rocksdb/db/prefix_test.cc

896 lines
29 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#ifndef ROCKSDB_LITE
#ifndef GFLAGS
#include <cstdio>
int main() {
fprintf(stderr, "Please install gflags to run this test... Skipping...\n");
return 0;
}
#else
#include <algorithm>
#include <iostream>
#include <vector>
#include "db/db_impl/db_impl.h"
#include "monitoring/histogram.h"
#include "rocksdb/comparator.h"
#include "rocksdb/db.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/table.h"
#include "test_util/testharness.h"
#include "util/coding.h"
#include "util/gflags_compat.h"
#include "util/random.h"
#include "util/stop_watch.h"
#include "util/string_util.h"
#include "utilities/merge_operators.h"
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
DEFINE_bool(trigger_deadlock, false,
"issue delete in range scan to trigger PrefixHashMap deadlock");
DEFINE_int32(bucket_count, 100000, "number of buckets");
DEFINE_uint64(num_locks, 10001, "number of locks");
DEFINE_bool(random_prefix, false, "randomize prefix");
DEFINE_uint64(total_prefixes, 100000, "total number of prefixes");
DEFINE_uint64(items_per_prefix, 1, "total number of values per prefix");
DEFINE_int64(write_buffer_size, 33554432, "");
DEFINE_int32(max_write_buffer_number, 2, "");
DEFINE_int32(min_write_buffer_number_to_merge, 1, "");
DEFINE_int32(skiplist_height, 4, "");
DEFINE_double(memtable_prefix_bloom_size_ratio, 0.1, "");
DEFINE_int32(memtable_huge_page_size, 2 * 1024 * 1024, "");
DEFINE_int32(value_size, 40, "");
DEFINE_bool(enable_print, false, "Print options generated to console.");
// Path to the database on file system
const std::string kDbName =
ROCKSDB_NAMESPACE::test::PerThreadDBPath("prefix_test");
namespace ROCKSDB_NAMESPACE {
struct TestKey {
uint64_t prefix;
uint64_t sorted;
TestKey(uint64_t _prefix, uint64_t _sorted)
: prefix(_prefix), sorted(_sorted) {}
};
// return a slice backed by test_key
inline Slice TestKeyToSlice(std::string &s, const TestKey& test_key) {
s.clear();
PutFixed64(&s, test_key.prefix);
PutFixed64(&s, test_key.sorted);
return Slice(s.c_str(), s.size());
}
inline const TestKey SliceToTestKey(const Slice& slice) {
return TestKey(DecodeFixed64(slice.data()),
DecodeFixed64(slice.data() + 8));
}
class TestKeyComparator : public Comparator {
public:
// Compare needs to be aware of the possibility of a and/or b is
// prefix only
int Compare(const Slice& a, const Slice& b) const override {
const TestKey kkey_a = SliceToTestKey(a);
const TestKey kkey_b = SliceToTestKey(b);
const TestKey *key_a = &kkey_a;
const TestKey *key_b = &kkey_b;
if (key_a->prefix != key_b->prefix) {
if (key_a->prefix < key_b->prefix) return -1;
if (key_a->prefix > key_b->prefix) return 1;
} else {
EXPECT_TRUE(key_a->prefix == key_b->prefix);
// note, both a and b could be prefix only
if (a.size() != b.size()) {
// one of them is prefix
EXPECT_TRUE(
(a.size() == sizeof(uint64_t) && b.size() == sizeof(TestKey)) ||
(b.size() == sizeof(uint64_t) && a.size() == sizeof(TestKey)));
if (a.size() < b.size()) return -1;
if (a.size() > b.size()) return 1;
} else {
// both a and b are prefix
if (a.size() == sizeof(uint64_t)) {
return 0;
}
// both a and b are whole key
EXPECT_TRUE(a.size() == sizeof(TestKey) && b.size() == sizeof(TestKey));
if (key_a->sorted < key_b->sorted) return -1;
if (key_a->sorted > key_b->sorted) return 1;
if (key_a->sorted == key_b->sorted) return 0;
}
}
return 0;
}
bool operator()(const TestKey& a, const TestKey& b) const {
std::string sa, sb;
return Compare(TestKeyToSlice(sa, a), TestKeyToSlice(sb, b)) < 0;
}
const char* Name() const override { return "TestKeyComparator"; }
void FindShortestSeparator(std::string* /*start*/,
const Slice& /*limit*/) const override {}
void FindShortSuccessor(std::string* /*key*/) const override {}
};
namespace {
void PutKey(DB* db, WriteOptions write_options, uint64_t prefix,
uint64_t suffix, const Slice& value) {
TestKey test_key(prefix, suffix);
std::string s;
Slice key = TestKeyToSlice(s, test_key);
ASSERT_OK(db->Put(write_options, key, value));
}
void PutKey(DB* db, WriteOptions write_options, const TestKey& test_key,
const Slice& value) {
std::string s;
Slice key = TestKeyToSlice(s, test_key);
ASSERT_OK(db->Put(write_options, key, value));
}
void MergeKey(DB* db, WriteOptions write_options, const TestKey& test_key,
const Slice& value) {
std::string s;
Slice key = TestKeyToSlice(s, test_key);
ASSERT_OK(db->Merge(write_options, key, value));
}
void DeleteKey(DB* db, WriteOptions write_options, const TestKey& test_key) {
std::string s;
Slice key = TestKeyToSlice(s, test_key);
ASSERT_OK(db->Delete(write_options, key));
}
void SeekIterator(Iterator* iter, uint64_t prefix, uint64_t suffix) {
TestKey test_key(prefix, suffix);
std::string s;
Slice key = TestKeyToSlice(s, test_key);
iter->Seek(key);
}
const std::string kNotFoundResult = "NOT_FOUND";
std::string Get(DB* db, const ReadOptions& read_options, uint64_t prefix,
uint64_t suffix) {
TestKey test_key(prefix, suffix);
std::string s2;
Slice key = TestKeyToSlice(s2, test_key);
std::string result;
Status s = db->Get(read_options, key, &result);
if (s.IsNotFound()) {
result = kNotFoundResult;
} else if (!s.ok()) {
result = s.ToString();
}
return result;
}
class SamePrefixTransform : public SliceTransform {
private:
const Slice prefix_;
std::string name_;
public:
explicit SamePrefixTransform(const Slice& prefix)
: prefix_(prefix), name_("rocksdb.SamePrefix." + prefix.ToString()) {}
const char* Name() const override { return name_.c_str(); }
Slice Transform(const Slice& src) const override {
assert(InDomain(src));
return prefix_;
}
bool InDomain(const Slice& src) const override {
if (src.size() >= prefix_.size()) {
return Slice(src.data(), prefix_.size()) == prefix_;
}
return false;
}
bool InRange(const Slice& dst) const override { return dst == prefix_; }
bool FullLengthEnabled(size_t* /*len*/) const override { return false; }
};
} // namespace
class PrefixTest : public testing::Test {
public:
std::shared_ptr<DB> OpenDb() {
DB* db;
options.create_if_missing = true;
options.write_buffer_size = FLAGS_write_buffer_size;
options.max_write_buffer_number = FLAGS_max_write_buffer_number;
options.min_write_buffer_number_to_merge =
FLAGS_min_write_buffer_number_to_merge;
options.memtable_prefix_bloom_size_ratio =
FLAGS_memtable_prefix_bloom_size_ratio;
options.memtable_huge_page_size = FLAGS_memtable_huge_page_size;
options.prefix_extractor.reset(NewFixedPrefixTransform(8));
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.whole_key_filtering = false;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
options.allow_concurrent_memtable_write = false;
Status s = DB::Open(options, kDbName, &db);
EXPECT_OK(s);
return std::shared_ptr<DB>(db);
}
void FirstOption() {
option_config_ = kBegin;
}
bool NextOptions(int bucket_count) {
// skip some options
option_config_++;
if (option_config_ < kEnd) {
options.prefix_extractor.reset(NewFixedPrefixTransform(8));
switch(option_config_) {
case kHashSkipList:
options.memtable_factory.reset(
NewHashSkipListRepFactory(bucket_count, FLAGS_skiplist_height));
return true;
case kHashLinkList:
options.memtable_factory.reset(
NewHashLinkListRepFactory(bucket_count));
return true;
case kHashLinkListHugePageTlb:
options.memtable_factory.reset(
NewHashLinkListRepFactory(bucket_count, 2 * 1024 * 1024));
return true;
case kHashLinkListTriggerSkipList:
options.memtable_factory.reset(
NewHashLinkListRepFactory(bucket_count, 0, 3));
return true;
default:
return false;
}
}
return false;
}
PrefixTest() : option_config_(kBegin) {
options.comparator = new TestKeyComparator();
}
~PrefixTest() override { delete options.comparator; }
protected:
enum OptionConfig {
kBegin,
kHashSkipList,
kHashLinkList,
kHashLinkListHugePageTlb,
kHashLinkListTriggerSkipList,
kEnd
};
int option_config_;
Options options;
};
TEST(SamePrefixTest, InDomainTest) {
DB* db;
Options options;
options.create_if_missing = true;
options.prefix_extractor.reset(new SamePrefixTransform("HHKB"));
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.whole_key_filtering = false;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
WriteOptions write_options;
ReadOptions read_options;
{
ASSERT_OK(DestroyDB(kDbName, Options()));
ASSERT_OK(DB::Open(options, kDbName, &db));
ASSERT_OK(db->Put(write_options, "HHKB pro2", "Mar 24, 2006"));
ASSERT_OK(db->Put(write_options, "HHKB pro2 Type-S", "June 29, 2011"));
ASSERT_OK(db->Put(write_options, "Realforce 87u", "idk"));
db->Flush(FlushOptions());
std::string result;
auto db_iter = db->NewIterator(ReadOptions());
db_iter->Seek("Realforce 87u");
ASSERT_TRUE(db_iter->Valid());
ASSERT_OK(db_iter->status());
ASSERT_EQ(db_iter->key(), "Realforce 87u");
ASSERT_EQ(db_iter->value(), "idk");
delete db_iter;
delete db;
ASSERT_OK(DestroyDB(kDbName, Options()));
}
{
ASSERT_OK(DB::Open(options, kDbName, &db));
ASSERT_OK(db->Put(write_options, "pikachu", "1"));
ASSERT_OK(db->Put(write_options, "Meowth", "1"));
ASSERT_OK(db->Put(write_options, "Mewtwo", "idk"));
db->Flush(FlushOptions());
std::string result;
auto db_iter = db->NewIterator(ReadOptions());
db_iter->Seek("Mewtwo");
ASSERT_TRUE(db_iter->Valid());
ASSERT_OK(db_iter->status());
delete db_iter;
delete db;
ASSERT_OK(DestroyDB(kDbName, Options()));
}
}
TEST_F(PrefixTest, TestResult) {
for (int num_buckets = 1; num_buckets <= 2; num_buckets++) {
FirstOption();
while (NextOptions(num_buckets)) {
std::cout << "*** Mem table: " << options.memtable_factory->Name()
<< " number of buckets: " << num_buckets
<< std::endl;
DestroyDB(kDbName, Options());
auto db = OpenDb();
WriteOptions write_options;
ReadOptions read_options;
// 1. Insert one row.
Slice v16("v16");
PutKey(db.get(), write_options, 1, 6, v16);
std::unique_ptr<Iterator> iter(db->NewIterator(read_options));
SeekIterator(iter.get(), 1, 6);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v16 == iter->value());
SeekIterator(iter.get(), 1, 5);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v16 == iter->value());
SeekIterator(iter.get(), 1, 5);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v16 == iter->value());
iter->Next();
ASSERT_TRUE(!iter->Valid());
SeekIterator(iter.get(), 2, 0);
ASSERT_TRUE(!iter->Valid());
ASSERT_EQ(v16.ToString(), Get(db.get(), read_options, 1, 6));
ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 1, 5));
ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 1, 7));
ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 0, 6));
ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 2, 6));
// 2. Insert an entry for the same prefix as the last entry in the bucket.
Slice v17("v17");
PutKey(db.get(), write_options, 1, 7, v17);
iter.reset(db->NewIterator(read_options));
SeekIterator(iter.get(), 1, 7);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
SeekIterator(iter.get(), 1, 6);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v16 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
iter->Next();
ASSERT_TRUE(!iter->Valid());
SeekIterator(iter.get(), 2, 0);
ASSERT_TRUE(!iter->Valid());
// 3. Insert an entry for the same prefix as the head of the bucket.
Slice v15("v15");
PutKey(db.get(), write_options, 1, 5, v15);
iter.reset(db->NewIterator(read_options));
SeekIterator(iter.get(), 1, 7);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
SeekIterator(iter.get(), 1, 5);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v15 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v16 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
SeekIterator(iter.get(), 1, 5);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v15 == iter->value());
ASSERT_EQ(v15.ToString(), Get(db.get(), read_options, 1, 5));
ASSERT_EQ(v16.ToString(), Get(db.get(), read_options, 1, 6));
ASSERT_EQ(v17.ToString(), Get(db.get(), read_options, 1, 7));
// 4. Insert an entry with a larger prefix
Slice v22("v22");
PutKey(db.get(), write_options, 2, 2, v22);
iter.reset(db->NewIterator(read_options));
SeekIterator(iter.get(), 2, 2);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v22 == iter->value());
SeekIterator(iter.get(), 2, 0);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v22 == iter->value());
SeekIterator(iter.get(), 1, 5);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v15 == iter->value());
SeekIterator(iter.get(), 1, 7);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
// 5. Insert an entry with a smaller prefix
Slice v02("v02");
PutKey(db.get(), write_options, 0, 2, v02);
iter.reset(db->NewIterator(read_options));
SeekIterator(iter.get(), 0, 2);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v02 == iter->value());
SeekIterator(iter.get(), 0, 0);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v02 == iter->value());
SeekIterator(iter.get(), 2, 0);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v22 == iter->value());
SeekIterator(iter.get(), 1, 5);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v15 == iter->value());
SeekIterator(iter.get(), 1, 7);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
// 6. Insert to the beginning and the end of the first prefix
Slice v13("v13");
Slice v18("v18");
PutKey(db.get(), write_options, 1, 3, v13);
PutKey(db.get(), write_options, 1, 8, v18);
iter.reset(db->NewIterator(read_options));
SeekIterator(iter.get(), 1, 7);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
SeekIterator(iter.get(), 1, 3);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v13 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v15 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v16 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v18 == iter->value());
SeekIterator(iter.get(), 0, 0);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v02 == iter->value());
SeekIterator(iter.get(), 2, 0);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v22 == iter->value());
ASSERT_EQ(v22.ToString(), Get(db.get(), read_options, 2, 2));
ASSERT_EQ(v02.ToString(), Get(db.get(), read_options, 0, 2));
ASSERT_EQ(v13.ToString(), Get(db.get(), read_options, 1, 3));
ASSERT_EQ(v15.ToString(), Get(db.get(), read_options, 1, 5));
ASSERT_EQ(v16.ToString(), Get(db.get(), read_options, 1, 6));
ASSERT_EQ(v17.ToString(), Get(db.get(), read_options, 1, 7));
ASSERT_EQ(v18.ToString(), Get(db.get(), read_options, 1, 8));
}
}
}
// Show results in prefix
TEST_F(PrefixTest, PrefixValid) {
for (int num_buckets = 1; num_buckets <= 2; num_buckets++) {
FirstOption();
while (NextOptions(num_buckets)) {
std::cout << "*** Mem table: " << options.memtable_factory->Name()
<< " number of buckets: " << num_buckets << std::endl;
DestroyDB(kDbName, Options());
auto db = OpenDb();
WriteOptions write_options;
ReadOptions read_options;
// Insert keys with common prefix and one key with different
Slice v16("v16");
Slice v17("v17");
Slice v18("v18");
Slice v19("v19");
PutKey(db.get(), write_options, 12345, 6, v16);
PutKey(db.get(), write_options, 12345, 7, v17);
PutKey(db.get(), write_options, 12345, 8, v18);
PutKey(db.get(), write_options, 12345, 9, v19);
PutKey(db.get(), write_options, 12346, 8, v16);
db->Flush(FlushOptions());
TestKey test_key(12346, 8);
std::string s;
db->Delete(write_options, TestKeyToSlice(s, test_key));
db->Flush(FlushOptions());
read_options.prefix_same_as_start = true;
std::unique_ptr<Iterator> iter(db->NewIterator(read_options));
SeekIterator(iter.get(), 12345, 6);
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v16 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v17 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v18 == iter->value());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_TRUE(v19 == iter->value());
iter->Next();
ASSERT_FALSE(iter->Valid());
ASSERT_EQ(kNotFoundResult, Get(db.get(), read_options, 12346, 8));
// Verify seeking past the prefix won't return a result.
SeekIterator(iter.get(), 12345, 10);
ASSERT_TRUE(!iter->Valid());
}
}
}
TEST_F(PrefixTest, DynamicPrefixIterator) {
while (NextOptions(FLAGS_bucket_count)) {
std::cout << "*** Mem table: " << options.memtable_factory->Name()
<< std::endl;
DestroyDB(kDbName, Options());
auto db = OpenDb();
WriteOptions write_options;
ReadOptions read_options;
std::vector<uint64_t> prefixes;
for (uint64_t i = 0; i < FLAGS_total_prefixes; ++i) {
prefixes.push_back(i);
}
if (FLAGS_random_prefix) {
std::random_shuffle(prefixes.begin(), prefixes.end());
}
HistogramImpl hist_put_time;
HistogramImpl hist_put_comparison;
// insert x random prefix, each with y continuous element.
for (auto prefix : prefixes) {
for (uint64_t sorted = 0; sorted < FLAGS_items_per_prefix; sorted++) {
TestKey test_key(prefix, sorted);
std::string s;
Slice key = TestKeyToSlice(s, test_key);
std::string value(FLAGS_value_size, 0);
get_perf_context()->Reset();
StopWatchNano timer(Env::Default(), true);
ASSERT_OK(db->Put(write_options, key, value));
hist_put_time.Add(timer.ElapsedNanos());
hist_put_comparison.Add(get_perf_context()->user_key_comparison_count);
}
}
std::cout << "Put key comparison: \n" << hist_put_comparison.ToString()
<< "Put time: \n" << hist_put_time.ToString();
// test seek existing keys
HistogramImpl hist_seek_time;
HistogramImpl hist_seek_comparison;
std::unique_ptr<Iterator> iter(db->NewIterator(read_options));
for (auto prefix : prefixes) {
TestKey test_key(prefix, FLAGS_items_per_prefix / 2);
std::string s;
Slice key = TestKeyToSlice(s, test_key);
std::string value = "v" + ToString(0);
get_perf_context()->Reset();
StopWatchNano timer(Env::Default(), true);
auto key_prefix = options.prefix_extractor->Transform(key);
uint64_t total_keys = 0;
for (iter->Seek(key);
iter->Valid() && iter->key().starts_with(key_prefix);
iter->Next()) {
if (FLAGS_trigger_deadlock) {
std::cout << "Behold the deadlock!\n";
db->Delete(write_options, iter->key());
}
total_keys++;
}
hist_seek_time.Add(timer.ElapsedNanos());
hist_seek_comparison.Add(get_perf_context()->user_key_comparison_count);
ASSERT_EQ(total_keys, FLAGS_items_per_prefix - FLAGS_items_per_prefix/2);
}
std::cout << "Seek key comparison: \n"
<< hist_seek_comparison.ToString()
<< "Seek time: \n"
<< hist_seek_time.ToString();
// test non-existing keys
HistogramImpl hist_no_seek_time;
HistogramImpl hist_no_seek_comparison;
for (auto prefix = FLAGS_total_prefixes;
prefix < FLAGS_total_prefixes + 10000;
prefix++) {
TestKey test_key(prefix, 0);
std::string s;
Slice key = TestKeyToSlice(s, test_key);
get_perf_context()->Reset();
StopWatchNano timer(Env::Default(), true);
iter->Seek(key);
hist_no_seek_time.Add(timer.ElapsedNanos());
hist_no_seek_comparison.Add(get_perf_context()->user_key_comparison_count);
ASSERT_TRUE(!iter->Valid());
}
std::cout << "non-existing Seek key comparison: \n"
<< hist_no_seek_comparison.ToString()
<< "non-existing Seek time: \n"
<< hist_no_seek_time.ToString();
}
}
TEST_F(PrefixTest, PrefixSeekModePrev) {
// Only for SkipListFactory
options.memtable_factory.reset(new SkipListFactory);
options.merge_operator = MergeOperators::CreatePutOperator();
options.write_buffer_size = 1024 * 1024;
Random rnd(1);
for (size_t m = 1; m < 100; m++) {
std::cout << "[" + std::to_string(m) + "]" + "*** Mem table: "
<< options.memtable_factory->Name() << std::endl;
DestroyDB(kDbName, Options());
auto db = OpenDb();
WriteOptions write_options;
ReadOptions read_options;
std::map<TestKey, std::string, TestKeyComparator> entry_maps[3], whole_map;
for (uint64_t i = 0; i < 10; i++) {
int div = i % 3 + 1;
for (uint64_t j = 0; j < 10; j++) {
whole_map[TestKey(i, j)] = entry_maps[rnd.Uniform(div)][TestKey(i, j)] =
'v' + std::to_string(i) + std::to_string(j);
}
}
std::map<TestKey, std::string, TestKeyComparator> type_map;
for (size_t i = 0; i < 3; i++) {
for (auto& kv : entry_maps[i]) {
if (rnd.OneIn(3)) {
PutKey(db.get(), write_options, kv.first, kv.second);
type_map[kv.first] = "value";
} else {
MergeKey(db.get(), write_options, kv.first, kv.second);
type_map[kv.first] = "merge";
}
}
if (i < 2) {
db->Flush(FlushOptions());
}
}
for (size_t i = 0; i < 2; i++) {
for (auto& kv : entry_maps[i]) {
if (rnd.OneIn(10)) {
whole_map.erase(kv.first);
DeleteKey(db.get(), write_options, kv.first);
entry_maps[2][kv.first] = "delete";
}
}
}
if (FLAGS_enable_print) {
for (size_t i = 0; i < 3; i++) {
for (auto& kv : entry_maps[i]) {
std::cout << "[" << i << "]" << kv.first.prefix << kv.first.sorted
<< " " << kv.second + " " + type_map[kv.first] << std::endl;
}
}
}
std::unique_ptr<Iterator> iter(db->NewIterator(read_options));
for (uint64_t prefix = 0; prefix < 10; prefix++) {
uint64_t start_suffix = rnd.Uniform(9);
SeekIterator(iter.get(), prefix, start_suffix);
auto it = whole_map.find(TestKey(prefix, start_suffix));
if (it == whole_map.end()) {
continue;
}
ASSERT_NE(it, whole_map.end());
ASSERT_TRUE(iter->Valid());
if (FLAGS_enable_print) {
std::cout << "round " << prefix
<< " iter: " << SliceToTestKey(iter->key()).prefix
<< SliceToTestKey(iter->key()).sorted
<< " | map: " << it->first.prefix << it->first.sorted << " | "
<< iter->value().ToString() << " " << it->second << std::endl;
}
ASSERT_EQ(iter->value(), it->second);
uint64_t stored_prefix = prefix;
for (size_t k = 0; k < 9; k++) {
if (rnd.OneIn(2) || it == whole_map.begin()) {
iter->Next();
++it;
if (FLAGS_enable_print) {
std::cout << "Next >> ";
}
} else {
iter->Prev();
it--;
if (FLAGS_enable_print) {
std::cout << "Prev >> ";
}
}
if (!iter->Valid() ||
SliceToTestKey(iter->key()).prefix != stored_prefix) {
break;
}
stored_prefix = SliceToTestKey(iter->key()).prefix;
ASSERT_TRUE(iter->Valid());
ASSERT_NE(it, whole_map.end());
ASSERT_EQ(iter->value(), it->second);
if (FLAGS_enable_print) {
std::cout << "iter: " << SliceToTestKey(iter->key()).prefix
<< SliceToTestKey(iter->key()).sorted
<< " | map: " << it->first.prefix << it->first.sorted
<< " | " << iter->value().ToString() << " " << it->second
<< std::endl;
}
}
}
}
}
TEST_F(PrefixTest, PrefixSeekModePrev2) {
// Only for SkipListFactory
// test the case
// iter1 iter2
// | prefix | suffix | | prefix | suffix |
// | 1 | 1 | | 1 | 2 |
// | 1 | 3 | | 1 | 4 |
// | 2 | 1 | | 3 | 3 |
// | 2 | 2 | | 3 | 4 |
// after seek(15), iter1 will be at 21 and iter2 will be 33.
// Then if call Prev() in prefix mode where SeekForPrev(21) gets called,
// iter2 should turn to invalid state because of bloom filter.
options.memtable_factory.reset(new SkipListFactory);
options.write_buffer_size = 1024 * 1024;
std::string v13("v13");
DestroyDB(kDbName, Options());
auto db = OpenDb();
WriteOptions write_options;
ReadOptions read_options;
PutKey(db.get(), write_options, TestKey(1, 2), "v12");
PutKey(db.get(), write_options, TestKey(1, 4), "v14");
PutKey(db.get(), write_options, TestKey(3, 3), "v33");
PutKey(db.get(), write_options, TestKey(3, 4), "v34");
db->Flush(FlushOptions());
reinterpret_cast<DBImpl*>(db.get())->TEST_WaitForFlushMemTable();
PutKey(db.get(), write_options, TestKey(1, 1), "v11");
PutKey(db.get(), write_options, TestKey(1, 3), "v13");
PutKey(db.get(), write_options, TestKey(2, 1), "v21");
PutKey(db.get(), write_options, TestKey(2, 2), "v22");
db->Flush(FlushOptions());
reinterpret_cast<DBImpl*>(db.get())->TEST_WaitForFlushMemTable();
std::unique_ptr<Iterator> iter(db->NewIterator(read_options));
SeekIterator(iter.get(), 1, 5);
iter->Prev();
ASSERT_EQ(iter->value(), v13);
}
TEST_F(PrefixTest, PrefixSeekModePrev3) {
// Only for SkipListFactory
// test SeekToLast() with iterate_upper_bound_ in prefix_seek_mode
options.memtable_factory.reset(new SkipListFactory);
options.write_buffer_size = 1024 * 1024;
std::string v14("v14");
TestKey upper_bound_key = TestKey(1, 5);
std::string s;
Slice upper_bound = TestKeyToSlice(s, upper_bound_key);
{
DestroyDB(kDbName, Options());
auto db = OpenDb();
WriteOptions write_options;
ReadOptions read_options;
read_options.iterate_upper_bound = &upper_bound;
PutKey(db.get(), write_options, TestKey(1, 2), "v12");
PutKey(db.get(), write_options, TestKey(1, 4), "v14");
db->Flush(FlushOptions());
reinterpret_cast<DBImpl*>(db.get())->TEST_WaitForFlushMemTable();
PutKey(db.get(), write_options, TestKey(1, 1), "v11");
PutKey(db.get(), write_options, TestKey(1, 3), "v13");
PutKey(db.get(), write_options, TestKey(2, 1), "v21");
PutKey(db.get(), write_options, TestKey(2, 2), "v22");
db->Flush(FlushOptions());
reinterpret_cast<DBImpl*>(db.get())->TEST_WaitForFlushMemTable();
std::unique_ptr<Iterator> iter(db->NewIterator(read_options));
iter->SeekToLast();
ASSERT_EQ(iter->value(), v14);
}
{
DestroyDB(kDbName, Options());
auto db = OpenDb();
WriteOptions write_options;
ReadOptions read_options;
read_options.iterate_upper_bound = &upper_bound;
PutKey(db.get(), write_options, TestKey(1, 2), "v12");
PutKey(db.get(), write_options, TestKey(1, 4), "v14");
PutKey(db.get(), write_options, TestKey(3, 3), "v33");
PutKey(db.get(), write_options, TestKey(3, 4), "v34");
db->Flush(FlushOptions());
reinterpret_cast<DBImpl*>(db.get())->TEST_WaitForFlushMemTable();
PutKey(db.get(), write_options, TestKey(1, 1), "v11");
PutKey(db.get(), write_options, TestKey(1, 3), "v13");
db->Flush(FlushOptions());
reinterpret_cast<DBImpl*>(db.get())->TEST_WaitForFlushMemTable();
std::unique_ptr<Iterator> iter(db->NewIterator(read_options));
iter->SeekToLast();
ASSERT_EQ(iter->value(), v14);
}
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
ParseCommandLineFlags(&argc, &argv, true);
return RUN_ALL_TESTS();
}
#endif // GFLAGS
#else
#include <stdio.h>
int main(int /*argc*/, char** /*argv*/) {
fprintf(stderr,
"SKIPPED as HashSkipList and HashLinkList are not supported in "
"ROCKSDB_LITE\n");
return 0;
}
#endif // !ROCKSDB_LITE