
}
namespace {
class CustomMemoryAllocator : public MemoryAllocator {
public:
const char* Name() const override { return "CustomMemoryAllocator"; }
void* Allocate(size_t size) override {
++numAllocations;
auto ptr = new char[size + 16];
memcpy(ptr, "memory_allocator_", 16); // mangle first 16 bytes
return reinterpret_cast<void*>(ptr + 16);
}
void Deallocate(void* p) override {
++numDeallocations;
char* ptr = reinterpret_cast<char*>(p) - 16;
delete[] ptr;
}
std::atomic<int> numAllocations;
std::atomic<int> numDeallocations;
};
} // namespace
TEST_P(BlockBasedTableTest, MemoryAllocator) {
auto custom_memory_allocator = std::make_shared<CustomMemoryAllocator>();
{
Options opt;
std::unique_ptr<InternalKeyComparator> ikc;
ikc.reset(new test::PlainInternalKeyComparator(opt.comparator));
opt.compression = kNoCompression;
BlockBasedTableOptions table_options;
table_options.block_size = 1024;
LRUCacheOptions lruOptions;
lruOptions.memory_allocator = custom_memory_allocator;
lruOptions.capacity = 16 * 1024 * 1024;
lruOptions.num_shard_bits = 4;
table_options.block_cache = NewLRUCache(std::move(lruOptions));
opt.table_factory.reset(NewBlockBasedTableFactory(table_options));
TableConstructor c(BytewiseComparator(),
true /* convert_to_internal_key_ */);
c.Add("k01", "hello");
c.Add("k02", "hello2");
c.Add("k03", std::string(10000, 'x'));
c.Add("k04", std::string(200000, 'x'));
c.Add("k05", std::string(300000, 'x'));
c.Add("k06", "hello3");
c.Add("k07", std::string(100000, 'x'));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableOptions ioptions(opt);
const MutableCFOptions moptions(opt);
c.Finish(opt, ioptions, moptions, table_options, *ikc, &keys, &kvmap);
std::unique_ptr<InternalIterator> iter(
c.NewIterator(moptions.prefix_extractor.get()));
iter->SeekToFirst();
while (iter->Valid()) {
iter->key();
iter->value();
iter->Next();
}
ASSERT_OK(iter->status());
}
// out of scope, block cache should have been deleted, all allocations
// deallocated
EXPECT_EQ(custom_memory_allocator->numAllocations.load(),
custom_memory_allocator->numDeallocations.load());
// make sure that allocations actually happened through the cache allocator
EXPECT_GT(custom_memory_allocator->numAllocations.load(), 0);
}
// Test the file checksum of block based table
TEST_P(BlockBasedTableTest, NoFileChecksum) {
Options options;
ImmutableOptions ioptions(options);
MutableCFOptions moptions(options);
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
std::unique_ptr<InternalKeyComparator> comparator(
new InternalKeyComparator(BytewiseComparator()));
int level = 0;
IntTblPropCollectorFactories int_tbl_prop_collector_factories;
std::string column_family_name;
FileChecksumTestHelper f(true);
f.CreateWriteableFile();
std::unique_ptr<TableBuilder> builder;
builder.reset(ioptions.table_factory->NewTableBuilder(
TableBuilderOptions(ioptions, moptions, *comparator,
&int_tbl_prop_collector_factories,
options.compression, options.compression_opts,
kUnknownColumnFamily, column_family_name, level),
f.GetFileWriter()));
ASSERT_OK(f.ResetTableBuilder(std::move(builder)));
f.AddKVtoKVMap(1000);
ASSERT_OK(f.WriteKVAndFlushTable());
ASSERT_STREQ(f.GetFileChecksumFuncName(), kUnknownFileChecksumFuncName);
ASSERT_STREQ(f.GetFileChecksum().c_str(), kUnknownFileChecksum);
}
TEST_P(BlockBasedTableTest, Crc32cFileChecksum) {
FileChecksumGenCrc32cFactory* file_checksum_gen_factory =
new FileChecksumGenCrc32cFactory();
Options options;
options.file_checksum_gen_factory.reset(file_checksum_gen_factory);
ImmutableOptions ioptions(options);
MutableCFOptions moptions(options);
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
std::unique_ptr<InternalKeyComparator> comparator(
new InternalKeyComparator(BytewiseComparator()));
int level = 0;
IntTblPropCollectorFactories int_tbl_prop_collector_factories;
std::string column_family_name;
FileChecksumGenContext gen_context;
gen_context.file_name = "db/tmp";
std::unique_ptr<FileChecksumGenerator> checksum_crc32c_gen1 =
options.file_checksum_gen_factory->CreateFileChecksumGenerator(
gen_context);
FileChecksumTestHelper f(true);
f.CreateWriteableFile();
f.SetFileChecksumGenerator(checksum_crc32c_gen1.release());
std::unique_ptr<TableBuilder> builder;
builder.reset(ioptions.table_factory->NewTableBuilder(
TableBuilderOptions(ioptions, moptions, *comparator,
&int_tbl_prop_collector_factories,
options.compression, options.compression_opts,
kUnknownColumnFamily, column_family_name, level),
f.GetFileWriter()));
ASSERT_OK(f.ResetTableBuilder(std::move(builder)));
f.AddKVtoKVMap(1000);
ASSERT_OK(f.WriteKVAndFlushTable());
ASSERT_STREQ(f.GetFileChecksumFuncName(), "FileChecksumCrc32c");
std::unique_ptr<FileChecksumGenerator> checksum_crc32c_gen2 =
options.file_checksum_gen_factory->CreateFileChecksumGenerator(
gen_context);
std::string checksum;
ASSERT_OK(f.CalculateFileChecksum(checksum_crc32c_gen2.get(), &checksum));
ASSERT_STREQ(f.GetFileChecksum().c_str(), checksum.c_str());
// Unit test the generator itself for schema stability
std::unique_ptr<FileChecksumGenerator> checksum_crc32c_gen3 =
options.file_checksum_gen_factory->CreateFileChecksumGenerator(
gen_context);
const char data[] = "here is some data";
checksum_crc32c_gen3->Update(data, sizeof(data));
checksum_crc32c_gen3->Finalize();
checksum = checksum_crc32c_gen3->GetChecksum();
ASSERT_STREQ(checksum.c_str(), "\345\245\277\110");
}
// Plain table is not supported in ROCKSDB_LITE
#ifndef ROCKSDB_LITE
TEST_F(PlainTableTest, BasicPlainTableProperties) {
PlainTableOptions plain_table_options;
plain_table_options.user_key_len = 8;
plain_table_options.bloom_bits_per_key = 8;
plain_table_options.hash_table_ratio = 0;
PlainTableFactory factory(plain_table_options);
std::unique_ptr<FSWritableFile> sink(new test::StringSink());
std::unique_ptr<WritableFileWriter> file_writer(new WritableFileWriter(
std::move(sink), "" /* don't care */, FileOptions()));
Options options;
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
InternalKeyComparator ikc(options.comparator);
IntTblPropCollectorFactories int_tbl_prop_collector_factories;
std::string column_family_name;
int unknown_level = -1;
std::unique_ptr<TableBuilder> builder(factory.NewTableBuilder(
TableBuilderOptions(ioptions, moptions, ikc,
&int_tbl_prop_collector_factories, kNoCompression,
CompressionOptions(), kUnknownColumnFamily,
column_family_name, unknown_level),
file_writer.get()));
for (char c = 'a'; c <= 'z'; ++c) {
std::string key(8, c);
key.append("\1 "); // PlainTable expects internal key structure
std::string value(28, c + 42);
builder->Add(key, value);
}
ASSERT_OK(builder->Finish());
ASSERT_OK(file_writer->Flush());
test::StringSink* ss =
static_cast<test::StringSink*>(file_writer->writable_file());
std::unique_ptr<FSRandomAccessFile> source(
new test::StringSource(ss->contents(), 72242, true));
std::unique_ptr<RandomAccessFileReader> file_reader(
new RandomAccessFileReader(std::move(source), "test"));
TableProperties* props = nullptr;
auto s = ReadTableProperties(file_reader.get(), ss->contents().size(),
kPlainTableMagicNumber, ioptions,
&props, true /* compression_type_missing */);
std::unique_ptr<TableProperties> props_guard(props);
ASSERT_OK(s);
ASSERT_EQ(0ul, props->index_size);
ASSERT_EQ(0ul, props->filter_size);
ASSERT_EQ(16ul * 26, props->raw_key_size);
ASSERT_EQ(28ul * 26, props->raw_value_size);
ASSERT_EQ(26ul, props->num_entries);
ASSERT_EQ(1ul, props->num_data_blocks);
}
TEST_F(PlainTableTest, NoFileChecksum) {
PlainTableOptions plain_table_options;
plain_table_options.user_key_len = 20;
plain_table_options.bloom_bits_per_key = 8;
plain_table_options.hash_table_ratio = 0;
PlainTableFactory factory(plain_table_options);
Options options;
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
InternalKeyComparator ikc(options.comparator);
IntTblPropCollectorFactories int_tbl_prop_collector_factories;
std::string column_family_name;
int unknown_level = -1;
FileChecksumTestHelper f(true);
f.CreateWriteableFile();
std::unique_ptr<TableBuilder> builder(factory.NewTableBuilder(
TableBuilderOptions(ioptions, moptions, ikc,
&int_tbl_prop_collector_factories, kNoCompression,
CompressionOptions(), kUnknownColumnFamily,
column_family_name, unknown_level),
f.GetFileWriter()));
ASSERT_OK(f.ResetTableBuilder(std::move(builder)));
f.AddKVtoKVMap(1000);
ASSERT_OK(f.WriteKVAndFlushTable());
ASSERT_STREQ(f.GetFileChecksumFuncName(), kUnknownFileChecksumFuncName);
EXPECT_EQ(f.GetFileChecksum(), kUnknownFileChecksum);
}
TEST_F(PlainTableTest, Crc32cFileChecksum) {
PlainTableOptions plain_table_options;
plain_table_options.user_key_len = 20;
plain_table_options.bloom_bits_per_key = 8;
plain_table_options.hash_table_ratio = 0;
PlainTableFactory factory(plain_table_options);
FileChecksumGenCrc32cFactory* file_checksum_gen_factory =
new FileChecksumGenCrc32cFactory();
Options options;
options.file_checksum_gen_factory.reset(file_checksum_gen_factory);
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
InternalKeyComparator ikc(options.comparator);
IntTblPropCollectorFactories int_tbl_prop_collector_factories;
std::string column_family_name;
int unknown_level = -1;
FileChecksumGenContext gen_context;
gen_context.file_name = "db/tmp";
std::unique_ptr<FileChecksumGenerator> checksum_crc32c_gen1 =
options.file_checksum_gen_factory->CreateFileChecksumGenerator(
gen_context);
FileChecksumTestHelper f(true);
f.CreateWriteableFile();
f.SetFileChecksumGenerator(checksum_crc32c_gen1.release());
std::unique_ptr<TableBuilder> builder(factory.NewTableBuilder(
TableBuilderOptions(ioptions, moptions, ikc,
&int_tbl_prop_collector_factories, kNoCompression,
CompressionOptions(), kUnknownColumnFamily,
column_family_name, unknown_level),
f.GetFileWriter()));
ASSERT_OK(f.ResetTableBuilder(std::move(builder)));
f.AddKVtoKVMap(1000);
ASSERT_OK(f.WriteKVAndFlushTable());
ASSERT_STREQ(f.GetFileChecksumFuncName(), "FileChecksumCrc32c");
std::unique_ptr<FileChecksumGenerator> checksum_crc32c_gen2 =
options.file_checksum_gen_factory->CreateFileChecksumGenerator(
gen_context);
std::string checksum;
ASSERT_OK(f.CalculateFileChecksum(checksum_crc32c_gen2.get(), &checksum));
EXPECT_STREQ(f.GetFileChecksum().c_str(), checksum.c_str());
}
#endif // !ROCKSDB_LITE
TEST_F(GeneralTableTest, ApproximateOffsetOfPlain) {
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
c.Add("k01", "hello");
c.Add("k02", "hello2");
c.Add("k03", std::string(10000, 'x'));
c.Add("k04", std::string(200000, 'x'));
c.Add("k05", std::string(300000, 'x'));
c.Add("k06", "hello3");
c.Add("k07", std::string(100000, 'x'));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
options.db_host_id = "";
test::PlainInternalKeyComparator internal_comparator(options.comparator);
options.compression = kNoCompression;
BlockBasedTableOptions table_options;
table_options.block_size = 1024;
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options, internal_comparator,
&keys, &kvmap);
ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01a"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 10000, 11000));
// k04 and k05 will be in two consecutive blocks, the index is
// an arbitrary slice between k04 and k05, either before or after k04a
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04a"), 10000, 211000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k05"), 210000, 211000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k06"), 510000, 511000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k07"), 510000, 511000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 610000, 612000));
c.ResetTableReader();
}
static void DoCompressionTest(CompressionType comp) {
Random rnd(301);
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
std::string tmp;
c.Add("k01", "hello");
c.Add("k02", test::CompressibleString(&rnd, 0.25, 10000, &tmp));
c.Add("k03", "hello3");
c.Add("k04", test::CompressibleString(&rnd, 0.25, 10000, &tmp));
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
test::PlainInternalKeyComparator ikc(options.comparator);
options.compression = comp;
BlockBasedTableOptions table_options;
table_options.block_size = 1024;
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options, ikc, &keys, &kvmap);
ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 2000, 3525));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 2000, 3525));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 4000, 7050));
c.ResetTableReader();
}
TEST_F(GeneralTableTest, ApproximateOffsetOfCompressed) {
std::vector<CompressionType> compression_state;
if (!Snappy_Supported()) {
fprintf(stderr, "skipping snappy compression tests\n");
} else {
compression_state.push_back(kSnappyCompression);
}
if (!Zlib_Supported()) {
fprintf(stderr, "skipping zlib compression tests\n");
} else {
compression_state.push_back(kZlibCompression);
}
// TODO(kailiu) DoCompressionTest() doesn't work with BZip2.
/*
if (!BZip2_Supported()) {
fprintf(stderr, "skipping bzip2 compression tests\n");
} else {
compression_state.push_back(kBZip2Compression);
}
*/
if (!LZ4_Supported()) {
fprintf(stderr, "skipping lz4 and lz4hc compression tests\n");
} else {
compression_state.push_back(kLZ4Compression);
compression_state.push_back(kLZ4HCCompression);
}
if (!XPRESS_Supported()) {
fprintf(stderr, "skipping xpress and xpress compression tests\n");
}
else {
compression_state.push_back(kXpressCompression);
}
for (auto state : compression_state) {
DoCompressionTest(state);
}
}
#ifndef ROCKSDB_VALGRIND_RUN
TEST_P(ParameterizedHarnessTest, RandomizedHarnessTest) {
Random rnd(test::RandomSeed() + 5);
for (int num_entries = 0; num_entries < 2000;
num_entries += (num_entries < 50 ? 1 : 200)) {
for (int e = 0; e < num_entries; e++) {
Add(test::RandomKey(&rnd, rnd.Skewed(4)),
rnd.RandomString(rnd.Skewed(5)));
}
Test(&rnd);
}
}
#ifndef ROCKSDB_LITE
TEST_F(DBHarnessTest, RandomizedLongDB) {
Random rnd(test::RandomSeed());
int num_entries = 100000;
for (int e = 0; e < num_entries; e++) {
std::string v;
Add(test::RandomKey(&rnd, rnd.Skewed(4)), rnd.RandomString(rnd.Skewed(5)));
}
Test(&rnd);
// We must have created enough data to force merging
int files = 0;
for (int level = 0; level < db()->NumberLevels(); level++) {
std::string value;
char name[100];
snprintf(name, sizeof(name), "rocksdb.num-files-at-level%d", level);
ASSERT_TRUE(db()->GetProperty(name, &value));
files += atoi(value.c_str());
}
ASSERT_GT(files, 0);
}
#endif // ROCKSDB_LITE
#endif // ROCKSDB_VALGRIND_RUN
class MemTableTest : public testing::Test {
public:
MemTableTest() {
InternalKeyComparator cmp(BytewiseComparator());
auto table_factory = std::make_shared<SkipListFactory>();
options_.memtable_factory = table_factory;
ImmutableOptions ioptions(options_);
wb_ = new WriteBufferManager(options_.db_write_buffer_size);
memtable_ = new MemTable(cmp, ioptions, MutableCFOptions(options_), wb_,
kMaxSequenceNumber, 0 /* column_family_id */);
memtable_->Ref();
}
~MemTableTest() {
delete memtable_->Unref();
delete wb_;
}
MemTable* GetMemTable() { return memtable_; }
private:
MemTable* memtable_;
Options options_;
WriteBufferManager* wb_;
};
TEST_F(MemTableTest, Simple) {
WriteBatch batch;
WriteBatchInternal::SetSequence(&batch, 100);
ASSERT_OK(batch.Put(std::string("k1"), std::string("v1")));
ASSERT_OK(batch.Put(std::string("k2"), std::string("v2")));
ASSERT_OK(batch.Put(std::string("k3"), std::string("v3")));
ASSERT_OK(batch.Put(std::string("largekey"), std::string("vlarge")));
ASSERT_OK(batch.DeleteRange(std::string("chi"), std::string("xigua")));
ASSERT_OK(batch.DeleteRange(std::string("begin"), std::string("end")));
ColumnFamilyMemTablesDefault cf_mems_default(GetMemTable());
ASSERT_TRUE(
WriteBatchInternal::InsertInto(&batch, &cf_mems_default, nullptr, nullptr)
.ok());
for (int i = 0; i < 2; ++i) {
Arena arena;
ScopedArenaIterator arena_iter_guard;
std::unique_ptr<InternalIterator> iter_guard;
InternalIterator* iter;
if (i == 0) {
iter = GetMemTable()->NewIterator(ReadOptions(), &arena);
arena_iter_guard.set(iter);
} else {
iter = GetMemTable()->NewRangeTombstoneIterator(
ReadOptions(), kMaxSequenceNumber /* read_seq */);
iter_guard.reset(iter);
}
if (iter == nullptr) {
continue;
}
iter->SeekToFirst();
while (iter->Valid()) {
fprintf(stderr, "key: '%s' -> '%s'\n", iter->key().ToString().c_str(),
iter->value().ToString().c_str());
iter->Next();
}
}
}
// Test the empty key
TEST_P(ParameterizedHarnessTest, SimpleEmptyKey) {
Random rnd(test::RandomSeed() + 1);
Add("", "v");
Test(&rnd);
}
TEST_P(ParameterizedHarnessTest, SimpleSingle) {
Random rnd(test::RandomSeed() + 2);
Add("abc", "v");
Test(&rnd);
}
TEST_P(ParameterizedHarnessTest, SimpleMulti) {
Random rnd(test::RandomSeed() + 3);
Add("abc", "v");
Add("abcd", "v");
Add("ac", "v2");
Test(&rnd);
}
TEST_P(ParameterizedHarnessTest, SimpleSpecialKey) {
Random rnd(test::RandomSeed() + 4);
Add("\xff\xff", "v3");
Test(&rnd);
}
TEST(TableTest, FooterTests) {
{
// upconvert legacy block based
std::string encoded;
Footer footer(kLegacyBlockBasedTableMagicNumber, 0);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
ASSERT_OK(decoded_footer.DecodeFrom(&encoded_slice));
ASSERT_EQ(decoded_footer.table_magic_number(), kBlockBasedTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kCRC32c);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 0U);
}
{
// xxhash block based
std::string encoded;
Footer footer(kBlockBasedTableMagicNumber, 1);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.set_checksum(kxxHash);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
ASSERT_OK(decoded_footer.DecodeFrom(&encoded_slice));
ASSERT_EQ(decoded_footer.table_magic_number(), kBlockBasedTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kxxHash);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 1U);
}
{
// xxhash64 block based
std::string encoded;
Footer footer(kBlockBasedTableMagicNumber, 1);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.set_checksum(kxxHash64);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
ASSERT_OK(decoded_footer.DecodeFrom(&encoded_slice));
ASSERT_EQ(decoded_footer.table_magic_number(), kBlockBasedTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kxxHash64);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 1U);
}
// Plain table is not supported in ROCKSDB_LITE
#ifndef ROCKSDB_LITE
{
// upconvert legacy plain table
std::string encoded;
Footer footer(kLegacyPlainTableMagicNumber, 0);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
ASSERT_OK(decoded_footer.DecodeFrom(&encoded_slice));
ASSERT_EQ(decoded_footer.table_magic_number(), kPlainTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kCRC32c);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 0U);
}
{
// xxhash block based
std::string encoded;
Footer footer(kPlainTableMagicNumber, 1);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.set_checksum(kxxHash);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
ASSERT_OK(decoded_footer.DecodeFrom(&encoded_slice));
ASSERT_EQ(decoded_footer.table_magic_number(), kPlainTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kxxHash);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 1U);
}
#endif // !ROCKSDB_LITE
{
// version == 2
std::string encoded;
Footer footer(kBlockBasedTableMagicNumber, 2);
BlockHandle meta_index(10, 5), index(20, 15);
footer.set_metaindex_handle(meta_index);
footer.set_index_handle(index);
footer.EncodeTo(&encoded);
Footer decoded_footer;
Slice encoded_slice(encoded);
ASSERT_OK(decoded_footer.DecodeFrom(&encoded_slice));
ASSERT_EQ(decoded_footer.table_magic_number(), kBlockBasedTableMagicNumber);
ASSERT_EQ(decoded_footer.checksum(), kCRC32c);
ASSERT_EQ(decoded_footer.metaindex_handle().offset(), meta_index.offset());
ASSERT_EQ(decoded_footer.metaindex_handle().size(), meta_index.size());
ASSERT_EQ(decoded_footer.index_handle().offset(), index.offset());
ASSERT_EQ(decoded_footer.index_handle().size(), index.size());
ASSERT_EQ(decoded_footer.version(), 2U);
}
}
class IndexBlockRestartIntervalTest
: public TableTest,
public ::testing::WithParamInterface<std::pair<int, bool>> {
public:
static std::vector<std::pair<int, bool>> GetRestartValues() {
return {{-1, false}, {0, false}, {1, false}, {8, false},
{16, false}, {32, false}, {-1, true}, {0, true},
{1, true}, {8, true}, {16, true}, {32, true}};
}
};
INSTANTIATE_TEST_CASE_P(
IndexBlockRestartIntervalTest, IndexBlockRestartIntervalTest,
::testing::ValuesIn(IndexBlockRestartIntervalTest::GetRestartValues()));
TEST_P(IndexBlockRestartIntervalTest, IndexBlockRestartInterval) {
const int kKeysInTable = 10000;
const int kKeySize = 100;
const int kValSize = 500;
const int index_block_restart_interval = std::get<0>(GetParam());
const bool value_delta_encoding = std::get<1>(GetParam());
Options options;
BlockBasedTableOptions table_options;
table_options.block_size = 64; // small block size to get big index block
table_options.index_block_restart_interval = index_block_restart_interval;
if (value_delta_encoding) {
table_options.format_version = 4;
} else {
table_options.format_version = 3;
}
options.table_factory.reset(new BlockBasedTableFactory(table_options));
TableConstructor c(BytewiseComparator());
static Random rnd(301);
for (int i = 0; i < kKeysInTable; i++) {
InternalKey k(rnd.RandomString(kKeySize), 0, kTypeValue);
c.Add(k.Encode().ToString(), rnd.RandomString(kValSize));
}
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
std::unique_ptr<InternalKeyComparator> comparator(
new InternalKeyComparator(BytewiseComparator()));
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_options, *comparator, &keys,
&kvmap);
auto reader = c.GetTableReader();
ReadOptions read_options;
std::unique_ptr<InternalIterator> db_iter(reader->NewIterator(
read_options, moptions.prefix_extractor.get(), /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized));
// Test point lookup
for (auto& kv : kvmap) {
db_iter->Seek(kv.first);
ASSERT_TRUE(db_iter->Valid());
ASSERT_OK(db_iter->status());
ASSERT_EQ(db_iter->key(), kv.first);
ASSERT_EQ(db_iter->value(), kv.second);
}
// Test iterating
auto kv_iter = kvmap.begin();
for (db_iter->SeekToFirst(); db_iter->Valid(); db_iter->Next()) {
ASSERT_EQ(db_iter->key(), kv_iter->first);
ASSERT_EQ(db_iter->value(), kv_iter->second);
kv_iter++;
}
ASSERT_EQ(kv_iter, kvmap.end());
c.ResetTableReader();
}
class PrefixTest : public testing::Test {
public:
PrefixTest() : testing::Test() {}
~PrefixTest() override {}
};
namespace {
// A simple PrefixExtractor that only works for test PrefixAndWholeKeyTest
class TestPrefixExtractor : public ROCKSDB_NAMESPACE::SliceTransform {
public:
~TestPrefixExtractor() override{};
const char* Name() const override { return "TestPrefixExtractor"; }
ROCKSDB_NAMESPACE::Slice Transform(
const ROCKSDB_NAMESPACE::Slice& src) const override {
assert(IsValid(src));
return ROCKSDB_NAMESPACE::Slice(src.data(), 3);
}
bool InDomain(const ROCKSDB_NAMESPACE::Slice& src) const override {
return IsValid(src);
}
bool InRange(const ROCKSDB_NAMESPACE::Slice& /*dst*/) const override {
return true;
}
bool IsValid(const ROCKSDB_NAMESPACE::Slice& src) const {
if (src.size() != 4) {
return false;
}
if (src[0] != '[') {
return false;
}
if (src[1] < '0' || src[1] > '9') {
return false;
}
if (src[2] != ']') {
return false;
}
if (src[3] < '0' || src[3] > '9') {
return false;
}
return true;
}
};
} // namespace
TEST_F(PrefixTest, PrefixAndWholeKeyTest) {
ROCKSDB_NAMESPACE::Options options;
options.compaction_style = ROCKSDB_NAMESPACE::kCompactionStyleUniversal;
options.num_levels = 20;
options.create_if_missing = true;
options.optimize_filters_for_hits = false;
options.target_file_size_base = 268435456;
options.prefix_extractor = std::make_shared<TestPrefixExtractor>();
ROCKSDB_NAMESPACE::BlockBasedTableOptions bbto;
bbto.filter_policy.reset(ROCKSDB_NAMESPACE::NewBloomFilterPolicy(10));
bbto.block_size = 262144;
bbto.whole_key_filtering = true;
const std::string kDBPath = test::PerThreadDBPath("table_prefix_test");
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
ASSERT_OK(DestroyDB(kDBPath, options));
ROCKSDB_NAMESPACE::DB* db;
ASSERT_OK(ROCKSDB_NAMESPACE::DB::Open(options, kDBPath, &db));
// Create a bunch of keys with 10 filters.
for (int i = 0; i < 10; i++) {
std::string prefix = "[" + std::to_string(i) + "]";
for (int j = 0; j < 10; j++) {
std::string key = prefix + std::to_string(j);
ASSERT_OK(db->Put(ROCKSDB_NAMESPACE::WriteOptions(), key, "1"));
}
}
// Trigger compaction.
ASSERT_OK(db->CompactRange(CompactRangeOptions(), nullptr, nullptr));
delete db;
// In the second round, turn whole_key_filtering off and expect
// rocksdb still works.
}
/*
* Disable TableWithGlobalSeqno since RocksDB does not store global_seqno in
* the SST file any more. Instead, RocksDB deduces global_seqno from the
* MANIFEST while reading from an SST. Therefore, it's not possible to test the
* functionality of global_seqno in a single, isolated unit test without the
* involvement of Version, VersionSet, etc.
*/
TEST_P(BlockBasedTableTest, DISABLED_TableWithGlobalSeqno) {
BlockBasedTableOptions bbto = GetBlockBasedTableOptions();
test::StringSink* sink = new test::StringSink();
std::unique_ptr<FSWritableFile> holder(sink);
std::unique_ptr<WritableFileWriter> file_writer(new WritableFileWriter(
std::move(holder), "" /* don't care */, FileOptions()));
Options options;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
InternalKeyComparator ikc(options.comparator);
IntTblPropCollectorFactories int_tbl_prop_collector_factories;
int_tbl_prop_collector_factories.emplace_back(
new SstFileWriterPropertiesCollectorFactory(2 /* version */,
0 /* global_seqno*/));
std::string column_family_name;
std::unique_ptr<TableBuilder> builder(options.table_factory->NewTableBuilder(
TableBuilderOptions(ioptions, moptions, ikc,
&int_tbl_prop_collector_factories, kNoCompression,
CompressionOptions(), kUnknownColumnFamily,
column_family_name, -1),
file_writer.get()));
for (char c = 'a'; c <= 'z'; ++c) {
std::string key(8, c);
std::string value = key;
InternalKey ik(key, 0, kTypeValue);
builder->Add(ik.Encode(), value);
}
ASSERT_OK(builder->Finish());
ASSERT_OK(file_writer->Flush());
test::RandomRWStringSink ss_rw(sink);
uint32_t version;
uint64_t global_seqno;
uint64_t global_seqno_offset;
// Helper function to get version, global_seqno, global_seqno_offset
std::function<void()> GetVersionAndGlobalSeqno = [&]() {
std::unique_ptr<FSRandomAccessFile> source(
new test::StringSource(ss_rw.contents(), 73342, true));
std::unique_ptr<RandomAccessFileReader> file_reader(
new RandomAccessFileReader(std::move(source), ""));
TableProperties* props = nullptr;
ASSERT_OK(ReadTableProperties(file_reader.get(), ss_rw.contents().size(),
kBlockBasedTableMagicNumber, ioptions,
&props, true /* compression_type_missing */));
UserCollectedProperties user_props = props->user_collected_properties;
version = DecodeFixed32(
user_props[ExternalSstFilePropertyNames::kVersion].c_str());
global_seqno = DecodeFixed64(
user_props[ExternalSstFilePropertyNames::kGlobalSeqno].c_str());
global_seqno_offset =
props->properties_offsets[ExternalSstFilePropertyNames::kGlobalSeqno];
delete props;
};
// Helper function to update the value of the global seqno in the file
std::function<void(uint64_t)> SetGlobalSeqno = [&](uint64_t val) {
std::string new_global_seqno;
PutFixed64(&new_global_seqno, val);
ASSERT_OK(ss_rw.Write(global_seqno_offset, new_global_seqno, IOOptions(),
nullptr));
};
// Helper function to get the contents of the table InternalIterator
std::unique_ptr<TableReader> table_reader;
const ReadOptions read_options;
std::function<InternalIterator*()> GetTableInternalIter = [&]() {
std::unique_ptr<FSRandomAccessFile> source(
new test::StringSource(ss_rw.contents(), 73342, true));
std::unique_ptr<RandomAccessFileReader> file_reader(
new RandomAccessFileReader(std::move(source), ""));
options.table_factory->NewTableReader(
TableReaderOptions(ioptions, moptions.prefix_extractor.get(),
EnvOptions(), ikc),
std::move(file_reader), ss_rw.contents().size(), &table_reader);
return table_reader->NewIterator(
read_options, moptions.prefix_extractor.get(), /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized);
};
GetVersionAndGlobalSeqno();
ASSERT_EQ(2u, version);
ASSERT_EQ(0u, global_seqno);
InternalIterator* iter = GetTableInternalIter();
char current_c = 'a';
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ParsedInternalKey pik;
ASSERT_OK(ParseInternalKey(iter->key(), &pik, true /* log_err_key */));
ASSERT_EQ(pik.type, ValueType::kTypeValue);
ASSERT_EQ(pik.sequence, 0);
ASSERT_EQ(pik.user_key, iter->value());
ASSERT_EQ(pik.user_key.ToString(), std::string(8, current_c));
current_c++;
}
ASSERT_EQ(current_c, 'z' + 1);
delete iter;
// Update global sequence number to 10
SetGlobalSeqno(10);
GetVersionAndGlobalSeqno();
ASSERT_EQ(2u, version);
ASSERT_EQ(10u, global_seqno);
iter = GetTableInternalIter();
current_c = 'a';
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ParsedInternalKey pik;
ASSERT_OK(ParseInternalKey(iter->key(), &pik, true /* log_err_key */));
ASSERT_EQ(pik.type, ValueType::kTypeValue);
ASSERT_EQ(pik.sequence, 10);
ASSERT_EQ(pik.user_key, iter->value());
ASSERT_EQ(pik.user_key.ToString(), std::string(8, current_c));
current_c++;
}
ASSERT_EQ(current_c, 'z' + 1);
// Verify Seek
for (char c = 'a'; c <= 'z'; c++) {
std::string k = std::string(8, c);
InternalKey ik(k, 10, kValueTypeForSeek);
iter->Seek(ik.Encode());
ASSERT_TRUE(iter->Valid());
ParsedInternalKey pik;
ASSERT_OK(ParseInternalKey(iter->key(), &pik, true /* log_err_key */));
ASSERT_EQ(pik.type, ValueType::kTypeValue);
ASSERT_EQ(pik.sequence, 10);
ASSERT_EQ(pik.user_key.ToString(), k);
ASSERT_EQ(iter->value().ToString(), k);
}
delete iter;
// Update global sequence number to 3
SetGlobalSeqno(3);
GetVersionAndGlobalSeqno();
ASSERT_EQ(2u, version);
ASSERT_EQ(3u, global_seqno);
iter = GetTableInternalIter();
current_c = 'a';
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ParsedInternalKey pik;
ASSERT_OK(ParseInternalKey(iter->key(), &pik, true /* log_err_key */));
ASSERT_EQ(pik.type, ValueType::kTypeValue);
ASSERT_EQ(pik.sequence, 3);
ASSERT_EQ(pik.user_key, iter->value());
ASSERT_EQ(pik.user_key.ToString(), std::string(8, current_c));
current_c++;
}
ASSERT_EQ(current_c, 'z' + 1);
// Verify Seek
for (char c = 'a'; c <= 'z'; c++) {
std::string k = std::string(8, c);
// seqno=4 is less than 3 so we still should get our key
InternalKey ik(k, 4, kValueTypeForSeek);
iter->Seek(ik.Encode());
ASSERT_TRUE(iter->Valid());
ParsedInternalKey pik;
ASSERT_OK(ParseInternalKey(iter->key(), &pik, true /* log_err_key */));
ASSERT_EQ(pik.type, ValueType::kTypeValue);
ASSERT_EQ(pik.sequence, 3);
ASSERT_EQ(pik.user_key.ToString(), k);
ASSERT_EQ(iter->value().ToString(), k);
}
delete iter;
}
TEST_P(BlockBasedTableTest, BlockAlignTest) {
BlockBasedTableOptions bbto = GetBlockBasedTableOptions();
bbto.block_align = true;
test::StringSink* sink = new test::StringSink();
std::unique_ptr<FSWritableFile> holder(sink);
std::unique_ptr<WritableFileWriter> file_writer(new WritableFileWriter(
std::move(holder), "" /* don't care */, FileOptions()));
Options options;
options.compression = kNoCompression;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
InternalKeyComparator ikc(options.comparator);
IntTblPropCollectorFactories int_tbl_prop_collector_factories;
std::string column_family_name;
std::unique_ptr<TableBuilder> builder(options.table_factory->NewTableBuilder(
TableBuilderOptions(ioptions, moptions, ikc,
&int_tbl_prop_collector_factories, kNoCompression,
CompressionOptions(), kUnknownColumnFamily,
column_family_name, -1),
file_writer.get()));
for (int i = 1; i <= 10000; ++i) {
std::ostringstream ostr;
ostr << std::setfill('0') << std::setw(5) << i;
std::string key = ostr.str();
std::string value = "val";
InternalKey ik(key, 0, kTypeValue);
builder->Add(ik.Encode(), value);
}
ASSERT_OK(builder->Finish());
ASSERT_OK(file_writer->Flush());
std::unique_ptr<FSRandomAccessFile> source(
new test::StringSource(sink->contents(), 73342, false));
std::unique_ptr<RandomAccessFileReader> file_reader(
new RandomAccessFileReader(std::move(source), "test"));
// Helper function to get version, global_seqno, global_seqno_offset
std::function<void()> VerifyBlockAlignment = [&]() {
TableProperties* props = nullptr;
ASSERT_OK(ReadTableProperties(file_reader.get(), sink->contents().size(),
kBlockBasedTableMagicNumber, ioptions, &props,
true /* compression_type_missing */));
uint64_t data_block_size = props->data_size / props->num_data_blocks;
ASSERT_EQ(data_block_size, 4096);
ASSERT_EQ(props->data_size, data_block_size * props->num_data_blocks);
delete props;
};
VerifyBlockAlignment();
// The below block of code verifies that we can read back the keys. Set
// block_align to false when creating the reader to ensure we can flip between
// the two modes without any issues
std::unique_ptr<TableReader> table_reader;
bbto.block_align = false;
Options options2;
options2.table_factory.reset(NewBlockBasedTableFactory(bbto));
ImmutableOptions ioptions2(options2);
const MutableCFOptions moptions2(options2);
ASSERT_OK(ioptions.table_factory->NewTableReader(
TableReaderOptions(ioptions2, moptions2.prefix_extractor.get(),
EnvOptions(),
GetPlainInternalComparator(options2.comparator)),
std::move(file_reader), sink->contents().size(), &table_reader));
ReadOptions read_options;
std::unique_ptr<InternalIterator> db_iter(table_reader->NewIterator(
read_options, moptions2.prefix_extractor.get(), /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized));
int expected_key = 1;
for (db_iter->SeekToFirst(); db_iter->Valid(); db_iter->Next()) {
std::ostringstream ostr;
ostr << std::setfill('0') << std::setw(5) << expected_key++;
std::string key = ostr.str();
std::string value = "val";
ASSERT_OK(db_iter->status());
ASSERT_EQ(ExtractUserKey(db_iter->key()).ToString(), key);
ASSERT_EQ(db_iter->value().ToString(), value);
}
expected_key--;
ASSERT_EQ(expected_key, 10000);
table_reader.reset();
}
TEST_P(BlockBasedTableTest, PropertiesBlockRestartPointTest) {
BlockBasedTableOptions bbto = GetBlockBasedTableOptions();
bbto.block_align = true;
test::StringSink* sink = new test::StringSink();
std::unique_ptr<FSWritableFile> holder(sink);
std::unique_ptr<WritableFileWriter> file_writer(new WritableFileWriter(
std::move(holder), "" /* don't care */, FileOptions()));
Options options;
options.compression = kNoCompression;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
InternalKeyComparator ikc(options.comparator);
IntTblPropCollectorFactories int_tbl_prop_collector_factories;
std::string column_family_name;
std::unique_ptr<TableBuilder> builder(options.table_factory->NewTableBuilder(
TableBuilderOptions(ioptions, moptions, ikc,
&int_tbl_prop_collector_factories, kNoCompression,
CompressionOptions(), kUnknownColumnFamily,
column_family_name, -1),
file_writer.get()));
for (int i = 1; i <= 10000; ++i) {
std::ostringstream ostr;
ostr << std::setfill('0') << std::setw(5) << i;
std::string key = ostr.str();
std::string value = "val";
InternalKey ik(key, 0, kTypeValue);
builder->Add(ik.Encode(), value);
}
ASSERT_OK(builder->Finish());
ASSERT_OK(file_writer->Flush());
std::unique_ptr<FSRandomAccessFile> source(
new test::StringSource(sink->contents(), 73342, true));
std::unique_ptr<RandomAccessFileReader> file_reader(
new RandomAccessFileReader(std::move(source), "test"));
{
RandomAccessFileReader* file = file_reader.get();
uint64_t file_size = sink->contents().size();
Footer footer;
IOOptions opts;
ASSERT_OK(ReadFooterFromFile(opts, file, nullptr /* prefetch_buffer */,
file_size, &footer,
kBlockBasedTableMagicNumber));
auto BlockFetchHelper = [&](const BlockHandle& handle, BlockType block_type,
BlockContents* contents) {
ReadOptions read_options;
read_options.verify_checksums = false;
PersistentCacheOptions cache_options;
BlockFetcher block_fetcher(
file, nullptr /* prefetch_buffer */, footer, read_options, handle,
contents, ioptions, false /* decompress */,
false /*maybe_compressed*/, block_type,
UncompressionDict::GetEmptyDict(), cache_options);
ASSERT_OK(block_fetcher.ReadBlockContents());
};
// -- Read metaindex block
auto metaindex_handle = footer.metaindex_handle();
BlockContents metaindex_contents;
BlockFetchHelper(metaindex_handle, BlockType::kMetaIndex,
&metaindex_contents);
Block metaindex_block(std::move(metaindex_contents));
std::unique_ptr<InternalIterator> meta_iter(metaindex_block.NewDataIterator(
BytewiseComparator(), kDisableGlobalSequenceNumber));
bool found_properties_block = true;
ASSERT_OK(SeekToPropertiesBlock(meta_iter.get(), &found_properties_block));
ASSERT_TRUE(found_properties_block);
// -- Read properties block
Slice v = meta_iter->value();
BlockHandle properties_handle;
ASSERT_OK(properties_handle.DecodeFrom(&v));
BlockContents properties_contents;
BlockFetchHelper(properties_handle, BlockType::kProperties,
&properties_contents);
Block properties_block(std::move(properties_contents));
ASSERT_EQ(properties_block.NumRestarts(), 1u);
}
}
TEST_P(BlockBasedTableTest, PropertiesMetaBlockLast) {
// The properties meta-block should come at the end since we always need to
// read it when opening a file, unlike index/filter/other meta-blocks, which
// are sometimes read depending on the user's configuration. This ordering
// allows us to do a small readahead on the end of the file to read properties
// and meta-index blocks with one I/O.
TableConstructor c(BytewiseComparator(), true /* convert_to_internal_key_ */);
c.Add("a1", "val1");
c.Add("b2", "val2");
c.Add("c3", "val3");
c.Add("d4", "val4");
c.Add("e5", "val5");
c.Add("f6", "val6");
c.Add("g7", "val7");
c.Add("h8", "val8");
c.Add("j9", "val9");
// write an SST file
Options options;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.filter_policy.reset(NewBloomFilterPolicy(
8 /* bits_per_key */, false /* use_block_based_filter */));
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
ImmutableOptions ioptions(options);
MutableCFOptions moptions(options);
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
c.Finish(options, ioptions, moptions, table_options,
GetPlainInternalComparator(options.comparator), &keys, &kvmap);
// get file reader
test::StringSink* table_sink = c.TEST_GetSink();
std::unique_ptr<FSRandomAccessFile> source(new test::StringSource(
table_sink->contents(), 0 /* unique_id */, false /* allow_mmap_reads */));
std::unique_ptr<RandomAccessFileReader> table_reader(
new RandomAccessFileReader(std::move(source), "test"));
size_t table_size = table_sink->contents().size();
// read footer
Footer footer;
IOOptions opts;
ASSERT_OK(ReadFooterFromFile(opts, table_reader.get(),
nullptr /* prefetch_buffer */, table_size,
&footer, kBlockBasedTableMagicNumber));
// read metaindex
auto metaindex_handle = footer.metaindex_handle();
BlockContents metaindex_contents;
PersistentCacheOptions pcache_opts;
BlockFetcher block_fetcher(
table_reader.get(), nullptr /* prefetch_buffer */, footer, ReadOptions(),
metaindex_handle, &metaindex_contents, ioptions, false /* decompress */,
false /*maybe_compressed*/, BlockType::kMetaIndex,
UncompressionDict::GetEmptyDict(), pcache_opts,
nullptr /*memory_allocator*/);
ASSERT_OK(block_fetcher.ReadBlockContents());
Block metaindex_block(std::move(metaindex_contents));
// verify properties block comes last
std::unique_ptr<InternalIterator> metaindex_iter{
metaindex_block.NewDataIterator(options.comparator,
kDisableGlobalSequenceNumber)};
uint64_t max_offset = 0;
std::string key_at_max_offset;
for (metaindex_iter->SeekToFirst(); metaindex_iter->Valid();
metaindex_iter->Next()) {
BlockHandle handle;
Slice value = metaindex_iter->value();
ASSERT_OK(handle.DecodeFrom(&value));
if (handle.offset() > max_offset) {
max_offset = handle.offset();
key_at_max_offset = metaindex_iter->key().ToString();
}
}
ASSERT_EQ(kPropertiesBlock, key_at_max_offset);
// index handle is stored in footer rather than metaindex block, so need
// separate logic to verify it comes before properties block.
ASSERT_GT(max_offset, footer.index_handle().offset());
c.ResetTableReader();
}
TEST_P(BlockBasedTableTest, BadOptions) {
ROCKSDB_NAMESPACE::Options options;
options.compression = kNoCompression;
BlockBasedTableOptions bbto = GetBlockBasedTableOptions();
bbto.block_size = 4000;
bbto.block_align = true;
const std::string kDBPath =
test::PerThreadDBPath("block_based_table_bad_options_test");
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
ASSERT_OK(DestroyDB(kDBPath, options));
ROCKSDB_NAMESPACE::DB* db;
ASSERT_NOK(ROCKSDB_NAMESPACE::DB::Open(options, kDBPath, &db));
bbto.block_size = 4096;
options.compression = kSnappyCompression;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
ASSERT_NOK(ROCKSDB_NAMESPACE::DB::Open(options, kDBPath, &db));
}
TEST_F(BBTTailPrefetchTest, TestTailPrefetchStats) {
TailPrefetchStats tpstats;
ASSERT_EQ(0, tpstats.GetSuggestedPrefetchSize());
tpstats.RecordEffectiveSize(size_t{1000});
tpstats.RecordEffectiveSize(size_t{1005});
tpstats.RecordEffectiveSize(size_t{1002});
ASSERT_EQ(1005, tpstats.GetSuggestedPrefetchSize());
// One single super large value shouldn't influence much
tpstats.RecordEffectiveSize(size_t{1002000});
tpstats.RecordEffectiveSize(size_t{999});
ASSERT_LE(1005, tpstats.GetSuggestedPrefetchSize());
ASSERT_GT(1200, tpstats.GetSuggestedPrefetchSize());
// Only history of 32 is kept
for (int i = 0; i < 32; i++) {
tpstats.RecordEffectiveSize(size_t{100});
}
ASSERT_EQ(100, tpstats.GetSuggestedPrefetchSize());
// 16 large values and 16 small values. The result should be closer
// to the small value as the algorithm.
for (int i = 0; i < 16; i++) {
tpstats.RecordEffectiveSize(size_t{1000});
}
tpstats.RecordEffectiveSize(size_t{10});
tpstats.RecordEffectiveSize(size_t{20});
for (int i = 0; i < 6; i++) {
tpstats.RecordEffectiveSize(size_t{100});
}
ASSERT_LE(80, tpstats.GetSuggestedPrefetchSize());
ASSERT_GT(200, tpstats.GetSuggestedPrefetchSize());
}
TEST_F(BBTTailPrefetchTest, FilePrefetchBufferMinOffset) {
TailPrefetchStats tpstats;
FilePrefetchBuffer buffer(nullptr, 0, 0, false, true);
IOOptions opts;
buffer.TryReadFromCache(opts, 500, 10, nullptr, nullptr);
buffer.TryReadFromCache(opts, 480, 10, nullptr, nullptr);
buffer.TryReadFromCache(opts, 490, 10, nullptr, nullptr);
ASSERT_EQ(480, buffer.min_offset_read());
}
TEST_P(BlockBasedTableTest, DataBlockHashIndex) {
const int kNumKeys = 500;
const int kKeySize = 8;
const int kValSize = 40;
BlockBasedTableOptions table_options = GetBlockBasedTableOptions();
table_options.data_block_index_type =
BlockBasedTableOptions::kDataBlockBinaryAndHash;
Options options;
options.comparator = BytewiseComparator();
options.table_factory.reset(new BlockBasedTableFactory(table_options));
TableConstructor c(options.comparator);
static Random rnd(1048);
for (int i = 0; i < kNumKeys; i++) {
// padding one "0" to mark existent keys.
std::string random_key(rnd.RandomString(kKeySize - 1) + "1");
InternalKey k(random_key, 0, kTypeValue);
c.Add(k.Encode().ToString(), rnd.RandomString(kValSize));
}
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
const InternalKeyComparator internal_comparator(options.comparator);
c.Finish(options, ioptions, moptions, table_options, internal_comparator,
&keys, &kvmap);
auto reader = c.GetTableReader();
std::unique_ptr<InternalIterator> seek_iter;
ReadOptions read_options;
seek_iter.reset(reader->NewIterator(
read_options, moptions.prefix_extractor.get(), /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized));
for (int i = 0; i < 2; ++i) {
ReadOptions ro;
// for every kv, we seek using two method: Get() and Seek()
// Get() will use the SuffixIndexHash in Block. For non-existent key it
// will invalidate the iterator
// Seek() will use the default BinarySeek() in Block. So for non-existent
// key it will land at the closest key that is large than target.
// Search for existent keys
for (auto& kv : kvmap) {
if (i == 0) {
// Search using Seek()
seek_iter->Seek(kv.first);
ASSERT_OK(seek_iter->status());
ASSERT_TRUE(seek_iter->Valid());
ASSERT_EQ(seek_iter->key(), kv.first);
ASSERT_EQ(seek_iter->value(), kv.second);
} else {
// Search using Get()
PinnableSlice value;
std::string user_key = ExtractUserKey(kv.first).ToString();
GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, user_key, &value, nullptr,
nullptr, true, nullptr, nullptr);
ASSERT_OK(reader->Get(ro, kv.first, &get_context,
moptions.prefix_extractor.get()));
ASSERT_EQ(get_context.State(), GetContext::kFound);
ASSERT_EQ(value, Slice(kv.second));
value.Reset();
}
}
// Search for non-existent keys
for (auto& kv : kvmap) {
std::string user_key = ExtractUserKey(kv.first).ToString();
user_key.back() = '0'; // make it non-existent key
InternalKey internal_key(user_key, 0, kTypeValue);
std::string encoded_key = internal_key.Encode().ToString();
if (i == 0) { // Search using Seek()
seek_iter->Seek(encoded_key);
ASSERT_OK(seek_iter->status());
if (seek_iter->Valid()) {
ASSERT_TRUE(BytewiseComparator()->Compare(
user_key, ExtractUserKey(seek_iter->key())) < 0);
}
} else { // Search using Get()
PinnableSlice value;
GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
GetContext::kNotFound, user_key, &value, nullptr,
nullptr, true, nullptr, nullptr);
ASSERT_OK(reader->Get(ro, encoded_key, &get_context,
moptions.prefix_extractor.get()));
ASSERT_EQ(get_context.State(), GetContext::kNotFound);
value.Reset();
}
}
}
}
// BlockBasedTableIterator should invalidate itself and return
// OutOfBound()=true immediately after Seek(), to allow LevelIterator
// filter out corresponding level.
TEST_P(BlockBasedTableTest, OutOfBoundOnSeek) {
TableConstructor c(BytewiseComparator(), true /*convert_to_internal_key*/);
c.Add("foo", "v1");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
BlockBasedTableOptions table_opt(GetBlockBasedTableOptions());
options.table_factory.reset(NewBlockBasedTableFactory(table_opt));
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_opt,
GetPlainInternalComparator(BytewiseComparator()), &keys, &kvmap);
auto* reader = c.GetTableReader();
ReadOptions read_opt;
std::string upper_bound = "bar";
Slice upper_bound_slice(upper_bound);
read_opt.iterate_upper_bound = &upper_bound_slice;
std::unique_ptr<InternalIterator> iter;
iter.reset(new KeyConvertingIterator(reader->NewIterator(
read_opt, /*prefix_extractor=*/nullptr, /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized)));
iter->SeekToFirst();
ASSERT_FALSE(iter->Valid());
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->UpperBoundCheckResult() == IterBoundCheck::kOutOfBound);
iter.reset(new KeyConvertingIterator(reader->NewIterator(
read_opt, /*prefix_extractor=*/nullptr, /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized)));
iter->Seek("foo");
ASSERT_FALSE(iter->Valid());
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->UpperBoundCheckResult() == IterBoundCheck::kOutOfBound);
}
// BlockBasedTableIterator should invalidate itself and return
// OutOfBound()=true after Next(), if it finds current index key is no smaller
// than upper bound, unless it is pointing to the last data block.
TEST_P(BlockBasedTableTest, OutOfBoundOnNext) {
TableConstructor c(BytewiseComparator(), true /*convert_to_internal_key*/);
c.Add("bar", "v");
c.Add("foo", "v");
std::vector<std::string> keys;
stl_wrappers::KVMap kvmap;
Options options;
BlockBasedTableOptions table_opt(GetBlockBasedTableOptions());
table_opt.flush_block_policy_factory =
std::make_shared<FlushBlockEveryKeyPolicyFactory>();
options.table_factory.reset(NewBlockBasedTableFactory(table_opt));
const ImmutableOptions ioptions(options);
const MutableCFOptions moptions(options);
c.Finish(options, ioptions, moptions, table_opt,
GetPlainInternalComparator(BytewiseComparator()), &keys, &kvmap);
auto* reader = c.GetTableReader();
ReadOptions read_opt;
std::string ub1 = "bar_after";
Slice ub_slice1(ub1);
read_opt.iterate_upper_bound = &ub_slice1;
std::unique_ptr<InternalIterator> iter;
iter.reset(new KeyConvertingIterator(reader->NewIterator(
read_opt, /*prefix_extractor=*/nullptr, /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized)));
iter->Seek("bar");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bar", iter->key());
iter->Next();
ASSERT_FALSE(iter->Valid());
ASSERT_TRUE(iter->UpperBoundCheckResult() == IterBoundCheck::kOutOfBound);
std::string ub2 = "foo_after";
Slice ub_slice2(ub2);
read_opt.iterate_upper_bound = &ub_slice2;
iter.reset(new KeyConvertingIterator(reader->NewIterator(
read_opt, /*prefix_extractor=*/nullptr, /*arena=*/nullptr,
/*skip_filters=*/false, TableReaderCaller::kUncategorized)));
iter->Seek("foo");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("foo", iter->key());
iter->Next();
ASSERT_FALSE(iter->Valid());
ASSERT_FALSE(iter->UpperBoundCheckResult() == IterBoundCheck::kOutOfBound);
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}