rocksdb/db_stress_tool/db_stress_test_base.cc
anand76 37b81bd28f Avoid SyncWAL if flushing during shutdown (#12853)
Summary:
https://github.com/facebook/rocksdb/issues/12746 added calls to FlushWAL/SyncWAL in db_stress during reopen, in order to ensure persistence of unpersisted data and avoid false alarms due to lack of prefix recovery support in db_stress reopen. However, there's no need to flush/sync the WAL if avoid_flush_during_shutdown is false, as the WAL will not be needed during recovery. This allows file systems that don't support SyncWAL (not thread safe) to avoid the need by requesting flush during shutdown.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12853

Reviewed By: hx235

Differential Revision: D59604138

Pulled By: anand1976

fbshipit-source-id: 4c4470b3c956d6bf64f5b8a1a5727a8b888f1a5f
2024-07-10 15:59:35 -07:00

4376 lines
169 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
//
#include <ios>
#include <thread>
#include "db_stress_tool/db_stress_listener.h"
#include "rocksdb/io_status.h"
#include "rocksdb/options.h"
#include "rocksdb/slice_transform.h"
#include "util/compression.h"
#ifdef GFLAGS
#include "db_stress_tool/db_stress_common.h"
#include "db_stress_tool/db_stress_compaction_filter.h"
#include "db_stress_tool/db_stress_driver.h"
#include "db_stress_tool/db_stress_filters.h"
#include "db_stress_tool/db_stress_table_properties_collector.h"
#include "db_stress_tool/db_stress_wide_merge_operator.h"
#include "options/options_parser.h"
#include "rocksdb/convenience.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/secondary_cache.h"
#include "rocksdb/sst_file_manager.h"
#include "rocksdb/types.h"
#include "rocksdb/utilities/object_registry.h"
#include "rocksdb/utilities/write_batch_with_index.h"
#include "test_util/testutil.h"
#include "util/cast_util.h"
#include "utilities/backup/backup_engine_impl.h"
#include "utilities/fault_injection_fs.h"
#include "utilities/fault_injection_secondary_cache.h"
namespace ROCKSDB_NAMESPACE {
namespace {
std::shared_ptr<const FilterPolicy> CreateFilterPolicy() {
if (FLAGS_bloom_bits < 0) {
return BlockBasedTableOptions().filter_policy;
}
const FilterPolicy* new_policy;
if (FLAGS_bloom_before_level == INT_MAX) {
// Use Bloom API
new_policy = NewBloomFilterPolicy(FLAGS_bloom_bits, false);
} else {
new_policy =
NewRibbonFilterPolicy(FLAGS_bloom_bits, FLAGS_bloom_before_level);
}
return std::shared_ptr<const FilterPolicy>(new_policy);
}
} // namespace
StressTest::StressTest()
: cache_(NewCache(FLAGS_cache_size, FLAGS_cache_numshardbits)),
filter_policy_(CreateFilterPolicy()),
db_(nullptr),
txn_db_(nullptr),
optimistic_txn_db_(nullptr),
db_aptr_(nullptr),
clock_(db_stress_env->GetSystemClock().get()),
new_column_family_name_(1),
num_times_reopened_(0),
db_preload_finished_(false),
cmp_db_(nullptr),
is_db_stopped_(false) {
if (FLAGS_destroy_db_initially) {
std::vector<std::string> files;
db_stress_env->GetChildren(FLAGS_db, &files);
for (unsigned int i = 0; i < files.size(); i++) {
if (Slice(files[i]).starts_with("heap-")) {
db_stress_env->DeleteFile(FLAGS_db + "/" + files[i]);
}
}
Options options;
options.env = db_stress_env;
// Remove files without preserving manfiest files
const Status s = !FLAGS_use_blob_db
? DestroyDB(FLAGS_db, options)
: blob_db::DestroyBlobDB(FLAGS_db, options,
blob_db::BlobDBOptions());
if (!s.ok()) {
fprintf(stderr, "Cannot destroy original db: %s\n", s.ToString().c_str());
exit(1);
}
}
Status s = DbStressSqfcManager().MakeSharedFactory(
FLAGS_sqfc_name, FLAGS_sqfc_version, &sqfc_factory_);
if (!s.ok()) {
fprintf(stderr, "Error initializing SstQueryFilterConfig: %s\n",
s.ToString().c_str());
exit(1);
}
}
void StressTest::CleanUp() {
for (auto cf : column_families_) {
delete cf;
}
column_families_.clear();
if (db_) {
db_->Close();
}
delete db_;
db_ = nullptr;
for (auto* cf : cmp_cfhs_) {
delete cf;
}
cmp_cfhs_.clear();
delete cmp_db_;
}
std::shared_ptr<Cache> StressTest::NewCache(size_t capacity,
int32_t num_shard_bits) {
ConfigOptions config_options;
if (capacity <= 0) {
return nullptr;
}
std::shared_ptr<SecondaryCache> secondary_cache;
if (!FLAGS_secondary_cache_uri.empty()) {
assert(!strstr(FLAGS_secondary_cache_uri.c_str(),
"compressed_secondary_cache") ||
(FLAGS_compressed_secondary_cache_size == 0 &&
FLAGS_compressed_secondary_cache_ratio == 0.0 &&
!StartsWith(FLAGS_cache_type, "tiered_")));
Status s = SecondaryCache::CreateFromString(
config_options, FLAGS_secondary_cache_uri, &secondary_cache);
if (secondary_cache == nullptr) {
fprintf(stderr,
"No secondary cache registered matching string: %s status=%s\n",
FLAGS_secondary_cache_uri.c_str(), s.ToString().c_str());
exit(1);
}
if (FLAGS_secondary_cache_fault_one_in > 0) {
secondary_cache = std::make_shared<FaultInjectionSecondaryCache>(
secondary_cache, static_cast<uint32_t>(FLAGS_seed),
FLAGS_secondary_cache_fault_one_in);
}
} else if (FLAGS_compressed_secondary_cache_size > 0) {
if (StartsWith(FLAGS_cache_type, "tiered_")) {
fprintf(stderr,
"Cannot specify both compressed_secondary_cache_size and %s\n",
FLAGS_cache_type.c_str());
exit(1);
}
CompressedSecondaryCacheOptions opts;
opts.capacity = FLAGS_compressed_secondary_cache_size;
opts.compress_format_version = FLAGS_compress_format_version;
if (FLAGS_enable_do_not_compress_roles) {
opts.do_not_compress_roles = {CacheEntryRoleSet::All()};
}
opts.enable_custom_split_merge = FLAGS_enable_custom_split_merge;
secondary_cache = NewCompressedSecondaryCache(opts);
if (secondary_cache == nullptr) {
fprintf(stderr, "Failed to allocate compressed secondary cache\n");
exit(1);
}
compressed_secondary_cache = secondary_cache;
}
std::string cache_type = FLAGS_cache_type;
size_t cache_size = FLAGS_cache_size;
bool tiered = false;
if (StartsWith(cache_type, "tiered_")) {
tiered = true;
cache_type.erase(0, strlen("tiered_"));
}
if (FLAGS_use_write_buffer_manager) {
cache_size += FLAGS_db_write_buffer_size;
}
if (cache_type == "clock_cache") {
fprintf(stderr, "Old clock cache implementation has been removed.\n");
exit(1);
} else if (EndsWith(cache_type, "hyper_clock_cache")) {
size_t estimated_entry_charge;
if (cache_type == "fixed_hyper_clock_cache" ||
cache_type == "hyper_clock_cache") {
estimated_entry_charge = FLAGS_block_size;
} else if (cache_type == "auto_hyper_clock_cache") {
estimated_entry_charge = 0;
} else {
fprintf(stderr, "Cache type not supported.");
exit(1);
}
HyperClockCacheOptions opts(cache_size, estimated_entry_charge,
num_shard_bits);
opts.hash_seed = BitwiseAnd(FLAGS_seed, INT32_MAX);
if (tiered) {
TieredCacheOptions tiered_opts;
tiered_opts.cache_opts = &opts;
tiered_opts.cache_type = PrimaryCacheType::kCacheTypeHCC;
tiered_opts.total_capacity = cache_size;
tiered_opts.compressed_secondary_ratio = 0.5;
tiered_opts.adm_policy =
static_cast<TieredAdmissionPolicy>(FLAGS_adm_policy);
if (tiered_opts.adm_policy ==
TieredAdmissionPolicy::kAdmPolicyThreeQueue) {
CompressedSecondaryCacheOptions nvm_sec_cache_opts;
nvm_sec_cache_opts.capacity = cache_size;
tiered_opts.nvm_sec_cache =
NewCompressedSecondaryCache(nvm_sec_cache_opts);
}
block_cache = NewTieredCache(tiered_opts);
} else {
opts.secondary_cache = std::move(secondary_cache);
block_cache = opts.MakeSharedCache();
}
} else if (EndsWith(cache_type, "lru_cache")) {
LRUCacheOptions opts;
opts.capacity = capacity;
opts.num_shard_bits = num_shard_bits;
opts.metadata_charge_policy =
static_cast<CacheMetadataChargePolicy>(FLAGS_metadata_charge_policy);
opts.use_adaptive_mutex = FLAGS_use_adaptive_mutex_lru;
opts.high_pri_pool_ratio = FLAGS_high_pri_pool_ratio;
opts.low_pri_pool_ratio = FLAGS_low_pri_pool_ratio;
if (tiered) {
TieredCacheOptions tiered_opts;
tiered_opts.cache_opts = &opts;
tiered_opts.cache_type = PrimaryCacheType::kCacheTypeLRU;
tiered_opts.total_capacity = cache_size;
tiered_opts.compressed_secondary_ratio = 0.5;
tiered_opts.adm_policy =
static_cast<TieredAdmissionPolicy>(FLAGS_adm_policy);
if (tiered_opts.adm_policy ==
TieredAdmissionPolicy::kAdmPolicyThreeQueue) {
CompressedSecondaryCacheOptions nvm_sec_cache_opts;
nvm_sec_cache_opts.capacity = cache_size;
tiered_opts.nvm_sec_cache =
NewCompressedSecondaryCache(nvm_sec_cache_opts);
}
block_cache = NewTieredCache(tiered_opts);
} else {
opts.secondary_cache = std::move(secondary_cache);
block_cache = NewLRUCache(opts);
}
} else {
fprintf(stderr, "Cache type not supported.");
exit(1);
}
return block_cache;
}
std::vector<std::string> StressTest::GetBlobCompressionTags() {
std::vector<std::string> compression_tags{"kNoCompression"};
if (Snappy_Supported()) {
compression_tags.emplace_back("kSnappyCompression");
}
if (LZ4_Supported()) {
compression_tags.emplace_back("kLZ4Compression");
}
if (ZSTD_Supported()) {
compression_tags.emplace_back("kZSTD");
}
return compression_tags;
}
bool StressTest::BuildOptionsTable() {
if (FLAGS_set_options_one_in <= 0) {
return true;
}
std::unordered_map<std::string, std::vector<std::string>> options_tbl = {
{"write_buffer_size",
{std::to_string(options_.write_buffer_size),
std::to_string(options_.write_buffer_size * 2),
std::to_string(options_.write_buffer_size * 4)}},
{"max_write_buffer_number",
{std::to_string(options_.max_write_buffer_number),
std::to_string(options_.max_write_buffer_number * 2),
std::to_string(options_.max_write_buffer_number * 4)}},
{"arena_block_size",
{
std::to_string(options_.arena_block_size),
std::to_string(options_.write_buffer_size / 4),
std::to_string(options_.write_buffer_size / 8),
}},
{"memtable_huge_page_size", {"0", std::to_string(2 * 1024 * 1024)}},
{"strict_max_successive_merges", {"false", "true"}},
{"inplace_update_num_locks", {"100", "200", "300"}},
// TODO: re-enable once internal task T124324915 is fixed.
// {"experimental_mempurge_threshold", {"0.0", "1.0"}},
// TODO(ljin): enable test for this option
// {"disable_auto_compactions", {"100", "200", "300"}},
{"level0_file_num_compaction_trigger",
{
std::to_string(options_.level0_file_num_compaction_trigger),
std::to_string(options_.level0_file_num_compaction_trigger + 2),
std::to_string(options_.level0_file_num_compaction_trigger + 4),
}},
{"level0_slowdown_writes_trigger",
{
std::to_string(options_.level0_slowdown_writes_trigger),
std::to_string(options_.level0_slowdown_writes_trigger + 2),
std::to_string(options_.level0_slowdown_writes_trigger + 4),
}},
{"level0_stop_writes_trigger",
{
std::to_string(options_.level0_stop_writes_trigger),
std::to_string(options_.level0_stop_writes_trigger + 2),
std::to_string(options_.level0_stop_writes_trigger + 4),
}},
{"max_compaction_bytes",
{
std::to_string(options_.target_file_size_base * 5),
std::to_string(options_.target_file_size_base * 15),
std::to_string(options_.target_file_size_base * 100),
}},
{"target_file_size_base",
{
std::to_string(options_.target_file_size_base),
std::to_string(options_.target_file_size_base * 2),
std::to_string(options_.target_file_size_base * 4),
}},
{"target_file_size_multiplier",
{
std::to_string(options_.target_file_size_multiplier),
"1",
"2",
}},
{"max_bytes_for_level_base",
{
std::to_string(options_.max_bytes_for_level_base / 2),
std::to_string(options_.max_bytes_for_level_base),
std::to_string(options_.max_bytes_for_level_base * 2),
}},
{"max_bytes_for_level_multiplier",
{
std::to_string(options_.max_bytes_for_level_multiplier),
"1",
"2",
}},
{"max_sequential_skip_in_iterations", {"4", "8", "12"}},
};
if (FLAGS_unordered_write) {
options_tbl.emplace("max_successive_merges", std::vector<std::string>{"0"});
} else {
options_tbl.emplace("max_successive_merges",
std::vector<std::string>{"0", "2", "4"});
}
if (FLAGS_allow_setting_blob_options_dynamically) {
options_tbl.emplace("enable_blob_files",
std::vector<std::string>{"false", "true"});
options_tbl.emplace("min_blob_size",
std::vector<std::string>{"0", "8", "16"});
options_tbl.emplace("blob_file_size",
std::vector<std::string>{"1M", "16M", "256M", "1G"});
options_tbl.emplace("blob_compression_type", GetBlobCompressionTags());
options_tbl.emplace("enable_blob_garbage_collection",
std::vector<std::string>{"false", "true"});
options_tbl.emplace(
"blob_garbage_collection_age_cutoff",
std::vector<std::string>{"0.0", "0.25", "0.5", "0.75", "1.0"});
options_tbl.emplace("blob_garbage_collection_force_threshold",
std::vector<std::string>{"0.5", "0.75", "1.0"});
options_tbl.emplace("blob_compaction_readahead_size",
std::vector<std::string>{"0", "1M", "4M"});
options_tbl.emplace("blob_file_starting_level",
std::vector<std::string>{"0", "1", "2"});
options_tbl.emplace("prepopulate_blob_cache",
std::vector<std::string>{"kDisable", "kFlushOnly"});
}
if (FLAGS_bloom_before_level != INT_MAX) {
// Can modify RibbonFilterPolicy field
options_tbl.emplace("table_factory.filter_policy.bloom_before_level",
std::vector<std::string>{"-1", "0", "1", "2",
"2147483646", "2147483647"});
}
options_table_ = std::move(options_tbl);
for (const auto& iter : options_table_) {
options_index_.push_back(iter.first);
}
return true;
}
void StressTest::InitDb(SharedState* shared) {
uint64_t now = clock_->NowMicros();
fprintf(stdout, "%s Initializing db_stress\n",
clock_->TimeToString(now / 1000000).c_str());
PrintEnv();
Open(shared);
BuildOptionsTable();
}
void StressTest::FinishInitDb(SharedState* shared) {
if (FLAGS_read_only) {
uint64_t now = clock_->NowMicros();
fprintf(stdout, "%s Preloading db with %" PRIu64 " KVs\n",
clock_->TimeToString(now / 1000000).c_str(), FLAGS_max_key);
PreloadDbAndReopenAsReadOnly(FLAGS_max_key, shared);
}
if (shared->HasHistory()) {
// The way it works right now is, if there's any history, that means the
// previous run mutating the DB had all its operations traced, in which case
// we should always be able to `Restore()` the expected values to match the
// `db_`'s current seqno.
Status s = shared->Restore(db_);
if (!s.ok()) {
fprintf(stderr, "Error restoring historical expected values: %s\n",
s.ToString().c_str());
exit(1);
}
}
if (FLAGS_use_txn && !FLAGS_use_optimistic_txn) {
// It's OK here without sync because unsynced data cannot be lost at this
// point
// - even with sync_fault_injection=1 as the
// file is still directly writable until after FinishInitDb()
ProcessRecoveredPreparedTxns(shared);
}
if (FLAGS_enable_compaction_filter) {
auto* compaction_filter_factory =
static_cast<DbStressCompactionFilterFactory*>(
options_.compaction_filter_factory.get());
assert(compaction_filter_factory);
// This must be called only after any potential `SharedState::Restore()` has
// completed in order for the `compaction_filter_factory` to operate on the
// correct latest values file.
compaction_filter_factory->SetSharedState(shared);
fprintf(stdout, "Compaction filter factory: %s\n",
compaction_filter_factory->Name());
}
}
void StressTest::TrackExpectedState(SharedState* shared) {
// When data loss is simulated, recovery from potential data loss is a prefix
// recovery that requires tracing
if (MightHaveUnsyncedDataLoss() && IsStateTracked()) {
Status s = shared->SaveAtAndAfter(db_);
if (!s.ok()) {
fprintf(stderr, "Error enabling history tracing: %s\n",
s.ToString().c_str());
exit(1);
}
}
}
Status StressTest::AssertSame(DB* db, ColumnFamilyHandle* cf,
ThreadState::SnapshotState& snap_state) {
Status s;
if (cf->GetName() != snap_state.cf_at_name) {
return s;
}
// This `ReadOptions` is for validation purposes. Ignore
// `FLAGS_rate_limit_user_ops` to avoid slowing any validation.
ReadOptions ropt;
ropt.snapshot = snap_state.snapshot;
Slice ts;
if (!snap_state.timestamp.empty()) {
ts = snap_state.timestamp;
ropt.timestamp = &ts;
}
PinnableSlice exp_v(&snap_state.value);
exp_v.PinSelf();
PinnableSlice v;
s = db->Get(ropt, cf, snap_state.key, &v);
if (!s.ok() && !s.IsNotFound()) {
// When `persist_user_defined_timestamps` is false, a repeated read with
// both a read timestamp and an explicitly taken snapshot cannot guarantee
// consistent result all the time. When it cannot return consistent result,
// it will return an `InvalidArgument` status.
if (s.IsInvalidArgument() && !FLAGS_persist_user_defined_timestamps) {
return Status::OK();
}
return s;
}
if (snap_state.status != s) {
return Status::Corruption(
"The snapshot gave inconsistent results for key " +
std::to_string(Hash(snap_state.key.c_str(), snap_state.key.size(), 0)) +
" in cf " + cf->GetName() + ": (" + snap_state.status.ToString() +
") vs. (" + s.ToString() + ")");
}
if (s.ok()) {
if (exp_v != v) {
return Status::Corruption("The snapshot gave inconsistent values: (" +
exp_v.ToString() + ") vs. (" + v.ToString() +
")");
}
}
if (snap_state.key_vec != nullptr) {
// When `prefix_extractor` is set, seeking to beginning and scanning
// across prefixes are only supported with `total_order_seek` set.
ropt.total_order_seek = true;
std::unique_ptr<Iterator> iterator(db->NewIterator(ropt));
std::unique_ptr<std::vector<bool>> tmp_bitvec(
new std::vector<bool>(FLAGS_max_key));
for (iterator->SeekToFirst(); iterator->Valid(); iterator->Next()) {
uint64_t key_val;
if (GetIntVal(iterator->key().ToString(), &key_val)) {
(*tmp_bitvec.get())[key_val] = true;
}
}
if (!std::equal(snap_state.key_vec->begin(), snap_state.key_vec->end(),
tmp_bitvec.get()->begin())) {
return Status::Corruption("Found inconsistent keys at this snapshot");
}
}
return Status::OK();
}
void StressTest::ProcessStatus(SharedState* shared, std::string opname,
const Status& s,
bool ignore_injected_error) const {
if (s.ok()) {
return;
}
if (!ignore_injected_error || !IsErrorInjectedAndRetryable(s)) {
std::ostringstream oss;
oss << opname << " failed: " << s.ToString();
VerificationAbort(shared, oss.str());
assert(false);
}
}
void StressTest::VerificationAbort(SharedState* shared, std::string msg) const {
fprintf(stderr, "Verification failed: %s\n", msg.c_str());
shared->SetVerificationFailure();
}
void StressTest::VerificationAbort(SharedState* shared, std::string msg, int cf,
int64_t key) const {
auto key_str = Key(key);
Slice key_slice = key_str;
fprintf(stderr,
"Verification failed for column family %d key %s (%" PRIi64 "): %s\n",
cf, key_slice.ToString(true).c_str(), key, msg.c_str());
shared->SetVerificationFailure();
}
void StressTest::VerificationAbort(SharedState* shared, std::string msg, int cf,
int64_t key, Slice value_from_db,
Slice value_from_expected) const {
auto key_str = Key(key);
fprintf(stderr,
"Verification failed for column family %d key %s (%" PRIi64
"): value_from_db: %s, value_from_expected: %s, msg: %s\n",
cf, Slice(key_str).ToString(true).c_str(), key,
value_from_db.ToString(true).c_str(),
value_from_expected.ToString(true).c_str(), msg.c_str());
shared->SetVerificationFailure();
}
void StressTest::VerificationAbort(SharedState* shared, int cf, int64_t key,
const Slice& value,
const WideColumns& columns) const {
assert(shared);
auto key_str = Key(key);
fprintf(stderr,
"Verification failed for column family %d key %s (%" PRIi64
"): Value and columns inconsistent: value: %s, columns: %s\n",
cf, Slice(key_str).ToString(/* hex */ true).c_str(), key,
value.ToString(/* hex */ true).c_str(),
WideColumnsToHex(columns).c_str());
shared->SetVerificationFailure();
}
std::string StressTest::DebugString(const Slice& value,
const WideColumns& columns) {
std::ostringstream oss;
oss << "value: " << value.ToString(/* hex */ true)
<< ", columns: " << WideColumnsToHex(columns);
return oss.str();
}
void StressTest::PrintStatistics() {
if (dbstats) {
fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str());
}
if (dbstats_secondaries) {
fprintf(stdout, "Secondary instances STATISTICS:\n%s\n",
dbstats_secondaries->ToString().c_str());
}
}
// Currently PreloadDb has to be single-threaded.
void StressTest::PreloadDbAndReopenAsReadOnly(int64_t number_of_keys,
SharedState* shared) {
WriteOptions write_opts;
write_opts.disableWAL = FLAGS_disable_wal;
if (FLAGS_sync) {
write_opts.sync = true;
}
if (FLAGS_rate_limit_auto_wal_flush) {
write_opts.rate_limiter_priority = Env::IO_USER;
}
char value[100];
int cf_idx = 0;
Status s;
for (auto cfh : column_families_) {
for (int64_t k = 0; k != number_of_keys; ++k) {
const std::string key = Key(k);
PendingExpectedValue pending_expected_value =
shared->PreparePut(cf_idx, k);
const uint32_t value_base = pending_expected_value.GetFinalValueBase();
const size_t sz = GenerateValue(value_base, value, sizeof(value));
const Slice v(value, sz);
std::string ts;
if (FLAGS_user_timestamp_size > 0) {
ts = GetNowNanos();
}
if (FLAGS_use_put_entity_one_in > 0 &&
(value_base % FLAGS_use_put_entity_one_in) == 0) {
if (!FLAGS_use_txn) {
if (FLAGS_use_attribute_group) {
s = db_->PutEntity(write_opts, key,
GenerateAttributeGroups({cfh}, value_base, v));
} else {
s = db_->PutEntity(write_opts, cfh, key,
GenerateWideColumns(value_base, v));
}
} else {
s = ExecuteTransaction(
write_opts, /*thread=*/nullptr, [&](Transaction& txn) {
return txn.PutEntity(cfh, key,
GenerateWideColumns(value_base, v));
});
}
} else if (FLAGS_use_merge) {
if (!FLAGS_use_txn) {
if (FLAGS_user_timestamp_size > 0) {
s = db_->Merge(write_opts, cfh, key, ts, v);
} else {
s = db_->Merge(write_opts, cfh, key, v);
}
} else {
s = ExecuteTransaction(
write_opts, /*thread=*/nullptr,
[&](Transaction& txn) { return txn.Merge(cfh, key, v); });
}
} else {
if (!FLAGS_use_txn) {
if (FLAGS_user_timestamp_size > 0) {
s = db_->Put(write_opts, cfh, key, ts, v);
} else {
s = db_->Put(write_opts, cfh, key, v);
}
} else {
s = ExecuteTransaction(
write_opts, /*thread=*/nullptr,
[&](Transaction& txn) { return txn.Put(cfh, key, v); });
}
}
if (!s.ok()) {
pending_expected_value.Rollback();
break;
}
pending_expected_value.Commit();
}
if (!s.ok()) {
break;
}
++cf_idx;
}
if (s.ok()) {
s = db_->Flush(FlushOptions(), column_families_);
}
if (s.ok()) {
for (auto cf : column_families_) {
delete cf;
}
column_families_.clear();
delete db_;
db_ = nullptr;
txn_db_ = nullptr;
optimistic_txn_db_ = nullptr;
db_preload_finished_.store(true);
auto now = clock_->NowMicros();
fprintf(stdout, "%s Reopening database in read-only\n",
clock_->TimeToString(now / 1000000).c_str());
// Reopen as read-only, can ignore all options related to updates
Open(shared);
} else {
fprintf(stderr, "Failed to preload db");
exit(1);
}
}
Status StressTest::SetOptions(ThreadState* thread) {
assert(FLAGS_set_options_one_in > 0);
std::unordered_map<std::string, std::string> opts;
std::string name =
options_index_[thread->rand.Next() % options_index_.size()];
int value_idx = thread->rand.Next() % options_table_[name].size();
if (name == "level0_file_num_compaction_trigger" ||
name == "level0_slowdown_writes_trigger" ||
name == "level0_stop_writes_trigger") {
opts["level0_file_num_compaction_trigger"] =
options_table_["level0_file_num_compaction_trigger"][value_idx];
opts["level0_slowdown_writes_trigger"] =
options_table_["level0_slowdown_writes_trigger"][value_idx];
opts["level0_stop_writes_trigger"] =
options_table_["level0_stop_writes_trigger"][value_idx];
} else {
opts[name] = options_table_[name][value_idx];
}
int rand_cf_idx = thread->rand.Next() % FLAGS_column_families;
auto cfh = column_families_[rand_cf_idx];
return db_->SetOptions(cfh, opts);
}
void StressTest::ProcessRecoveredPreparedTxns(SharedState* shared) {
assert(txn_db_);
std::vector<Transaction*> recovered_prepared_trans;
txn_db_->GetAllPreparedTransactions(&recovered_prepared_trans);
for (Transaction* txn : recovered_prepared_trans) {
ProcessRecoveredPreparedTxnsHelper(txn, shared);
delete txn;
}
recovered_prepared_trans.clear();
txn_db_->GetAllPreparedTransactions(&recovered_prepared_trans);
assert(recovered_prepared_trans.size() == 0);
}
void StressTest::ProcessRecoveredPreparedTxnsHelper(Transaction* txn,
SharedState* shared) {
thread_local Random rand(static_cast<uint32_t>(FLAGS_seed));
for (size_t i = 0; i < column_families_.size(); ++i) {
std::unique_ptr<WBWIIterator> wbwi_iter(
txn->GetWriteBatch()->NewIterator(column_families_[i]));
for (wbwi_iter->SeekToFirst(); wbwi_iter->Valid(); wbwi_iter->Next()) {
uint64_t key_val;
if (GetIntVal(wbwi_iter->Entry().key.ToString(), &key_val)) {
shared->SyncPendingPut(static_cast<int>(i) /* cf_idx */, key_val);
}
}
}
if (rand.OneIn(2)) {
Status s = txn->Commit();
assert(s.ok());
} else {
Status s = txn->Rollback();
assert(s.ok());
}
}
Status StressTest::NewTxn(WriteOptions& write_opts,
std::unique_ptr<Transaction>* out_txn) {
if (!FLAGS_use_txn) {
return Status::InvalidArgument("NewTxn when FLAGS_use_txn is not set");
}
write_opts.disableWAL = FLAGS_disable_wal;
static std::atomic<uint64_t> txn_id = {0};
if (FLAGS_use_optimistic_txn) {
out_txn->reset(optimistic_txn_db_->BeginTransaction(write_opts));
return Status::OK();
} else {
TransactionOptions txn_options;
txn_options.use_only_the_last_commit_time_batch_for_recovery =
FLAGS_use_only_the_last_commit_time_batch_for_recovery;
txn_options.lock_timeout = 600000; // 10 min
txn_options.deadlock_detect = true;
out_txn->reset(txn_db_->BeginTransaction(write_opts, txn_options));
auto istr = std::to_string(txn_id.fetch_add(1));
Status s = (*out_txn)->SetName("xid" + istr);
return s;
}
}
Status StressTest::CommitTxn(Transaction& txn, ThreadState* thread) {
if (!FLAGS_use_txn) {
return Status::InvalidArgument("CommitTxn when FLAGS_use_txn is not set");
}
Status s = Status::OK();
if (FLAGS_use_optimistic_txn) {
assert(optimistic_txn_db_);
s = txn.Commit();
} else {
assert(txn_db_);
s = txn.Prepare();
std::shared_ptr<const Snapshot> timestamped_snapshot;
if (s.ok()) {
if (thread && FLAGS_create_timestamped_snapshot_one_in &&
thread->rand.OneIn(FLAGS_create_timestamped_snapshot_one_in)) {
uint64_t ts = db_stress_env->NowNanos();
s = txn.CommitAndTryCreateSnapshot(/*notifier=*/nullptr, ts,
&timestamped_snapshot);
std::pair<Status, std::shared_ptr<const Snapshot>> res;
if (thread->tid == 0) {
uint64_t now = db_stress_env->NowNanos();
res = txn_db_->CreateTimestampedSnapshot(now);
if (res.first.ok()) {
assert(res.second);
assert(res.second->GetTimestamp() == now);
if (timestamped_snapshot) {
assert(res.second->GetTimestamp() >
timestamped_snapshot->GetTimestamp());
}
} else {
assert(!res.second);
}
}
} else {
s = txn.Commit();
}
}
if (thread && FLAGS_create_timestamped_snapshot_one_in > 0 &&
thread->rand.OneInOpt(50000)) {
uint64_t now = db_stress_env->NowNanos();
constexpr uint64_t time_diff = static_cast<uint64_t>(1000) * 1000 * 1000;
txn_db_->ReleaseTimestampedSnapshotsOlderThan(now - time_diff);
}
}
return s;
}
Status StressTest::ExecuteTransaction(
WriteOptions& write_opts, ThreadState* thread,
std::function<Status(Transaction&)>&& ops) {
std::unique_ptr<Transaction> txn;
Status s = NewTxn(write_opts, &txn);
std::string try_again_messages;
if (s.ok()) {
for (int tries = 1;; ++tries) {
s = ops(*txn);
if (s.ok()) {
s = CommitTxn(*txn, thread);
if (s.ok()) {
break;
}
}
// Optimistic txn might return TryAgain, in which case rollback
// and try again.
if (!s.IsTryAgain() || !FLAGS_use_optimistic_txn) {
break;
}
// Record and report historical TryAgain messages for debugging
try_again_messages +=
std::to_string(SystemClock::Default()->NowMicros() / 1000);
try_again_messages += "ms ";
try_again_messages += s.getState();
try_again_messages += "\n";
// In theory, each Rollback after TryAgain should have an independent
// chance of success, so too many retries could indicate something is
// not working properly.
if (tries >= 10) {
s = Status::TryAgain(try_again_messages);
break;
}
s = txn->Rollback();
if (!s.ok()) {
break;
}
}
}
return s;
}
void StressTest::OperateDb(ThreadState* thread) {
ReadOptions read_opts(FLAGS_verify_checksum, true);
read_opts.rate_limiter_priority =
FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
read_opts.async_io = FLAGS_async_io;
read_opts.adaptive_readahead = FLAGS_adaptive_readahead;
read_opts.readahead_size = FLAGS_readahead_size;
read_opts.auto_readahead_size = FLAGS_auto_readahead_size;
read_opts.fill_cache = FLAGS_fill_cache;
read_opts.optimize_multiget_for_io = FLAGS_optimize_multiget_for_io;
WriteOptions write_opts;
if (FLAGS_rate_limit_auto_wal_flush) {
write_opts.rate_limiter_priority = Env::IO_USER;
}
write_opts.memtable_insert_hint_per_batch =
FLAGS_memtable_insert_hint_per_batch;
auto shared = thread->shared;
char value[100];
std::string from_db;
if (FLAGS_sync) {
write_opts.sync = true;
}
write_opts.disableWAL = FLAGS_disable_wal;
write_opts.protection_bytes_per_key = FLAGS_batch_protection_bytes_per_key;
const int prefix_bound = static_cast<int>(FLAGS_readpercent) +
static_cast<int>(FLAGS_prefixpercent);
const int write_bound = prefix_bound + static_cast<int>(FLAGS_writepercent);
const int del_bound = write_bound + static_cast<int>(FLAGS_delpercent);
const int delrange_bound =
del_bound + static_cast<int>(FLAGS_delrangepercent);
const int iterate_bound =
delrange_bound + static_cast<int>(FLAGS_iterpercent);
const uint64_t ops_per_open = FLAGS_ops_per_thread / (FLAGS_reopen + 1);
thread->stats.Start();
for (int open_cnt = 0; open_cnt <= FLAGS_reopen; ++open_cnt) {
if (thread->shared->HasVerificationFailedYet() ||
thread->shared->ShouldStopTest()) {
break;
}
if (open_cnt != 0) {
thread->stats.FinishedSingleOp();
MutexLock l(thread->shared->GetMutex());
while (!thread->snapshot_queue.empty()) {
db_->ReleaseSnapshot(thread->snapshot_queue.front().second.snapshot);
delete thread->snapshot_queue.front().second.key_vec;
thread->snapshot_queue.pop();
}
thread->shared->IncVotedReopen();
if (thread->shared->AllVotedReopen()) {
thread->shared->GetStressTest()->Reopen(thread);
thread->shared->GetCondVar()->SignalAll();
} else {
thread->shared->GetCondVar()->Wait();
}
// Commenting this out as we don't want to reset stats on each open.
// thread->stats.Start();
}
#ifndef NDEBUG
if (fault_fs_guard) {
fault_fs_guard->SetThreadLocalErrorContext(
FaultInjectionIOType::kRead, thread->shared->GetSeed(),
FLAGS_read_fault_one_in,
FLAGS_inject_error_severity == 1 /* retryable */,
FLAGS_inject_error_severity == 2 /* has_data_loss*/);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->SetThreadLocalErrorContext(
FaultInjectionIOType::kWrite, thread->shared->GetSeed(),
FLAGS_write_fault_one_in,
FLAGS_inject_error_severity == 1 /* retryable */,
FLAGS_inject_error_severity == 2 /* has_data_loss*/);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
fault_fs_guard->SetThreadLocalErrorContext(
FaultInjectionIOType::kMetadataRead, thread->shared->GetSeed(),
FLAGS_metadata_read_fault_one_in,
FLAGS_inject_error_severity == 1 /* retryable */,
FLAGS_inject_error_severity == 2 /* has_data_loss*/);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->SetThreadLocalErrorContext(
FaultInjectionIOType::kMetadataWrite, thread->shared->GetSeed(),
FLAGS_metadata_write_fault_one_in,
FLAGS_inject_error_severity == 1 /* retryable */,
FLAGS_inject_error_severity == 2 /* has_data_loss*/);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
}
#endif // NDEBUG
for (uint64_t i = 0; i < ops_per_open; i++) {
if (thread->shared->HasVerificationFailedYet()) {
break;
}
// Change Options
if (thread->rand.OneInOpt(FLAGS_set_options_one_in)) {
Status s = SetOptions(thread);
ProcessStatus(shared, "SetOptions", s);
}
if (thread->rand.OneInOpt(FLAGS_set_in_place_one_in)) {
options_.inplace_update_support ^= options_.inplace_update_support;
}
if (thread->tid == 0 && FLAGS_verify_db_one_in > 0 &&
thread->rand.OneIn(FLAGS_verify_db_one_in)) {
// Temporarily disable error injection for verification
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
}
ContinuouslyVerifyDb(thread);
// Enable back error injection disabled for verification
if (fault_fs_guard) {
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
}
if (thread->shared->ShouldStopTest()) {
break;
}
}
MaybeClearOneColumnFamily(thread);
if (thread->rand.OneInOpt(FLAGS_manual_wal_flush_one_in)) {
bool sync = thread->rand.OneIn(2) ? true : false;
Status s = db_->FlushWAL(sync);
if (!s.ok() && !IsErrorInjectedAndRetryable(s) &&
!(sync && s.IsNotSupported())) {
fprintf(stderr, "FlushWAL(sync=%s) failed: %s\n",
(sync ? "true" : "false"), s.ToString().c_str());
}
}
if (thread->rand.OneInOpt(FLAGS_lock_wal_one_in)) {
Status s = db_->LockWAL();
if (!s.ok() && !IsErrorInjectedAndRetryable(s)) {
fprintf(stderr, "LockWAL() failed: %s\n", s.ToString().c_str());
} else if (s.ok()) {
// Temporarily disable error injection for verification
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
}
// Verify no writes during LockWAL
auto old_seqno = db_->GetLatestSequenceNumber();
// And also that WAL is not changed during LockWAL()
std::unique_ptr<WalFile> old_wal;
s = db_->GetCurrentWalFile(&old_wal);
if (!s.ok()) {
fprintf(stderr, "GetCurrentWalFile() failed: %s\n",
s.ToString().c_str());
} else {
// Yield for a while
do {
std::this_thread::yield();
} while (thread->rand.OneIn(2));
// Current WAL and size should not have changed
std::unique_ptr<WalFile> new_wal;
s = db_->GetCurrentWalFile(&new_wal);
if (!s.ok()) {
fprintf(stderr, "GetCurrentWalFile() failed: %s\n",
s.ToString().c_str());
} else {
if (old_wal->LogNumber() != new_wal->LogNumber()) {
fprintf(stderr,
"Failed: WAL number changed during LockWAL(): %" PRIu64
" to %" PRIu64 "\n",
old_wal->LogNumber(), new_wal->LogNumber());
}
if (old_wal->SizeFileBytes() != new_wal->SizeFileBytes()) {
fprintf(stderr,
"Failed: WAL %" PRIu64
" size changed during LockWAL(): %" PRIu64
" to %" PRIu64 "\n",
old_wal->LogNumber(), old_wal->SizeFileBytes(),
new_wal->SizeFileBytes());
}
}
}
// Verify no writes during LockWAL
auto new_seqno = db_->GetLatestSequenceNumber();
if (old_seqno != new_seqno) {
fprintf(
stderr,
"Failure: latest seqno changed from %u to %u with WAL locked\n",
(unsigned)old_seqno, (unsigned)new_seqno);
}
// Verification done. Now unlock WAL
s = db_->UnlockWAL();
if (!s.ok()) {
fprintf(stderr, "UnlockWAL() failed: %s\n", s.ToString().c_str());
}
// Enable back error injection disabled for verification
if (fault_fs_guard) {
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
}
}
}
if (thread->rand.OneInOpt(FLAGS_sync_wal_one_in)) {
Status s = db_->SyncWAL();
if (!s.ok() && !s.IsNotSupported() && !IsErrorInjectedAndRetryable(s)) {
fprintf(stderr, "SyncWAL() failed: %s\n", s.ToString().c_str());
}
}
int rand_column_family = thread->rand.Next() % FLAGS_column_families;
ColumnFamilyHandle* column_family = column_families_[rand_column_family];
if (thread->rand.OneInOpt(FLAGS_compact_files_one_in)) {
TestCompactFiles(thread, column_family);
}
int64_t rand_key = GenerateOneKey(thread, i);
std::string keystr = Key(rand_key);
Slice key = keystr;
if (thread->rand.OneInOpt(FLAGS_compact_range_one_in)) {
TestCompactRange(thread, rand_key, key, column_family);
if (thread->shared->HasVerificationFailedYet()) {
break;
}
}
if (thread->rand.OneInOpt(FLAGS_promote_l0_one_in)) {
TestPromoteL0(thread, column_family);
}
std::vector<int> rand_column_families =
GenerateColumnFamilies(FLAGS_column_families, rand_column_family);
if (thread->rand.OneInOpt(FLAGS_flush_one_in)) {
Status status = TestFlush(rand_column_families);
ProcessStatus(shared, "Flush", status);
}
if (thread->rand.OneInOpt(FLAGS_get_live_files_apis_one_in)) {
Status s_1 = TestGetLiveFiles();
ProcessStatus(shared, "GetLiveFiles", s_1);
Status s_2 = TestGetLiveFilesMetaData();
ProcessStatus(shared, "GetLiveFilesMetaData", s_2);
Status s_3 = TestGetLiveFilesStorageInfo();
ProcessStatus(shared, "GetLiveFilesStorageInfo", s_3);
}
if (thread->rand.OneInOpt(FLAGS_get_all_column_family_metadata_one_in)) {
Status status = TestGetAllColumnFamilyMetaData();
ProcessStatus(shared, "GetAllColumnFamilyMetaData", status);
}
if (thread->rand.OneInOpt(FLAGS_get_sorted_wal_files_one_in)) {
Status status = TestGetSortedWalFiles();
ProcessStatus(shared, "GetSortedWalFiles", status);
}
if (thread->rand.OneInOpt(FLAGS_get_current_wal_file_one_in)) {
Status status = TestGetCurrentWalFile();
ProcessStatus(shared, "GetCurrentWalFile", status);
}
if (thread->rand.OneInOpt(FLAGS_reset_stats_one_in)) {
Status status = TestResetStats();
ProcessStatus(shared, "ResetStats", status);
}
if (thread->rand.OneInOpt(FLAGS_pause_background_one_in)) {
Status status = TestPauseBackground(thread);
ProcessStatus(shared, "Pause/ContinueBackgroundWork", status);
}
if (thread->rand.OneInOpt(FLAGS_disable_file_deletions_one_in)) {
Status status = TestDisableFileDeletions(thread);
ProcessStatus(shared, "TestDisableFileDeletions", status);
}
if (thread->rand.OneInOpt(FLAGS_disable_manual_compaction_one_in)) {
Status status = TestDisableManualCompaction(thread);
ProcessStatus(shared, "TestDisableManualCompaction", status);
}
if (thread->rand.OneInOpt(FLAGS_verify_checksum_one_in)) {
ThreadStatusUtil::SetEnableTracking(FLAGS_enable_thread_tracking);
ThreadStatusUtil::SetThreadOperation(
ThreadStatus::OperationType::OP_VERIFY_DB_CHECKSUM);
Status status = db_->VerifyChecksum();
ThreadStatusUtil::ResetThreadStatus();
ProcessStatus(shared, "VerifyChecksum", status);
}
if (thread->rand.OneInOpt(FLAGS_verify_file_checksums_one_in)) {
ThreadStatusUtil::SetEnableTracking(FLAGS_enable_thread_tracking);
ThreadStatusUtil::SetThreadOperation(
ThreadStatus::OperationType::OP_VERIFY_FILE_CHECKSUMS);
Status status = db_->VerifyFileChecksums(read_opts);
ThreadStatusUtil::ResetThreadStatus();
ProcessStatus(shared, "VerifyFileChecksums", status);
}
if (thread->rand.OneInOpt(FLAGS_get_property_one_in)) {
// TestGetProperty doesn't return status for us to tell whether it has
// failed due to injected error. So we disable fault injection to avoid
// false positive
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
}
TestGetProperty(thread);
if (fault_fs_guard) {
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
}
}
if (thread->rand.OneInOpt(FLAGS_get_properties_of_all_tables_one_in)) {
Status status = TestGetPropertiesOfAllTables();
ProcessStatus(shared, "TestGetPropertiesOfAllTables", status);
}
std::vector<int64_t> rand_keys = GenerateKeys(rand_key);
if (thread->rand.OneInOpt(FLAGS_ingest_external_file_one_in)) {
TestIngestExternalFile(thread, rand_column_families, rand_keys);
}
if (thread->rand.OneInOpt(FLAGS_backup_one_in)) {
// Beyond a certain DB size threshold, this test becomes heavier than
// it's worth.
uint64_t total_size = 0;
if (FLAGS_backup_max_size > 0) {
std::vector<FileAttributes> files;
db_stress_env->GetChildrenFileAttributes(FLAGS_db, &files);
for (auto& file : files) {
total_size += file.size_bytes;
}
}
if (total_size <= FLAGS_backup_max_size) {
// TODO(hx235): enable error injection with
// backup/restore after fixing the various issues it surfaces
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
}
Status s = TestBackupRestore(thread, rand_column_families, rand_keys);
if (fault_fs_guard) {
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
}
ProcessStatus(shared, "Backup/restore", s);
}
}
if (thread->rand.OneInOpt(FLAGS_checkpoint_one_in)) {
Status s = TestCheckpoint(thread, rand_column_families, rand_keys);
ProcessStatus(shared, "Checkpoint", s);
}
if (thread->rand.OneInOpt(FLAGS_approximate_size_one_in)) {
Status s =
TestApproximateSize(thread, i, rand_column_families, rand_keys);
ProcessStatus(shared, "ApproximateSize", s);
}
if (thread->rand.OneInOpt(FLAGS_acquire_snapshot_one_in)) {
TestAcquireSnapshot(thread, rand_column_family, keystr, i);
}
/*always*/ {
Status s = MaybeReleaseSnapshots(thread, i);
ProcessStatus(shared, "Snapshot", s);
}
// Assign timestamps if necessary.
std::string read_ts_str;
Slice read_ts;
if (FLAGS_user_timestamp_size > 0) {
read_ts_str = GetNowNanos();
read_ts = read_ts_str;
read_opts.timestamp = &read_ts;
}
if (thread->rand.OneInOpt(FLAGS_key_may_exist_one_in)) {
TestKeyMayExist(thread, read_opts, rand_column_families, rand_keys);
}
int prob_op = thread->rand.Uniform(100);
// Reset this in case we pick something other than a read op. We don't
// want to use a stale value when deciding at the beginning of the loop
// whether to vote to reopen
if (prob_op >= 0 && prob_op < static_cast<int>(FLAGS_readpercent)) {
assert(0 <= prob_op);
// OPERATION read
ThreadStatusUtil::SetEnableTracking(FLAGS_enable_thread_tracking);
if (FLAGS_use_multi_get_entity) {
constexpr uint64_t max_batch_size = 64;
const uint64_t batch_size = std::min(
static_cast<uint64_t>(thread->rand.Uniform(max_batch_size)) + 1,
ops_per_open - i);
assert(batch_size >= 1);
assert(batch_size <= max_batch_size);
assert(i + batch_size <= ops_per_open);
rand_keys = GenerateNKeys(thread, static_cast<int>(batch_size), i);
ThreadStatusUtil::SetThreadOperation(
ThreadStatus::OperationType::OP_MULTIGETENTITY);
TestMultiGetEntity(thread, read_opts, rand_column_families,
rand_keys);
i += batch_size - 1;
} else if (FLAGS_use_get_entity) {
ThreadStatusUtil::SetThreadOperation(
ThreadStatus::OperationType::OP_GETENTITY);
TestGetEntity(thread, read_opts, rand_column_families, rand_keys);
} else if (FLAGS_use_multiget) {
// Leave room for one more iteration of the loop with a single key
// batch. This is to ensure that each thread does exactly the same
// number of ops
int multiget_batch_size = static_cast<int>(
std::min(static_cast<uint64_t>(thread->rand.Uniform(64)),
FLAGS_ops_per_thread - i - 1));
// If its the last iteration, ensure that multiget_batch_size is 1
multiget_batch_size = std::max(multiget_batch_size, 1);
rand_keys = GenerateNKeys(thread, multiget_batch_size, i);
ThreadStatusUtil::SetThreadOperation(
ThreadStatus::OperationType::OP_MULTIGET);
TestMultiGet(thread, read_opts, rand_column_families, rand_keys);
i += multiget_batch_size - 1;
} else {
ThreadStatusUtil::SetThreadOperation(
ThreadStatus::OperationType::OP_GET);
TestGet(thread, read_opts, rand_column_families, rand_keys);
}
ThreadStatusUtil::ResetThreadStatus();
} else if (prob_op < prefix_bound) {
assert(static_cast<int>(FLAGS_readpercent) <= prob_op);
// OPERATION prefix scan
// keys are 8 bytes long, prefix size is FLAGS_prefix_size. There are
// (8 - FLAGS_prefix_size) bytes besides the prefix. So there will
// be 2 ^ ((8 - FLAGS_prefix_size) * 8) possible keys with the same
// prefix
TestPrefixScan(thread, read_opts, rand_column_families, rand_keys);
} else if (prob_op < write_bound) {
assert(prefix_bound <= prob_op);
// OPERATION write
TestPut(thread, write_opts, read_opts, rand_column_families, rand_keys,
value);
} else if (prob_op < del_bound) {
assert(write_bound <= prob_op);
// OPERATION delete
TestDelete(thread, write_opts, rand_column_families, rand_keys);
} else if (prob_op < delrange_bound) {
assert(del_bound <= prob_op);
// OPERATION delete range
TestDeleteRange(thread, write_opts, rand_column_families, rand_keys);
} else if (prob_op < iterate_bound) {
assert(delrange_bound <= prob_op);
// OPERATION iterate
if (!FLAGS_skip_verifydb &&
thread->rand.OneInOpt(
FLAGS_verify_iterator_with_expected_state_one_in)) {
ThreadStatusUtil::SetEnableTracking(FLAGS_enable_thread_tracking);
ThreadStatusUtil::SetThreadOperation(
ThreadStatus::OperationType::OP_DBITERATOR);
TestIterateAgainstExpected(thread, read_opts, rand_column_families,
rand_keys);
ThreadStatusUtil::ResetThreadStatus();
} else {
int num_seeks = static_cast<int>(std::min(
std::max(static_cast<uint64_t>(thread->rand.Uniform(4)),
static_cast<uint64_t>(1)),
std::max(static_cast<uint64_t>(FLAGS_ops_per_thread - i - 1),
static_cast<uint64_t>(1))));
rand_keys = GenerateNKeys(thread, num_seeks, i);
i += num_seeks - 1;
ThreadStatusUtil::SetEnableTracking(FLAGS_enable_thread_tracking);
ThreadStatusUtil::SetThreadOperation(
ThreadStatus::OperationType::OP_DBITERATOR);
Status s;
if (FLAGS_use_multi_cf_iterator && FLAGS_use_attribute_group) {
s = TestIterateAttributeGroups(thread, read_opts,
rand_column_families, rand_keys);
ProcessStatus(shared, "IterateAttributeGroups", s);
} else {
s = TestIterate(thread, read_opts, rand_column_families, rand_keys);
ProcessStatus(shared, "Iterate", s);
}
ThreadStatusUtil::ResetThreadStatus();
}
} else {
assert(iterate_bound <= prob_op);
TestCustomOperations(thread, rand_column_families);
}
thread->stats.FinishedSingleOp();
}
#ifndef NDEBUG
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
}
#endif // NDEBUG
}
while (!thread->snapshot_queue.empty()) {
db_->ReleaseSnapshot(thread->snapshot_queue.front().second.snapshot);
delete thread->snapshot_queue.front().second.key_vec;
thread->snapshot_queue.pop();
}
thread->stats.Stop();
}
// Generated a list of keys that close to boundaries of SST keys.
// If there isn't any SST file in the DB, return empty list.
std::vector<std::string> StressTest::GetWhiteBoxKeys(ThreadState* thread,
DB* db,
ColumnFamilyHandle* cfh,
size_t num_keys) {
ColumnFamilyMetaData cfmd;
db->GetColumnFamilyMetaData(cfh, &cfmd);
std::vector<std::string> boundaries;
for (const LevelMetaData& lmd : cfmd.levels) {
for (const SstFileMetaData& sfmd : lmd.files) {
// If FLAGS_user_timestamp_size > 0, then both smallestkey and largestkey
// have timestamps.
const auto& skey = sfmd.smallestkey;
const auto& lkey = sfmd.largestkey;
assert(skey.size() >= FLAGS_user_timestamp_size);
assert(lkey.size() >= FLAGS_user_timestamp_size);
boundaries.push_back(
skey.substr(0, skey.size() - FLAGS_user_timestamp_size));
boundaries.push_back(
lkey.substr(0, lkey.size() - FLAGS_user_timestamp_size));
}
}
if (boundaries.empty()) {
return {};
}
std::vector<std::string> ret;
for (size_t j = 0; j < num_keys; j++) {
std::string k =
boundaries[thread->rand.Uniform(static_cast<int>(boundaries.size()))];
if (thread->rand.OneIn(3)) {
// Reduce one byte from the string
for (int i = static_cast<int>(k.length()) - 1; i >= 0; i--) {
uint8_t cur = k[i];
if (cur > 0) {
k[i] = static_cast<char>(cur - 1);
break;
} else if (i > 0) {
k[i] = 0xFFu;
}
}
} else if (thread->rand.OneIn(2)) {
// Add one byte to the string
for (int i = static_cast<int>(k.length()) - 1; i >= 0; i--) {
uint8_t cur = k[i];
if (cur < 255) {
k[i] = static_cast<char>(cur + 1);
break;
} else if (i > 0) {
k[i] = 0x00;
}
}
}
ret.push_back(k);
}
return ret;
}
// Given a key K, this creates an iterator which scans to K and then
// does a random sequence of Next/Prev operations.
Status StressTest::TestIterate(ThreadState* thread,
const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) {
auto new_iter_func = [&rand_column_families, this](const ReadOptions& ro) {
if (FLAGS_use_multi_cf_iterator) {
std::vector<ColumnFamilyHandle*> cfhs;
cfhs.reserve(rand_column_families.size());
for (auto cf_index : rand_column_families) {
cfhs.emplace_back(column_families_[cf_index]);
}
assert(!cfhs.empty());
return db_->NewCoalescingIterator(ro, cfhs);
} else {
ColumnFamilyHandle* const cfh = column_families_[rand_column_families[0]];
assert(cfh);
return std::unique_ptr<Iterator>(db_->NewIterator(ro, cfh));
}
};
auto verify_func = [](Iterator* iter) {
if (!VerifyWideColumns(iter->value(), iter->columns())) {
fprintf(stderr,
"Value and columns inconsistent for iterator: value: %s, "
"columns: %s\n",
iter->value().ToString(/* hex */ true).c_str(),
WideColumnsToHex(iter->columns()).c_str());
return false;
}
return true;
};
return TestIterateImpl<Iterator>(thread, read_opts, rand_column_families,
rand_keys, new_iter_func, verify_func);
}
Status StressTest::TestIterateAttributeGroups(
ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) {
auto new_iter_func = [&rand_column_families, this](const ReadOptions& ro) {
assert(FLAGS_use_multi_cf_iterator);
std::vector<ColumnFamilyHandle*> cfhs;
cfhs.reserve(rand_column_families.size());
for (auto cf_index : rand_column_families) {
cfhs.emplace_back(column_families_[cf_index]);
}
assert(!cfhs.empty());
return db_->NewAttributeGroupIterator(ro, cfhs);
};
auto verify_func = [](AttributeGroupIterator* iter) {
if (!VerifyIteratorAttributeGroups(iter->attribute_groups())) {
// TODO - print out attribute group values
fprintf(stderr,
"one of the columns in the attribute groups inconsistent for "
"iterator\n");
return false;
}
return true;
};
return TestIterateImpl<AttributeGroupIterator>(
thread, read_opts, rand_column_families, rand_keys, new_iter_func,
verify_func);
}
template <typename IterType, typename NewIterFunc, typename VerifyFunc>
Status StressTest::TestIterateImpl(ThreadState* thread,
const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys,
NewIterFunc new_iter_func,
VerifyFunc verify_func) {
assert(!rand_column_families.empty());
assert(!rand_keys.empty());
ManagedSnapshot snapshot_guard(db_);
ReadOptions ro = read_opts;
ro.snapshot = snapshot_guard.snapshot();
std::string read_ts_str;
Slice read_ts_slice;
MaybeUseOlderTimestampForRangeScan(thread, read_ts_str, read_ts_slice, ro);
std::string op_logs;
ro.pin_data = thread->rand.OneIn(2);
ro.background_purge_on_iterator_cleanup = thread->rand.OneIn(2);
bool expect_total_order = false;
if (thread->rand.OneIn(16)) {
// When prefix extractor is used, it's useful to cover total order seek.
ro.total_order_seek = true;
expect_total_order = true;
} else if (thread->rand.OneIn(4)) {
ro.total_order_seek = false;
ro.auto_prefix_mode = true;
expect_total_order = true;
} else if (options_.prefix_extractor.get() == nullptr) {
expect_total_order = true;
}
std::string upper_bound_str;
Slice upper_bound;
// Prefer no bound with no range query filtering; prefer bound with it
if (FLAGS_use_sqfc_for_range_queries ^ thread->rand.OneIn(16)) {
// Note: upper_bound can be smaller than the seek key.
const int64_t rand_upper_key = GenerateOneKey(thread, FLAGS_ops_per_thread);
upper_bound_str = Key(rand_upper_key);
upper_bound = Slice(upper_bound_str);
ro.iterate_upper_bound = &upper_bound;
}
std::string lower_bound_str;
Slice lower_bound;
if (FLAGS_use_sqfc_for_range_queries ^ thread->rand.OneIn(16)) {
// Note: lower_bound can be greater than the seek key.
const int64_t rand_lower_key = GenerateOneKey(thread, FLAGS_ops_per_thread);
lower_bound_str = Key(rand_lower_key);
lower_bound = Slice(lower_bound_str);
ro.iterate_lower_bound = &lower_bound;
}
if (FLAGS_use_sqfc_for_range_queries && ro.iterate_upper_bound &&
ro.iterate_lower_bound) {
ro.table_filter = sqfc_factory_->GetTableFilterForRangeQuery(
*ro.iterate_lower_bound, *ro.iterate_upper_bound);
}
std::unique_ptr<IterType> iter = new_iter_func(ro);
std::vector<std::string> key_strs;
if (thread->rand.OneIn(16)) {
// Generate keys close to lower or upper bound of SST files.
key_strs =
GetWhiteBoxKeys(thread, db_, column_families_[rand_column_families[0]],
rand_keys.size());
}
if (key_strs.empty()) {
// Use the random keys passed in.
for (int64_t rkey : rand_keys) {
key_strs.push_back(Key(rkey));
}
}
constexpr size_t kOpLogsLimit = 10000;
for (const std::string& key_str : key_strs) {
if (op_logs.size() > kOpLogsLimit) {
// Shouldn't take too much memory for the history log. Clear it.
op_logs = "(cleared...)\n";
}
if (!FLAGS_use_sqfc_for_range_queries &&
ro.iterate_upper_bound != nullptr && thread->rand.OneIn(2)) {
// With a 1/2 chance, change the upper bound.
// Not compatible with sqfc range filter.
// It is possible that it is changed before first use, but there is no
// problem with that.
const int64_t rand_upper_key =
GenerateOneKey(thread, FLAGS_ops_per_thread);
upper_bound_str = Key(rand_upper_key);
upper_bound = Slice(upper_bound_str);
}
if (!FLAGS_use_sqfc_for_range_queries &&
ro.iterate_lower_bound != nullptr && thread->rand.OneIn(4)) {
// With a 1/4 chance, change the lower bound.
// Not compatible with sqfc range filter.
// It is possible that it is changed before first use, but there is no
// problem with that.
const int64_t rand_lower_key =
GenerateOneKey(thread, FLAGS_ops_per_thread);
lower_bound_str = Key(rand_lower_key);
lower_bound = Slice(lower_bound_str);
}
// Set up an iterator, perform the same operations without bounds and with
// total order seek, and compare the results. This is to identify bugs
// related to bounds, prefix extractor, or reseeking. Sometimes we are
// comparing iterators with the same set-up, and it doesn't hurt to check
// them to be equal.
//
// This `ReadOptions` is for validation purposes. Ignore
// `FLAGS_rate_limit_user_ops` to avoid slowing any validation.
ReadOptions cmp_ro;
cmp_ro.timestamp = ro.timestamp;
cmp_ro.iter_start_ts = ro.iter_start_ts;
cmp_ro.snapshot = snapshot_guard.snapshot();
cmp_ro.total_order_seek = true;
ColumnFamilyHandle* const cmp_cfh =
GetControlCfh(thread, rand_column_families[0]);
assert(cmp_cfh);
std::unique_ptr<Iterator> cmp_iter(db_->NewIterator(cmp_ro, cmp_cfh));
bool diverged = false;
Slice key(key_str);
const bool support_seek_first_or_last = expect_total_order;
// Write-prepared and Write-unprepared and multi-cf-iterator do not support
// Refresh() yet.
if (!(FLAGS_use_txn && FLAGS_txn_write_policy != 0 /* write committed */) &&
!FLAGS_use_multi_cf_iterator && thread->rand.OneIn(4)) {
Status s = iter->Refresh(snapshot_guard.snapshot());
if (!s.ok() && IsErrorInjectedAndRetryable(s)) {
return s;
}
assert(s.ok());
op_logs += "Refresh ";
}
LastIterateOp last_op;
if (support_seek_first_or_last && thread->rand.OneIn(100)) {
iter->SeekToFirst();
cmp_iter->SeekToFirst();
last_op = kLastOpSeekToFirst;
op_logs += "STF ";
} else if (support_seek_first_or_last && thread->rand.OneIn(100)) {
iter->SeekToLast();
cmp_iter->SeekToLast();
last_op = kLastOpSeekToLast;
op_logs += "STL ";
} else if (thread->rand.OneIn(8)) {
iter->SeekForPrev(key);
cmp_iter->SeekForPrev(key);
last_op = kLastOpSeekForPrev;
op_logs += "SFP " + key.ToString(true) + " ";
} else {
iter->Seek(key);
cmp_iter->Seek(key);
last_op = kLastOpSeek;
op_logs += "S " + key.ToString(true) + " ";
}
if (!iter->status().ok() && IsErrorInjectedAndRetryable(iter->status())) {
return iter->status();
} else if (!cmp_iter->status().ok() &&
IsErrorInjectedAndRetryable(cmp_iter->status())) {
return cmp_iter->status();
}
VerifyIterator(thread, cmp_cfh, ro, iter.get(), cmp_iter.get(), last_op,
key, op_logs, verify_func, &diverged);
const bool no_reverse =
(FLAGS_memtablerep == "prefix_hash" && !expect_total_order);
for (uint64_t i = 0; i < FLAGS_num_iterations && iter->Valid(); ++i) {
if (no_reverse || thread->rand.OneIn(2)) {
iter->Next();
if (!diverged) {
assert(cmp_iter->Valid());
cmp_iter->Next();
}
op_logs += "N";
} else {
iter->Prev();
if (!diverged) {
assert(cmp_iter->Valid());
cmp_iter->Prev();
}
op_logs += "P";
}
last_op = kLastOpNextOrPrev;
if (!iter->status().ok() && IsErrorInjectedAndRetryable(iter->status())) {
return iter->status();
} else if (!cmp_iter->status().ok() &&
IsErrorInjectedAndRetryable(cmp_iter->status())) {
return cmp_iter->status();
}
VerifyIterator(thread, cmp_cfh, ro, iter.get(), cmp_iter.get(), last_op,
key, op_logs, verify_func, &diverged);
}
thread->stats.AddIterations(1);
op_logs += "; ";
}
return Status::OK();
}
Status StressTest::TestGetLiveFiles() const {
std::vector<std::string> live_file;
uint64_t manifest_size = 0;
return db_->GetLiveFiles(live_file, &manifest_size);
}
Status StressTest::TestGetLiveFilesMetaData() const {
std::vector<LiveFileMetaData> live_file_metadata;
db_->GetLiveFilesMetaData(&live_file_metadata);
return Status::OK();
}
Status StressTest::TestGetLiveFilesStorageInfo() const {
std::vector<LiveFileStorageInfo> live_file_storage_info;
return db_->GetLiveFilesStorageInfo(LiveFilesStorageInfoOptions(),
&live_file_storage_info);
}
Status StressTest::TestGetAllColumnFamilyMetaData() const {
std::vector<ColumnFamilyMetaData> all_cf_metadata;
db_->GetAllColumnFamilyMetaData(&all_cf_metadata);
return Status::OK();
}
Status StressTest::TestGetSortedWalFiles() const {
VectorWalPtr log_ptr;
return db_->GetSortedWalFiles(log_ptr);
}
Status StressTest::TestGetCurrentWalFile() const {
std::unique_ptr<WalFile> cur_wal_file;
return db_->GetCurrentWalFile(&cur_wal_file);
}
// Compare the two iterator, iter and cmp_iter are in the same position,
// unless iter might be made invalidate or undefined because of
// upper or lower bounds, or prefix extractor.
// Will flag failure if the verification fails.
// diverged = true if the two iterator is already diverged.
// True if verification passed, false if not.
template <typename IterType, typename VerifyFuncType>
void StressTest::VerifyIterator(
ThreadState* thread, ColumnFamilyHandle* cmp_cfh, const ReadOptions& ro,
IterType* iter, Iterator* cmp_iter, LastIterateOp op, const Slice& seek_key,
const std::string& op_logs, VerifyFuncType verify_func, bool* diverged) {
assert(diverged);
if (*diverged) {
return;
}
if (ro.iter_start_ts != nullptr) {
assert(FLAGS_user_timestamp_size > 0);
// We currently do not verify iterator when dumping history of internal
// keys.
*diverged = true;
return;
}
if (op == kLastOpSeekToFirst && ro.iterate_lower_bound != nullptr) {
// SeekToFirst() with lower bound is not well-defined.
*diverged = true;
return;
} else if (op == kLastOpSeekToLast && ro.iterate_upper_bound != nullptr) {
// SeekToLast() with higher bound is not well-defined.
*diverged = true;
return;
} else if (op == kLastOpSeek && ro.iterate_lower_bound != nullptr &&
(options_.comparator->CompareWithoutTimestamp(
*ro.iterate_lower_bound, /*a_has_ts=*/false, seek_key,
/*b_has_ts=*/false) >= 0 ||
(ro.iterate_upper_bound != nullptr &&
options_.comparator->CompareWithoutTimestamp(
*ro.iterate_lower_bound, /*a_has_ts=*/false,
*ro.iterate_upper_bound, /*b_has_ts*/ false) >= 0))) {
// Lower bound behavior is not well-defined if it is larger than
// seek key or upper bound. Disable the check for now.
*diverged = true;
return;
} else if (op == kLastOpSeekForPrev && ro.iterate_upper_bound != nullptr &&
(options_.comparator->CompareWithoutTimestamp(
*ro.iterate_upper_bound, /*a_has_ts=*/false, seek_key,
/*b_has_ts=*/false) <= 0 ||
(ro.iterate_lower_bound != nullptr &&
options_.comparator->CompareWithoutTimestamp(
*ro.iterate_lower_bound, /*a_has_ts=*/false,
*ro.iterate_upper_bound, /*b_has_ts=*/false) >= 0))) {
// Upper bound behavior is not well-defined if it is smaller than
// seek key or lower bound. Disable the check for now.
*diverged = true;
return;
}
const SliceTransform* pe = (ro.total_order_seek || ro.auto_prefix_mode)
? nullptr
: options_.prefix_extractor.get();
const Comparator* cmp = options_.comparator;
std::ostringstream read_opt_oss;
read_opt_oss << "pin_data: " << ro.pin_data
<< ", background_purge_on_iterator_cleanup: "
<< ro.background_purge_on_iterator_cleanup
<< ", total_order_seek: " << ro.total_order_seek
<< ", auto_prefix_mode: " << ro.auto_prefix_mode
<< ", iterate_upper_bound: "
<< (ro.iterate_upper_bound
? ro.iterate_upper_bound->ToString(true).c_str()
: "")
<< ", iterate_lower_bound: "
<< (ro.iterate_lower_bound
? ro.iterate_lower_bound->ToString(true).c_str()
: "");
if (iter->Valid() && !cmp_iter->Valid()) {
if (pe != nullptr) {
if (!pe->InDomain(seek_key)) {
// Prefix seek a non-in-domain key is undefined. Skip checking for
// this scenario.
*diverged = true;
return;
} else if (!pe->InDomain(iter->key())) {
// out of range is iterator key is not in domain anymore.
*diverged = true;
return;
} else if (pe->Transform(iter->key()) != pe->Transform(seek_key)) {
*diverged = true;
return;
}
}
fprintf(stderr,
"Control iterator is invalid but iterator has key %s "
"%s under specified iterator ReadOptions: %s (Empty string or "
"missing field indicates default option or value is used)\n",
iter->key().ToString(true).c_str(), op_logs.c_str(),
read_opt_oss.str().c_str());
*diverged = true;
} else if (cmp_iter->Valid()) {
// Iterator is not valid. It can be legitimate if it has already been
// out of upper or lower bound, or filtered out by prefix iterator.
const Slice& total_order_key = cmp_iter->key();
if (pe != nullptr) {
if (!pe->InDomain(seek_key)) {
// Prefix seek a non-in-domain key is undefined. Skip checking for
// this scenario.
*diverged = true;
return;
}
if (!pe->InDomain(total_order_key) ||
pe->Transform(total_order_key) != pe->Transform(seek_key)) {
// If the prefix is exhausted, the only thing needs to check
// is the iterator isn't return a position in prefix.
// Either way, checking can stop from here.
*diverged = true;
if (!iter->Valid() || !pe->InDomain(iter->key()) ||
pe->Transform(iter->key()) != pe->Transform(seek_key)) {
return;
}
fprintf(stderr,
"Iterator stays in prefix but control doesn't"
" iterator key %s control iterator key %s %s under specified "
"iterator ReadOptions: %s (Empty string or "
"missing field indicates default option or value is used)\n",
iter->key().ToString(true).c_str(),
cmp_iter->key().ToString(true).c_str(), op_logs.c_str(),
read_opt_oss.str().c_str());
}
}
// Check upper or lower bounds.
if (!*diverged) {
if ((iter->Valid() && iter->key() != cmp_iter->key()) ||
(!iter->Valid() &&
(ro.iterate_upper_bound == nullptr ||
cmp->CompareWithoutTimestamp(total_order_key, /*a_has_ts=*/false,
*ro.iterate_upper_bound,
/*b_has_ts=*/false) < 0) &&
(ro.iterate_lower_bound == nullptr ||
cmp->CompareWithoutTimestamp(total_order_key, /*a_has_ts=*/false,
*ro.iterate_lower_bound,
/*b_has_ts=*/false) > 0))) {
fprintf(stderr,
"Iterator diverged from control iterator which"
" has value %s %s under specified iterator ReadOptions: %s "
"(Empty string or "
"missing field indicates default option or value is used)\n",
total_order_key.ToString(true).c_str(), op_logs.c_str(),
read_opt_oss.str().c_str());
if (iter->Valid()) {
fprintf(stderr, "iterator has value %s\n",
iter->key().ToString(true).c_str());
} else {
fprintf(stderr, "iterator is not valid with status: %s\n",
iter->status().ToString().c_str());
}
*diverged = true;
}
}
}
if (!*diverged && iter->Valid()) {
if (!verify_func(iter)) {
*diverged = true;
}
}
if (*diverged) {
fprintf(stderr, "VerifyIterator failed. Control CF %s\n",
cmp_cfh->GetName().c_str());
thread->stats.AddErrors(1);
// Fail fast to preserve the DB state.
thread->shared->SetVerificationFailure();
}
}
Status StressTest::TestBackupRestore(
ThreadState* thread, const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) {
std::vector<std::unique_ptr<MutexLock>> locks;
if (ShouldAcquireMutexOnKey()) {
for (int rand_column_family : rand_column_families) {
// `rand_keys[0]` on each chosen CF will be verified.
locks.emplace_back(new MutexLock(
thread->shared->GetMutexForKey(rand_column_family, rand_keys[0])));
}
}
const std::string backup_dir =
FLAGS_db + "/.backup" + std::to_string(thread->tid);
const std::string restore_dir =
FLAGS_db + "/.restore" + std::to_string(thread->tid);
BackupEngineOptions backup_opts(backup_dir);
// For debugging, get info_log from live options
backup_opts.info_log = db_->GetDBOptions().info_log.get();
if (thread->rand.OneIn(10)) {
backup_opts.share_table_files = false;
} else {
backup_opts.share_table_files = true;
if (thread->rand.OneIn(5)) {
backup_opts.share_files_with_checksum = false;
} else {
backup_opts.share_files_with_checksum = true;
if (thread->rand.OneIn(2)) {
// old
backup_opts.share_files_with_checksum_naming =
BackupEngineOptions::kLegacyCrc32cAndFileSize;
} else {
// new
backup_opts.share_files_with_checksum_naming =
BackupEngineOptions::kUseDbSessionId;
}
if (thread->rand.OneIn(2)) {
backup_opts.share_files_with_checksum_naming =
backup_opts.share_files_with_checksum_naming |
BackupEngineOptions::kFlagIncludeFileSize;
}
}
}
if (thread->rand.OneIn(2)) {
backup_opts.schema_version = 1;
} else {
backup_opts.schema_version = 2;
}
if (thread->rand.OneIn(3)) {
backup_opts.max_background_operations = 16;
} else {
backup_opts.max_background_operations = 1;
}
if (thread->rand.OneIn(2)) {
backup_opts.backup_rate_limiter.reset(NewGenericRateLimiter(
FLAGS_backup_max_size * 1000000 /* rate_bytes_per_sec */,
1 /* refill_period_us */));
}
if (thread->rand.OneIn(2)) {
backup_opts.restore_rate_limiter.reset(NewGenericRateLimiter(
FLAGS_backup_max_size * 1000000 /* rate_bytes_per_sec */,
1 /* refill_period_us */));
}
backup_opts.current_temperatures_override_manifest = thread->rand.OneIn(2);
std::ostringstream backup_opt_oss;
backup_opt_oss << "share_table_files: " << backup_opts.share_table_files
<< ", share_files_with_checksum: "
<< backup_opts.share_files_with_checksum
<< ", share_files_with_checksum_naming: "
<< backup_opts.share_files_with_checksum_naming
<< ", schema_version: " << backup_opts.schema_version
<< ", max_background_operations: "
<< backup_opts.max_background_operations
<< ", backup_rate_limiter: "
<< backup_opts.backup_rate_limiter.get()
<< ", restore_rate_limiter: "
<< backup_opts.restore_rate_limiter.get()
<< ", current_temperatures_override_manifest: "
<< backup_opts.current_temperatures_override_manifest;
std::ostringstream create_backup_opt_oss;
std::ostringstream restore_opts_oss;
BackupEngine* backup_engine = nullptr;
std::string from = "a backup/restore operation";
Status s = BackupEngine::Open(db_stress_env, backup_opts, &backup_engine);
if (!s.ok()) {
from = "BackupEngine::Open";
}
if (s.ok() && FLAGS_manual_wal_flush_one_in > 0) {
// To avoid missing buffered WAL data during backup and cause false-positive
// inconsistent values between original DB and restored DB
s = db_->FlushWAL(/*sync=*/false);
if (!s.ok()) {
from = "FlushWAL";
}
}
if (s.ok()) {
if (backup_opts.schema_version >= 2 && thread->rand.OneIn(2)) {
TEST_BackupMetaSchemaOptions test_opts;
test_opts.crc32c_checksums = thread->rand.OneIn(2) == 0;
test_opts.file_sizes = thread->rand.OneIn(2) == 0;
TEST_SetBackupMetaSchemaOptions(backup_engine, test_opts);
}
CreateBackupOptions create_opts;
if (FLAGS_disable_wal) {
// The verification can only work when latest value of `key` is backed up,
// which requires flushing in case of WAL disabled.
//
// Note this triggers a flush with a key lock held. Meanwhile, operations
// like flush/compaction may attempt to grab key locks like in
// `DbStressCompactionFilter`. The philosophy around preventing deadlock
// is the background operation key lock acquisition only tries but does
// not wait for the lock. So here in the foreground it is OK to hold the
// lock and wait on a background operation (flush).
create_opts.flush_before_backup = true;
}
create_opts.decrease_background_thread_cpu_priority = thread->rand.OneIn(2);
create_opts.background_thread_cpu_priority = static_cast<CpuPriority>(
thread->rand.Next() % (static_cast<int>(CpuPriority::kHigh) + 1));
create_backup_opt_oss << "flush_before_backup: "
<< create_opts.flush_before_backup
<< ", decrease_background_thread_cpu_priority: "
<< create_opts.decrease_background_thread_cpu_priority
<< ", background_thread_cpu_priority: "
<< static_cast<int>(
create_opts.background_thread_cpu_priority);
s = backup_engine->CreateNewBackup(create_opts, db_);
if (!s.ok()) {
from = "BackupEngine::CreateNewBackup";
}
}
if (s.ok()) {
delete backup_engine;
backup_engine = nullptr;
s = BackupEngine::Open(db_stress_env, backup_opts, &backup_engine);
if (!s.ok()) {
from = "BackupEngine::Open (again)";
}
}
std::vector<BackupInfo> backup_info;
// If inplace_not_restore, we verify the backup by opening it as a
// read-only DB. If !inplace_not_restore, we restore it to a temporary
// directory for verification.
bool inplace_not_restore = thread->rand.OneIn(3);
if (s.ok()) {
backup_engine->GetBackupInfo(&backup_info,
/*include_file_details*/ inplace_not_restore);
if (backup_info.empty()) {
s = Status::NotFound("no backups found");
from = "BackupEngine::GetBackupInfo";
}
}
if (s.ok() && thread->rand.OneIn(2)) {
s = backup_engine->VerifyBackup(
backup_info.front().backup_id,
thread->rand.OneIn(2) /* verify_with_checksum */);
if (!s.ok()) {
from = "BackupEngine::VerifyBackup";
}
}
const bool allow_persistent = thread->tid == 0; // not too many
bool from_latest = false;
int count = static_cast<int>(backup_info.size());
RestoreOptions restore_options;
restore_options.keep_log_files = thread->rand.OneIn(2);
restore_opts_oss << "keep_log_files: " << restore_options.keep_log_files;
if (s.ok() && !inplace_not_restore) {
if (count > 1) {
s = backup_engine->RestoreDBFromBackup(
restore_options, backup_info[thread->rand.Uniform(count)].backup_id,
restore_dir /* db_dir */, restore_dir /* wal_dir */);
if (!s.ok()) {
from = "BackupEngine::RestoreDBFromBackup";
}
} else {
from_latest = true;
s = backup_engine->RestoreDBFromLatestBackup(
restore_options, restore_dir /* db_dir */, restore_dir /* wal_dir */);
if (!s.ok()) {
from = "BackupEngine::RestoreDBFromLatestBackup";
}
}
}
if (s.ok() && !inplace_not_restore) {
// Purge early if restoring, to ensure the restored directory doesn't
// have some secret dependency on the backup directory.
uint32_t to_keep = 0;
if (allow_persistent) {
// allow one thread to keep up to 2 backups
to_keep = thread->rand.Uniform(3);
}
s = backup_engine->PurgeOldBackups(to_keep);
if (!s.ok()) {
from = "BackupEngine::PurgeOldBackups";
}
}
DB* restored_db = nullptr;
std::vector<ColumnFamilyHandle*> restored_cf_handles;
// Not yet implemented: opening restored BlobDB or TransactionDB
Options db_opt;
if (s.ok() && !FLAGS_use_txn && !FLAGS_use_blob_db) {
s = PrepareOptionsForRestoredDB(&db_opt);
if (!s.ok()) {
from = "PrepareRestoredDBOptions in backup/restore";
}
}
if (s.ok() && !FLAGS_use_txn && !FLAGS_use_blob_db) {
std::vector<ColumnFamilyDescriptor> cf_descriptors;
// TODO(ajkr): `column_family_names_` is not safe to access here when
// `clear_column_family_one_in != 0`. But we can't easily switch to
// `ListColumnFamilies` to get names because it won't necessarily give
// the same order as `column_family_names_`.
assert(FLAGS_clear_column_family_one_in == 0);
for (const auto& name : column_family_names_) {
cf_descriptors.emplace_back(name, ColumnFamilyOptions(db_opt));
}
if (inplace_not_restore) {
BackupInfo& info = backup_info[thread->rand.Uniform(count)];
db_opt.env = info.env_for_open.get();
s = DB::OpenForReadOnly(DBOptions(db_opt), info.name_for_open,
cf_descriptors, &restored_cf_handles,
&restored_db);
if (!s.ok()) {
from = "DB::OpenForReadOnly in backup/restore";
}
} else {
s = DB::Open(DBOptions(db_opt), restore_dir, cf_descriptors,
&restored_cf_handles, &restored_db);
if (!s.ok()) {
from = "DB::Open in backup/restore";
}
}
}
// Note the column families chosen by `rand_column_families` cannot be
// dropped while the locks for `rand_keys` are held. So we should not have
// to worry about accessing those column families throughout this function.
//
// For simplicity, currently only verifies existence/non-existence of a
// single key
for (size_t i = 0; restored_db && s.ok() && i < rand_column_families.size();
++i) {
std::string key_str = Key(rand_keys[0]);
Slice key = key_str;
std::string restored_value;
// This `ReadOptions` is for validation purposes. Ignore
// `FLAGS_rate_limit_user_ops` to avoid slowing any validation.
ReadOptions read_opts;
std::string ts_str;
Slice ts;
if (FLAGS_user_timestamp_size > 0) {
ts_str = GetNowNanos();
ts = ts_str;
read_opts.timestamp = &ts;
}
Status get_status = restored_db->Get(
read_opts, restored_cf_handles[rand_column_families[i]], key,
&restored_value);
bool exists = thread->shared->Exists(rand_column_families[i], rand_keys[0]);
if (get_status.ok()) {
if (!exists && from_latest && ShouldAcquireMutexOnKey()) {
std::ostringstream oss;
oss << "0x" << key.ToString(true)
<< " exists in restore but not in original db";
s = Status::Corruption(oss.str());
}
} else if (get_status.IsNotFound()) {
if (exists && from_latest && ShouldAcquireMutexOnKey()) {
std::ostringstream oss;
oss << "0x" << key.ToString(true)
<< " exists in original db but not in restore";
s = Status::Corruption(oss.str());
}
} else {
s = get_status;
if (!s.ok()) {
from = "DB::Get in backup/restore";
}
}
}
if (restored_db != nullptr) {
for (auto* cf_handle : restored_cf_handles) {
restored_db->DestroyColumnFamilyHandle(cf_handle);
}
delete restored_db;
restored_db = nullptr;
}
if (s.ok() && inplace_not_restore) {
// Purge late if inplace open read-only
uint32_t to_keep = 0;
if (allow_persistent) {
// allow one thread to keep up to 2 backups
to_keep = thread->rand.Uniform(3);
}
s = backup_engine->PurgeOldBackups(to_keep);
if (!s.ok()) {
from = "BackupEngine::PurgeOldBackups";
}
}
if (backup_engine != nullptr) {
delete backup_engine;
backup_engine = nullptr;
}
// Temporarily disable error injection for clean up
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
}
if (s.ok() || IsErrorInjectedAndRetryable(s)) {
// Preserve directories on failure, or allowed persistent backup
if (!allow_persistent) {
s = DestroyDir(db_stress_env, backup_dir);
if (!s.ok()) {
from = "Destroy backup dir";
}
}
}
if (s.ok() || IsErrorInjectedAndRetryable(s)) {
s = DestroyDir(db_stress_env, restore_dir);
if (!s.ok()) {
from = "Destroy restore dir";
}
}
// Enable back error injection disabled for clean up
if (fault_fs_guard) {
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
}
if (!s.ok() && !IsErrorInjectedAndRetryable(s)) {
fprintf(stderr,
"Failure in %s with: %s under specified BackupEngineOptions: %s, "
"CreateBackupOptions: %s, RestoreOptions: %s (Empty string or "
"missing field indicates default option or value is used)\n",
from.c_str(), s.ToString().c_str(), backup_opt_oss.str().c_str(),
create_backup_opt_oss.str().c_str(),
restore_opts_oss.str().c_str());
}
return s;
}
void InitializeMergeOperator(Options& options) {
if (FLAGS_use_full_merge_v1) {
options.merge_operator = MergeOperators::CreateDeprecatedPutOperator();
} else {
if (FLAGS_use_put_entity_one_in > 0) {
options.merge_operator = std::make_shared<DBStressWideMergeOperator>();
} else {
options.merge_operator = MergeOperators::CreatePutOperator();
}
}
}
Status StressTest::PrepareOptionsForRestoredDB(Options* options) {
assert(options);
// To avoid race with other threads' operations (e.g, SetOptions())
// on the same pointer sub-option (e.g, `std::shared_ptr<const FilterPolicy>
// filter_policy`) while having the same settings as `options_`, we create a
// new Options object from `options_`'s string to deep copy these pointer
// sub-options
Status s;
ConfigOptions config_opts;
std::string db_options_str;
s = GetStringFromDBOptions(config_opts, options_, &db_options_str);
if (!s.ok()) {
return s;
}
DBOptions db_options;
s = GetDBOptionsFromString(config_opts, Options(), db_options_str,
&db_options);
if (!s.ok()) {
return s;
}
std::string cf_options_str;
s = GetStringFromColumnFamilyOptions(config_opts, options_, &cf_options_str);
if (!s.ok()) {
return s;
}
ColumnFamilyOptions cf_options;
s = GetColumnFamilyOptionsFromString(config_opts, Options(), cf_options_str,
&cf_options);
if (!s.ok()) {
return s;
}
*options = Options(db_options, cf_options);
options->best_efforts_recovery = false;
options->listeners.clear();
// Avoid dangling/shared file descriptors, for reliable destroy
options->sst_file_manager = nullptr;
// GetColumnFamilyOptionsFromString does not create customized merge operator.
InitializeMergeOperator(*options);
if (FLAGS_user_timestamp_size > 0) {
// Check OPTIONS string loading can bootstrap the correct user comparator
// from object registry.
assert(options->comparator);
assert(options->comparator == test::BytewiseComparatorWithU64TsWrapper());
}
return Status::OK();
}
Status StressTest::TestApproximateSize(
ThreadState* thread, uint64_t iteration,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) {
// rand_keys likely only has one key. Just use the first one.
assert(!rand_keys.empty());
assert(!rand_column_families.empty());
int64_t key1 = rand_keys[0];
int64_t key2;
if (thread->rand.OneIn(2)) {
// Two totally random keys. This tends to cover large ranges.
key2 = GenerateOneKey(thread, iteration);
if (key2 < key1) {
std::swap(key1, key2);
}
} else {
// Unless users pass a very large FLAGS_max_key, it we should not worry
// about overflow. It is for testing, so we skip the overflow checking
// for simplicity.
key2 = key1 + static_cast<int64_t>(thread->rand.Uniform(1000));
}
std::string key1_str = Key(key1);
std::string key2_str = Key(key2);
Range range{Slice(key1_str), Slice(key2_str)};
SizeApproximationOptions sao;
sao.include_memtables = thread->rand.OneIn(2);
if (sao.include_memtables) {
sao.include_files = thread->rand.OneIn(2);
}
if (thread->rand.OneIn(2)) {
if (thread->rand.OneIn(2)) {
sao.files_size_error_margin = 0.0;
} else {
sao.files_size_error_margin =
static_cast<double>(thread->rand.Uniform(3));
}
}
uint64_t result;
return db_->GetApproximateSizes(
sao, column_families_[rand_column_families[0]], &range, 1, &result);
}
Status StressTest::TestCheckpoint(ThreadState* thread,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) {
std::vector<std::unique_ptr<MutexLock>> locks;
if (ShouldAcquireMutexOnKey()) {
for (int rand_column_family : rand_column_families) {
// `rand_keys[0]` on each chosen CF will be verified.
locks.emplace_back(new MutexLock(
thread->shared->GetMutexForKey(rand_column_family, rand_keys[0])));
}
}
std::string checkpoint_dir =
FLAGS_db + "/.checkpoint" + std::to_string(thread->tid);
Options tmp_opts(options_);
tmp_opts.listeners.clear();
tmp_opts.env = db_stress_env;
// Avoid delayed deletion so whole directory can be deleted
tmp_opts.sst_file_manager.reset();
// Temporarily disable error injection for clean-up
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
}
DestroyDB(checkpoint_dir, tmp_opts);
// Enable back error injection disabled for clean-up
if (fault_fs_guard) {
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
}
Checkpoint* checkpoint = nullptr;
Status s = Checkpoint::Create(db_, &checkpoint);
if (s.ok()) {
s = checkpoint->CreateCheckpoint(checkpoint_dir);
if (!s.ok() && !IsErrorInjectedAndRetryable(s)) {
fprintf(stderr, "Fail to create checkpoint to %s\n",
checkpoint_dir.c_str());
std::vector<std::string> files;
// Temporarily disable error injection to print debugging information
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
}
Status my_s = db_stress_env->GetChildren(checkpoint_dir, &files);
// Enable back disable error injection disabled for printing debugging
// information
if (fault_fs_guard) {
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
}
if (!my_s.ok()) {
fprintf(stderr, "Fail to GetChildren under %s due to %s\n",
checkpoint_dir.c_str(), my_s.ToString().c_str());
} else {
for (const auto& f : files) {
fprintf(stderr, " %s\n", f.c_str());
}
}
}
}
delete checkpoint;
checkpoint = nullptr;
std::vector<ColumnFamilyHandle*> cf_handles;
DB* checkpoint_db = nullptr;
if (s.ok()) {
Options options(options_);
options.best_efforts_recovery = false;
options.listeners.clear();
// Avoid race condition in trash handling after delete checkpoint_db
options.sst_file_manager.reset();
std::vector<ColumnFamilyDescriptor> cf_descs;
// TODO(ajkr): `column_family_names_` is not safe to access here when
// `clear_column_family_one_in != 0`. But we can't easily switch to
// `ListColumnFamilies` to get names because it won't necessarily give
// the same order as `column_family_names_`.
assert(FLAGS_clear_column_family_one_in == 0);
if (FLAGS_clear_column_family_one_in == 0) {
for (const auto& name : column_family_names_) {
cf_descs.emplace_back(name, ColumnFamilyOptions(options));
}
s = DB::OpenForReadOnly(DBOptions(options), checkpoint_dir, cf_descs,
&cf_handles, &checkpoint_db);
}
}
if (checkpoint_db != nullptr) {
// Note the column families chosen by `rand_column_families` cannot be
// dropped while the locks for `rand_keys` are held. So we should not have
// to worry about accessing those column families throughout this function.
for (size_t i = 0; s.ok() && i < rand_column_families.size(); ++i) {
std::string key_str = Key(rand_keys[0]);
Slice key = key_str;
std::string ts_str;
Slice ts;
ReadOptions read_opts;
if (FLAGS_user_timestamp_size > 0) {
ts_str = GetNowNanos();
ts = ts_str;
read_opts.timestamp = &ts;
}
std::string value;
Status get_status = checkpoint_db->Get(
read_opts, cf_handles[rand_column_families[i]], key, &value);
bool exists =
thread->shared->Exists(rand_column_families[i], rand_keys[0]);
if (get_status.ok()) {
if (!exists && ShouldAcquireMutexOnKey()) {
std::ostringstream oss;
oss << "0x" << key.ToString(true) << " exists in checkpoint "
<< checkpoint_dir << " but not in original db";
s = Status::Corruption(oss.str());
}
} else if (get_status.IsNotFound()) {
if (exists && ShouldAcquireMutexOnKey()) {
std::ostringstream oss;
oss << "0x" << key.ToString(true)
<< " exists in original db but not in checkpoint "
<< checkpoint_dir;
s = Status::Corruption(oss.str());
}
} else {
s = get_status;
}
}
for (auto cfh : cf_handles) {
delete cfh;
}
cf_handles.clear();
delete checkpoint_db;
checkpoint_db = nullptr;
}
// Temporarily disable error injection for clean-up
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
}
if (!s.ok() && !IsErrorInjectedAndRetryable(s)) {
fprintf(stderr, "A checkpoint operation failed with: %s\n",
s.ToString().c_str());
} else {
DestroyDB(checkpoint_dir, tmp_opts);
}
// Enable back error injection disabled for clean-up
if (fault_fs_guard) {
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
}
return s;
}
void StressTest::TestGetProperty(ThreadState* thread) const {
std::unordered_set<std::string> levelPropertyNames = {
DB::Properties::kAggregatedTablePropertiesAtLevel,
DB::Properties::kCompressionRatioAtLevelPrefix,
DB::Properties::kNumFilesAtLevelPrefix,
};
std::unordered_set<std::string> unknownPropertyNames = {
DB::Properties::kEstimateOldestKeyTime,
DB::Properties::kOptionsStatistics,
DB::Properties::
kLiveSstFilesSizeAtTemperature, // similar to levelPropertyNames, it
// requires a number suffix
};
unknownPropertyNames.insert(levelPropertyNames.begin(),
levelPropertyNames.end());
std::unordered_set<std::string> blobCachePropertyNames = {
DB::Properties::kBlobCacheCapacity,
DB::Properties::kBlobCacheUsage,
DB::Properties::kBlobCachePinnedUsage,
};
if (db_->GetOptions().blob_cache == nullptr) {
unknownPropertyNames.insert(blobCachePropertyNames.begin(),
blobCachePropertyNames.end());
}
std::string prop;
for (const auto& ppt_name_and_info : InternalStats::ppt_name_to_info) {
bool res = db_->GetProperty(ppt_name_and_info.first, &prop);
if (unknownPropertyNames.find(ppt_name_and_info.first) ==
unknownPropertyNames.end()) {
if (!res) {
fprintf(stderr, "Failed to get DB property: %s\n",
ppt_name_and_info.first.c_str());
thread->shared->SetVerificationFailure();
}
if (ppt_name_and_info.second.handle_int != nullptr) {
uint64_t prop_int;
if (!db_->GetIntProperty(ppt_name_and_info.first, &prop_int)) {
fprintf(stderr, "Failed to get Int property: %s\n",
ppt_name_and_info.first.c_str());
thread->shared->SetVerificationFailure();
}
}
if (ppt_name_and_info.second.handle_map != nullptr) {
std::map<std::string, std::string> prop_map;
if (!db_->GetMapProperty(ppt_name_and_info.first, &prop_map)) {
fprintf(stderr, "Failed to get Map property: %s\n",
ppt_name_and_info.first.c_str());
thread->shared->SetVerificationFailure();
}
}
}
}
ROCKSDB_NAMESPACE::ColumnFamilyMetaData cf_meta_data;
db_->GetColumnFamilyMetaData(&cf_meta_data);
int level_size = static_cast<int>(cf_meta_data.levels.size());
for (int level = 0; level < level_size; level++) {
for (const auto& ppt_name : levelPropertyNames) {
bool res = db_->GetProperty(ppt_name + std::to_string(level), &prop);
if (!res) {
fprintf(stderr, "Failed to get DB property: %s\n",
(ppt_name + std::to_string(level)).c_str());
thread->shared->SetVerificationFailure();
}
}
}
// Test for an invalid property name
if (thread->rand.OneIn(100)) {
if (db_->GetProperty("rocksdb.invalid_property_name", &prop)) {
fprintf(stderr, "Failed to return false for invalid property name\n");
thread->shared->SetVerificationFailure();
}
}
}
Status StressTest::TestGetPropertiesOfAllTables() const {
TablePropertiesCollection props;
return db_->GetPropertiesOfAllTables(&props);
}
void StressTest::TestCompactFiles(ThreadState* thread,
ColumnFamilyHandle* column_family) {
ROCKSDB_NAMESPACE::ColumnFamilyMetaData cf_meta_data;
db_->GetColumnFamilyMetaData(column_family, &cf_meta_data);
if (cf_meta_data.levels.empty()) {
return;
}
// Randomly compact up to three consecutive files from a level
const int kMaxRetry = 3;
for (int attempt = 0; attempt < kMaxRetry; ++attempt) {
size_t random_level =
thread->rand.Uniform(static_cast<int>(cf_meta_data.levels.size()));
const auto& files = cf_meta_data.levels[random_level].files;
if (files.size() > 0) {
size_t random_file_index =
thread->rand.Uniform(static_cast<int>(files.size()));
if (files[random_file_index].being_compacted) {
// Retry as the selected file is currently being compacted
continue;
}
std::vector<std::string> input_files;
input_files.push_back(files[random_file_index].name);
if (random_file_index > 0 &&
!files[random_file_index - 1].being_compacted) {
input_files.push_back(files[random_file_index - 1].name);
}
if (random_file_index + 1 < files.size() &&
!files[random_file_index + 1].being_compacted) {
input_files.push_back(files[random_file_index + 1].name);
}
size_t output_level =
std::min(random_level + 1, cf_meta_data.levels.size() - 1);
CompactionOptions compact_options;
if (thread->rand.OneIn(2)) {
compact_options.output_file_size_limit = FLAGS_target_file_size_base;
}
std::ostringstream compact_opt_oss;
compact_opt_oss << "output_file_size_limit: "
<< compact_options.output_file_size_limit;
auto s = db_->CompactFiles(compact_options, column_family, input_files,
static_cast<int>(output_level));
if (!s.ok()) {
thread->stats.AddNumCompactFilesFailed(1);
// TOOD (hx235): allow an exact list of tolerable failures under stress
// test
bool non_ok_status_allowed =
s.IsManualCompactionPaused() || IsErrorInjectedAndRetryable(s) ||
s.IsAborted() || s.IsInvalidArgument() || s.IsNotSupported();
if (!non_ok_status_allowed) {
fprintf(stderr,
"Unable to perform CompactFiles(): %s under specified "
"CompactionOptions: %s (Empty string or "
"missing field indicates default option or value is used)\n",
s.ToString().c_str(), compact_opt_oss.str().c_str());
thread->shared->SafeTerminate();
}
} else {
thread->stats.AddNumCompactFilesSucceed(1);
}
break;
}
}
}
void StressTest::TestPromoteL0(ThreadState* thread,
ColumnFamilyHandle* column_family) {
int target_level = thread->rand.Next() % options_.num_levels;
Status s = db_->PromoteL0(column_family, target_level);
if (!s.ok()) {
// The second error occurs when another concurrent PromoteL0() moving the
// same files finishes first which is an allowed behavior
bool non_ok_status_allowed =
s.IsInvalidArgument() ||
(s.IsCorruption() &&
s.ToString().find("VersionBuilder: Cannot delete table file") !=
std::string::npos &&
s.ToString().find("since it is on level") != std::string::npos);
if (!non_ok_status_allowed) {
fprintf(stderr,
"Unable to perform PromoteL0(): %s under specified "
"target_level: %d.\n",
s.ToString().c_str(), target_level);
thread->shared->SafeTerminate();
}
}
}
Status StressTest::TestFlush(const std::vector<int>& rand_column_families) {
FlushOptions flush_opts;
assert(flush_opts.wait);
if (FLAGS_atomic_flush) {
return db_->Flush(flush_opts, column_families_);
}
std::vector<ColumnFamilyHandle*> cfhs;
std::for_each(rand_column_families.begin(), rand_column_families.end(),
[this, &cfhs](int k) { cfhs.push_back(column_families_[k]); });
return db_->Flush(flush_opts, cfhs);
}
Status StressTest::TestResetStats() { return db_->ResetStats(); }
Status StressTest::TestPauseBackground(ThreadState* thread) {
Status status = db_->PauseBackgroundWork();
if (!status.ok()) {
return status;
}
// To avoid stalling/deadlocking ourself in this thread, just
// sleep here during pause and let other threads do db operations.
// Sleep up to ~16 seconds (2**24 microseconds), but very skewed
// toward short pause. (1 chance in 25 of pausing >= 1s;
// 1 chance in 625 of pausing full 16s.)
int pwr2_micros =
std::min(thread->rand.Uniform(25), thread->rand.Uniform(25));
clock_->SleepForMicroseconds(1 << pwr2_micros);
return db_->ContinueBackgroundWork();
}
Status StressTest::TestDisableFileDeletions(ThreadState* thread) {
Status status = db_->DisableFileDeletions();
if (!status.ok()) {
return status;
}
// Similar to TestPauseBackground()
int pwr2_micros =
std::min(thread->rand.Uniform(25), thread->rand.Uniform(25));
clock_->SleepForMicroseconds(1 << pwr2_micros);
return db_->EnableFileDeletions();
}
Status StressTest::TestDisableManualCompaction(ThreadState* thread) {
db_->DisableManualCompaction();
// Similar to TestPauseBackground()
int pwr2_micros =
std::min(thread->rand.Uniform(25), thread->rand.Uniform(25));
clock_->SleepForMicroseconds(1 << pwr2_micros);
db_->EnableManualCompaction();
return Status::OK();
}
void StressTest::TestAcquireSnapshot(ThreadState* thread,
int rand_column_family,
const std::string& keystr, uint64_t i) {
Slice key = keystr;
ColumnFamilyHandle* column_family = column_families_[rand_column_family];
// This `ReadOptions` is for validation purposes. Ignore
// `FLAGS_rate_limit_user_ops` to avoid slowing any validation.
ReadOptions ropt;
auto db_impl = static_cast_with_check<DBImpl>(db_->GetRootDB());
const bool ww_snapshot = thread->rand.OneIn(10);
const Snapshot* snapshot =
ww_snapshot ? db_impl->GetSnapshotForWriteConflictBoundary()
: db_->GetSnapshot();
ropt.snapshot = snapshot;
// Ideally, we want snapshot taking and timestamp generation to be atomic
// here, so that the snapshot corresponds to the timestamp. However, it is
// not possible with current GetSnapshot() API.
std::string ts_str;
Slice ts;
if (FLAGS_user_timestamp_size > 0) {
ts_str = GetNowNanos();
ts = ts_str;
ropt.timestamp = &ts;
}
std::string value_at;
// When taking a snapshot, we also read a key from that snapshot. We
// will later read the same key before releasing the snapshot and
// verify that the results are the same.
Status status_at = db_->Get(ropt, column_family, key, &value_at);
if (!status_at.ok() && IsErrorInjectedAndRetryable(status_at)) {
db_->ReleaseSnapshot(snapshot);
return;
}
std::vector<bool>* key_vec = nullptr;
if (FLAGS_compare_full_db_state_snapshot && (thread->tid == 0)) {
key_vec = new std::vector<bool>(FLAGS_max_key);
// When `prefix_extractor` is set, seeking to beginning and scanning
// across prefixes are only supported with `total_order_seek` set.
ropt.total_order_seek = true;
std::unique_ptr<Iterator> iterator(db_->NewIterator(ropt));
for (iterator->SeekToFirst(); iterator->Valid(); iterator->Next()) {
uint64_t key_val;
if (GetIntVal(iterator->key().ToString(), &key_val)) {
(*key_vec)[key_val] = true;
}
}
}
ThreadState::SnapshotState snap_state = {snapshot,
rand_column_family,
column_family->GetName(),
keystr,
status_at,
value_at,
key_vec,
ts_str};
uint64_t hold_for = FLAGS_snapshot_hold_ops;
if (FLAGS_long_running_snapshots) {
// Hold 10% of snapshots for 10x more
if (thread->rand.OneIn(10)) {
assert(hold_for < std::numeric_limits<uint64_t>::max() / 10);
hold_for *= 10;
// Hold 1% of snapshots for 100x more
if (thread->rand.OneIn(10)) {
assert(hold_for < std::numeric_limits<uint64_t>::max() / 10);
hold_for *= 10;
}
}
}
uint64_t release_at = std::min(FLAGS_ops_per_thread - 1, i + hold_for);
thread->snapshot_queue.emplace(release_at, snap_state);
}
Status StressTest::MaybeReleaseSnapshots(ThreadState* thread, uint64_t i) {
while (!thread->snapshot_queue.empty() &&
i >= thread->snapshot_queue.front().first) {
auto snap_state = thread->snapshot_queue.front().second;
assert(snap_state.snapshot);
// Note: this is unsafe as the cf might be dropped concurrently. But
// it is ok since unclean cf drop is cunnrently not supported by write
// prepared transactions.
Status s = AssertSame(db_, column_families_[snap_state.cf_at], snap_state);
db_->ReleaseSnapshot(snap_state.snapshot);
delete snap_state.key_vec;
thread->snapshot_queue.pop();
if (!s.ok()) {
return s;
}
}
return Status::OK();
}
void StressTest::TestCompactRange(ThreadState* thread, int64_t rand_key,
const Slice& start_key,
ColumnFamilyHandle* column_family) {
int64_t end_key_num;
if (std::numeric_limits<int64_t>::max() - rand_key <
FLAGS_compact_range_width) {
end_key_num = std::numeric_limits<int64_t>::max();
} else {
end_key_num = FLAGS_compact_range_width + rand_key;
}
std::string end_key_buf = Key(end_key_num);
Slice end_key(end_key_buf);
CompactRangeOptions cro;
cro.exclusive_manual_compaction = static_cast<bool>(thread->rand.Next() % 2);
if (static_cast<ROCKSDB_NAMESPACE::CompactionStyle>(FLAGS_compaction_style) !=
ROCKSDB_NAMESPACE::CompactionStyle::kCompactionStyleFIFO) {
cro.change_level = static_cast<bool>(thread->rand.Next() % 2);
}
if (thread->rand.OneIn(2)) {
cro.target_level = thread->rand.Next() % options_.num_levels;
}
std::vector<BottommostLevelCompaction> bottom_level_styles = {
BottommostLevelCompaction::kSkip,
BottommostLevelCompaction::kIfHaveCompactionFilter,
BottommostLevelCompaction::kForce,
BottommostLevelCompaction::kForceOptimized};
cro.bottommost_level_compaction =
bottom_level_styles[thread->rand.Next() %
static_cast<uint32_t>(bottom_level_styles.size())];
cro.allow_write_stall = static_cast<bool>(thread->rand.Next() % 2);
cro.max_subcompactions = static_cast<uint32_t>(thread->rand.Next() % 4);
std::vector<BlobGarbageCollectionPolicy> blob_gc_policies = {
BlobGarbageCollectionPolicy::kForce,
BlobGarbageCollectionPolicy::kDisable,
BlobGarbageCollectionPolicy::kUseDefault};
cro.blob_garbage_collection_policy =
blob_gc_policies[thread->rand.Next() %
static_cast<uint32_t>(blob_gc_policies.size())];
cro.blob_garbage_collection_age_cutoff =
static_cast<double>(thread->rand.Next() % 100) / 100.0;
const Snapshot* pre_snapshot = nullptr;
uint32_t pre_hash = 0;
if (thread->rand.OneIn(2)) {
// Temporarily disable error injection to for validation
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
}
// Declare a snapshot and compare the data before and after the compaction
pre_snapshot = db_->GetSnapshot();
pre_hash =
GetRangeHash(thread, pre_snapshot, column_family, start_key, end_key);
// Enable back error injection disabled for validation
if (fault_fs_guard) {
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
}
}
std::ostringstream compact_range_opt_oss;
compact_range_opt_oss << "exclusive_manual_compaction: "
<< cro.exclusive_manual_compaction
<< ", change_level: " << cro.change_level
<< ", target_level: " << cro.target_level
<< ", bottommost_level_compaction: "
<< static_cast<int>(cro.bottommost_level_compaction)
<< ", allow_write_stall: " << cro.allow_write_stall
<< ", max_subcompactions: " << cro.max_subcompactions
<< ", blob_garbage_collection_policy: "
<< static_cast<int>(cro.blob_garbage_collection_policy)
<< ", blob_garbage_collection_age_cutoff: "
<< cro.blob_garbage_collection_age_cutoff;
Status status = db_->CompactRange(cro, column_family, &start_key, &end_key);
if (!status.ok()) {
// TOOD (hx235): allow an exact list of tolerable failures under stress test
bool non_ok_status_allowed =
status.IsManualCompactionPaused() ||
IsErrorInjectedAndRetryable(status) || status.IsAborted() ||
status.IsInvalidArgument() || status.IsNotSupported();
if (!non_ok_status_allowed) {
fprintf(stderr,
"Unable to perform CompactRange(): %s under specified "
"CompactRangeOptions: %s (Empty string or "
"missing field indicates default option or value is used)\n",
status.ToString().c_str(), compact_range_opt_oss.str().c_str());
// Fail fast to preserve the DB state.
thread->shared->SetVerificationFailure();
}
}
if (pre_snapshot != nullptr) {
// Temporarily disable error injection for validation
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
}
uint32_t post_hash =
GetRangeHash(thread, pre_snapshot, column_family, start_key, end_key);
if (pre_hash != post_hash) {
fprintf(stderr,
"Data hash different before and after compact range "
"start_key %s end_key %s under specified CompactRangeOptions: %s "
"(Empty string or "
"missing field indicates default option or value is used)\n",
start_key.ToString(true).c_str(), end_key.ToString(true).c_str(),
compact_range_opt_oss.str().c_str());
thread->stats.AddErrors(1);
// Fail fast to preserve the DB state.
thread->shared->SetVerificationFailure();
}
db_->ReleaseSnapshot(pre_snapshot);
if (fault_fs_guard) {
// Enable back error injection disabled for validation
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
}
}
}
uint32_t StressTest::GetRangeHash(ThreadState* thread, const Snapshot* snapshot,
ColumnFamilyHandle* column_family,
const Slice& start_key,
const Slice& end_key) {
// This `ReadOptions` is for validation purposes. Ignore
// `FLAGS_rate_limit_user_ops` to avoid slowing any validation.
ReadOptions ro;
ro.snapshot = snapshot;
ro.total_order_seek = true;
std::string ts_str;
Slice ts;
if (FLAGS_user_timestamp_size > 0) {
ts_str = GetNowNanos();
ts = ts_str;
ro.timestamp = &ts;
}
std::unique_ptr<Iterator> it(db_->NewIterator(ro, column_family));
constexpr char kCrcCalculatorSepearator = ';';
uint32_t crc = 0;
for (it->Seek(start_key);
it->Valid() && options_.comparator->Compare(it->key(), end_key) <= 0;
it->Next()) {
crc = crc32c::Extend(crc, it->key().data(), it->key().size());
crc = crc32c::Extend(crc, &kCrcCalculatorSepearator, sizeof(char));
crc = crc32c::Extend(crc, it->value().data(), it->value().size());
crc = crc32c::Extend(crc, &kCrcCalculatorSepearator, sizeof(char));
for (const auto& column : it->columns()) {
crc = crc32c::Extend(crc, column.name().data(), column.name().size());
crc = crc32c::Extend(crc, &kCrcCalculatorSepearator, sizeof(char));
crc = crc32c::Extend(crc, column.value().data(), column.value().size());
crc = crc32c::Extend(crc, &kCrcCalculatorSepearator, sizeof(char));
}
}
if (!it->status().ok()) {
fprintf(stderr, "Iterator non-OK when calculating range CRC: %s\n",
it->status().ToString().c_str());
thread->stats.AddErrors(1);
// Fail fast to preserve the DB state.
thread->shared->SetVerificationFailure();
}
return crc;
}
void StressTest::PrintEnv() const {
fprintf(stdout, "RocksDB version : %d.%d\n", kMajorVersion,
kMinorVersion);
fprintf(stdout, "Format version : %d\n", FLAGS_format_version);
fprintf(stdout, "TransactionDB : %s\n",
FLAGS_use_txn ? "true" : "false");
if (FLAGS_use_txn) {
fprintf(stdout, "TransactionDB Type : %s\n",
FLAGS_use_optimistic_txn ? "Optimistic" : "Pessimistic");
if (FLAGS_use_optimistic_txn) {
fprintf(stdout, "OCC Validation Type : %d\n",
static_cast<int>(FLAGS_occ_validation_policy));
if (static_cast<uint64_t>(OccValidationPolicy::kValidateParallel) ==
FLAGS_occ_validation_policy) {
fprintf(stdout, "Share Lock Buckets : %s\n",
FLAGS_share_occ_lock_buckets ? "true" : "false");
if (FLAGS_share_occ_lock_buckets) {
fprintf(stdout, "Lock Bucket Count : %d\n",
static_cast<int>(FLAGS_occ_lock_bucket_count));
}
}
} else {
fprintf(stdout, "Two write queues: : %s\n",
FLAGS_two_write_queues ? "true" : "false");
fprintf(stdout, "Write policy : %d\n",
static_cast<int>(FLAGS_txn_write_policy));
if (static_cast<uint64_t>(TxnDBWritePolicy::WRITE_PREPARED) ==
FLAGS_txn_write_policy ||
static_cast<uint64_t>(TxnDBWritePolicy::WRITE_UNPREPARED) ==
FLAGS_txn_write_policy) {
fprintf(stdout, "Snapshot cache bits : %d\n",
static_cast<int>(FLAGS_wp_snapshot_cache_bits));
fprintf(stdout, "Commit cache bits : %d\n",
static_cast<int>(FLAGS_wp_commit_cache_bits));
}
fprintf(stdout, "last cwb for recovery : %s\n",
FLAGS_use_only_the_last_commit_time_batch_for_recovery ? "true"
: "false");
}
}
fprintf(stdout, "Stacked BlobDB : %s\n",
FLAGS_use_blob_db ? "true" : "false");
fprintf(stdout, "Read only mode : %s\n",
FLAGS_read_only ? "true" : "false");
fprintf(stdout, "Atomic flush : %s\n",
FLAGS_atomic_flush ? "true" : "false");
fprintf(stdout, "Manual WAL flush : %s\n",
FLAGS_manual_wal_flush_one_in > 0 ? "true" : "false");
fprintf(stdout, "Column families : %d\n", FLAGS_column_families);
if (!FLAGS_test_batches_snapshots) {
fprintf(stdout, "Clear CFs one in : %d\n",
FLAGS_clear_column_family_one_in);
}
fprintf(stdout, "Number of threads : %d\n", FLAGS_threads);
fprintf(stdout, "Ops per thread : %lu\n",
(unsigned long)FLAGS_ops_per_thread);
std::string ttl_state("unused");
if (FLAGS_ttl > 0) {
ttl_state = std::to_string(FLAGS_ttl);
}
fprintf(stdout, "Time to live(sec) : %s\n", ttl_state.c_str());
fprintf(stdout, "Read percentage : %d%%\n", FLAGS_readpercent);
fprintf(stdout, "Prefix percentage : %d%%\n", FLAGS_prefixpercent);
fprintf(stdout, "Write percentage : %d%%\n", FLAGS_writepercent);
fprintf(stdout, "Delete percentage : %d%%\n", FLAGS_delpercent);
fprintf(stdout, "Delete range percentage : %d%%\n", FLAGS_delrangepercent);
fprintf(stdout, "No overwrite percentage : %d%%\n",
FLAGS_nooverwritepercent);
fprintf(stdout, "Iterate percentage : %d%%\n", FLAGS_iterpercent);
fprintf(stdout, "Custom ops percentage : %d%%\n", FLAGS_customopspercent);
fprintf(stdout, "DB-write-buffer-size : %" PRIu64 "\n",
FLAGS_db_write_buffer_size);
fprintf(stdout, "Write-buffer-size : %d\n", FLAGS_write_buffer_size);
fprintf(stdout, "Iterations : %lu\n",
(unsigned long)FLAGS_num_iterations);
fprintf(stdout, "Max key : %lu\n",
(unsigned long)FLAGS_max_key);
fprintf(stdout, "Ratio #ops/#keys : %f\n",
(1.0 * FLAGS_ops_per_thread * FLAGS_threads) / FLAGS_max_key);
fprintf(stdout, "Num times DB reopens : %d\n", FLAGS_reopen);
fprintf(stdout, "Batches/snapshots : %d\n",
FLAGS_test_batches_snapshots);
fprintf(stdout, "Do update in place : %d\n",
FLAGS_inplace_update_support);
fprintf(stdout, "Num keys per lock : %d\n",
1 << FLAGS_log2_keys_per_lock);
std::string compression = CompressionTypeToString(compression_type_e);
fprintf(stdout, "Compression : %s\n", compression.c_str());
std::string bottommost_compression =
CompressionTypeToString(bottommost_compression_type_e);
fprintf(stdout, "Bottommost Compression : %s\n",
bottommost_compression.c_str());
std::string checksum = ChecksumTypeToString(checksum_type_e);
fprintf(stdout, "Checksum type : %s\n", checksum.c_str());
fprintf(stdout, "File checksum impl : %s\n",
FLAGS_file_checksum_impl.c_str());
fprintf(stdout, "Bloom bits / key : %s\n",
FormatDoubleParam(FLAGS_bloom_bits).c_str());
fprintf(stdout, "Max subcompactions : %" PRIu64 "\n",
FLAGS_subcompactions);
fprintf(stdout, "Use MultiGet : %s\n",
FLAGS_use_multiget ? "true" : "false");
fprintf(stdout, "Use GetEntity : %s\n",
FLAGS_use_get_entity ? "true" : "false");
fprintf(stdout, "Use MultiGetEntity : %s\n",
FLAGS_use_multi_get_entity ? "true" : "false");
fprintf(stdout, "Verification only : %s\n",
FLAGS_verification_only ? "true" : "false");
const char* memtablerep = "";
switch (FLAGS_rep_factory) {
case kSkipList:
memtablerep = "skip_list";
break;
case kHashSkipList:
memtablerep = "prefix_hash";
break;
case kVectorRep:
memtablerep = "vector";
break;
}
fprintf(stdout, "Memtablerep : %s\n", memtablerep);
#ifndef NDEBUG
KillPoint* kp = KillPoint::GetInstance();
fprintf(stdout, "Test kill odd : %d\n", kp->rocksdb_kill_odds);
if (!kp->rocksdb_kill_exclude_prefixes.empty()) {
fprintf(stdout, "Skipping kill points prefixes:\n");
for (auto& p : kp->rocksdb_kill_exclude_prefixes) {
fprintf(stdout, " %s\n", p.c_str());
}
}
#endif
fprintf(stdout, "Periodic Compaction Secs : %" PRIu64 "\n",
FLAGS_periodic_compaction_seconds);
fprintf(stdout, "Daily Offpeak UTC : %s\n",
FLAGS_daily_offpeak_time_utc.c_str());
fprintf(stdout, "Compaction TTL : %" PRIu64 "\n",
FLAGS_compaction_ttl);
const char* compaction_pri = "";
switch (FLAGS_compaction_pri) {
case kByCompensatedSize:
compaction_pri = "kByCompensatedSize";
break;
case kOldestLargestSeqFirst:
compaction_pri = "kOldestLargestSeqFirst";
break;
case kOldestSmallestSeqFirst:
compaction_pri = "kOldestSmallestSeqFirst";
break;
case kMinOverlappingRatio:
compaction_pri = "kMinOverlappingRatio";
break;
case kRoundRobin:
compaction_pri = "kRoundRobin";
break;
}
fprintf(stdout, "Compaction Pri : %s\n", compaction_pri);
fprintf(stdout, "Background Purge : %d\n",
static_cast<int>(FLAGS_avoid_unnecessary_blocking_io));
fprintf(stdout, "Write DB ID to manifest : %d\n",
static_cast<int>(FLAGS_write_dbid_to_manifest));
fprintf(stdout, "Max Write Batch Group Size: %" PRIu64 "\n",
FLAGS_max_write_batch_group_size_bytes);
fprintf(stdout, "Use dynamic level : %d\n",
static_cast<int>(FLAGS_level_compaction_dynamic_level_bytes));
fprintf(stdout, "Metadata read fault one in : %d\n",
FLAGS_metadata_read_fault_one_in);
fprintf(stdout, "Metadata write fault one in : %d\n",
FLAGS_metadata_write_fault_one_in);
fprintf(stdout, "Read fault one in : %d\n", FLAGS_read_fault_one_in);
fprintf(stdout, "Write fault one in : %d\n", FLAGS_write_fault_one_in);
fprintf(stdout, "Open metadata read fault one in:\n");
fprintf(stdout, " %d\n",
FLAGS_open_metadata_read_fault_one_in);
fprintf(stdout, "Open metadata write fault one in:\n");
fprintf(stdout, " %d\n",
FLAGS_open_metadata_write_fault_one_in);
fprintf(stdout, "Open read fault one in :\n");
fprintf(stdout, " %d\n",
FLAGS_open_read_fault_one_in);
fprintf(stdout, "Open write fault one in :\n");
fprintf(stdout, " %d\n",
FLAGS_open_write_fault_one_in);
fprintf(stdout, "Sync fault injection : %d\n",
FLAGS_sync_fault_injection);
fprintf(stdout, "Best efforts recovery : %d\n",
static_cast<int>(FLAGS_best_efforts_recovery));
fprintf(stdout, "Fail if OPTIONS file error: %d\n",
static_cast<int>(FLAGS_fail_if_options_file_error));
fprintf(stdout, "User timestamp size bytes : %d\n",
static_cast<int>(FLAGS_user_timestamp_size));
fprintf(stdout, "Persist user defined timestamps : %d\n",
FLAGS_persist_user_defined_timestamps);
fprintf(stdout, "WAL compression : %s\n",
FLAGS_wal_compression.c_str());
fprintf(stdout, "Try verify sst unique id : %d\n",
static_cast<int>(FLAGS_verify_sst_unique_id_in_manifest));
fprintf(stdout, "------------------------------------------------\n");
}
void StressTest::Open(SharedState* shared, bool reopen) {
assert(db_ == nullptr);
assert(txn_db_ == nullptr);
assert(optimistic_txn_db_ == nullptr);
if (!InitializeOptionsFromFile(options_)) {
InitializeOptionsFromFlags(cache_, filter_policy_, options_);
}
InitializeOptionsGeneral(cache_, filter_policy_, sqfc_factory_, options_);
if (FLAGS_prefix_size == 0 && FLAGS_rep_factory == kHashSkipList) {
fprintf(stderr,
"prefeix_size cannot be zero if memtablerep == prefix_hash\n");
exit(1);
}
if (FLAGS_prefix_size != 0 && FLAGS_rep_factory != kHashSkipList) {
fprintf(stdout,
"WARNING: prefix_size is non-zero but "
"memtablerep != prefix_hash\n");
}
if ((options_.enable_blob_files || options_.enable_blob_garbage_collection ||
FLAGS_allow_setting_blob_options_dynamically) &&
FLAGS_best_efforts_recovery) {
fprintf(stderr,
"Integrated BlobDB is currently incompatible with best-effort "
"recovery\n");
exit(1);
}
fprintf(stdout,
"Integrated BlobDB: blob files enabled %d, min blob size %" PRIu64
", blob file size %" PRIu64
", blob compression type %s, blob GC enabled %d, cutoff %f, force "
"threshold %f, blob compaction readahead size %" PRIu64
", blob file starting level %d\n",
options_.enable_blob_files, options_.min_blob_size,
options_.blob_file_size,
CompressionTypeToString(options_.blob_compression_type).c_str(),
options_.enable_blob_garbage_collection,
options_.blob_garbage_collection_age_cutoff,
options_.blob_garbage_collection_force_threshold,
options_.blob_compaction_readahead_size,
options_.blob_file_starting_level);
if (FLAGS_use_blob_cache) {
fprintf(stdout,
"Integrated BlobDB: blob cache enabled"
", block and blob caches shared: %d",
FLAGS_use_shared_block_and_blob_cache);
if (!FLAGS_use_shared_block_and_blob_cache) {
fprintf(stdout,
", blob cache size %" PRIu64 ", blob cache num shard bits: %d",
FLAGS_blob_cache_size, FLAGS_blob_cache_numshardbits);
}
fprintf(stdout, ", blob cache prepopulated: %d\n",
FLAGS_prepopulate_blob_cache);
} else {
fprintf(stdout, "Integrated BlobDB: blob cache disabled\n");
}
fprintf(stdout, "DB path: [%s]\n", FLAGS_db.c_str());
Status s;
if (FLAGS_ttl == -1) {
std::vector<std::string> existing_column_families;
s = DB::ListColumnFamilies(DBOptions(options_), FLAGS_db,
&existing_column_families); // ignore errors
if (!s.ok()) {
// DB doesn't exist
assert(existing_column_families.empty());
assert(column_family_names_.empty());
column_family_names_.push_back(kDefaultColumnFamilyName);
} else if (column_family_names_.empty()) {
// this is the first call to the function Open()
column_family_names_ = existing_column_families;
} else {
// this is a reopen. just assert that existing column_family_names are
// equivalent to what we remember
auto sorted_cfn = column_family_names_;
std::sort(sorted_cfn.begin(), sorted_cfn.end());
std::sort(existing_column_families.begin(),
existing_column_families.end());
if (sorted_cfn != existing_column_families) {
fprintf(stderr, "Expected column families differ from the existing:\n");
fprintf(stderr, "Expected: {");
for (const auto& cf : sorted_cfn) {
fprintf(stderr, "%s ", cf.c_str());
}
fprintf(stderr, "}\n");
fprintf(stderr, "Existing: {");
for (const auto& cf : existing_column_families) {
fprintf(stderr, "%s ", cf.c_str());
}
fprintf(stderr, "}\n");
}
assert(sorted_cfn == existing_column_families);
}
std::vector<ColumnFamilyDescriptor> cf_descriptors;
for (const auto& name : column_family_names_) {
if (name != kDefaultColumnFamilyName) {
new_column_family_name_ =
std::max(new_column_family_name_.load(), std::stoi(name) + 1);
}
cf_descriptors.emplace_back(name, ColumnFamilyOptions(options_));
}
while (cf_descriptors.size() < (size_t)FLAGS_column_families) {
std::string name = std::to_string(new_column_family_name_.load());
new_column_family_name_++;
cf_descriptors.emplace_back(name, ColumnFamilyOptions(options_));
column_family_names_.push_back(name);
}
options_.listeners.clear();
options_.listeners.emplace_back(new DbStressListener(
FLAGS_db, options_.db_paths, cf_descriptors, db_stress_listener_env));
RegisterAdditionalListeners();
// If this is for DB reopen, error injection may have been enabled.
// Disable it here in case there is no open fault injection.
if (fault_fs_guard) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
}
// TODO; test transaction DB Open with fault injection
if (!FLAGS_use_txn) {
bool inject_sync_fault = FLAGS_sync_fault_injection;
bool inject_open_meta_read_error =
FLAGS_open_metadata_read_fault_one_in > 0;
bool inject_open_meta_write_error =
FLAGS_open_metadata_write_fault_one_in > 0;
bool inject_open_read_error = FLAGS_open_read_fault_one_in > 0;
bool inject_open_write_error = FLAGS_open_write_fault_one_in > 0;
if ((inject_sync_fault || inject_open_meta_read_error ||
inject_open_meta_write_error || inject_open_read_error ||
inject_open_write_error) &&
fault_fs_guard
->FileExists(FLAGS_db + "/CURRENT", IOOptions(), nullptr)
.ok()) {
if (inject_sync_fault || inject_open_write_error) {
fault_fs_guard->SetFilesystemDirectWritable(false);
fault_fs_guard->SetInjectUnsyncedDataLoss(inject_sync_fault);
}
fault_fs_guard->SetThreadLocalErrorContext(
FaultInjectionIOType::kMetadataRead,
static_cast<uint32_t>(FLAGS_seed),
FLAGS_open_metadata_read_fault_one_in, false /* retryable */,
false /* has_data_loss */);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->SetThreadLocalErrorContext(
FaultInjectionIOType::kMetadataWrite,
static_cast<uint32_t>(FLAGS_seed),
FLAGS_open_metadata_write_fault_one_in, false /* retryable */,
false /* has_data_loss */);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
fault_fs_guard->SetThreadLocalErrorContext(
FaultInjectionIOType::kRead, static_cast<uint32_t>(FLAGS_seed),
FLAGS_open_read_fault_one_in, false /* retryable */,
false /* has_data_loss */);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->SetThreadLocalErrorContext(
FaultInjectionIOType::kWrite, static_cast<uint32_t>(FLAGS_seed),
FLAGS_open_write_fault_one_in, false /* retryable */,
false /* has_data_loss */);
fault_fs_guard->EnableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
}
while (true) {
// StackableDB-based BlobDB
if (FLAGS_use_blob_db) {
blob_db::BlobDBOptions blob_db_options;
blob_db_options.min_blob_size = FLAGS_blob_db_min_blob_size;
blob_db_options.bytes_per_sync = FLAGS_blob_db_bytes_per_sync;
blob_db_options.blob_file_size = FLAGS_blob_db_file_size;
blob_db_options.enable_garbage_collection = FLAGS_blob_db_enable_gc;
blob_db_options.garbage_collection_cutoff = FLAGS_blob_db_gc_cutoff;
blob_db::BlobDB* blob_db = nullptr;
s = blob_db::BlobDB::Open(options_, blob_db_options, FLAGS_db,
cf_descriptors, &column_families_,
&blob_db);
if (s.ok()) {
db_ = blob_db;
}
} else {
if (db_preload_finished_.load() && FLAGS_read_only) {
s = DB::OpenForReadOnly(DBOptions(options_), FLAGS_db,
cf_descriptors, &column_families_, &db_);
} else {
s = DB::Open(DBOptions(options_), FLAGS_db, cf_descriptors,
&column_families_, &db_);
}
}
if (inject_sync_fault || inject_open_meta_read_error ||
inject_open_meta_write_error || inject_open_read_error ||
inject_open_write_error) {
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kWrite);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataRead);
fault_fs_guard->DisableThreadLocalErrorInjection(
FaultInjectionIOType::kMetadataWrite);
if (s.ok()) {
// Injected errors might happen in background compactions. We
// wait for all compactions to finish to make sure DB is in
// clean state before executing queries.
s = db_->GetRootDB()->WaitForCompact(WaitForCompactOptions());
if (!s.ok()) {
for (auto cf : column_families_) {
delete cf;
}
column_families_.clear();
delete db_;
db_ = nullptr;
}
}
if (!s.ok()) {
// After failure to opening a DB due to IO error or unsynced data
// loss, retry should successfully open the DB with correct data if
// no IO error shows up.
inject_sync_fault = false;
inject_open_meta_read_error = false;
inject_open_meta_write_error = false;
inject_open_read_error = false;
inject_open_write_error = false;
// TODO: Unsynced data loss during DB reopen is not supported yet in
// stress test. Will need to recreate expected state if we decide
// to support unsynced data loss during DB reopen.
if (!reopen) {
Random rand(static_cast<uint32_t>(FLAGS_seed));
if (rand.OneIn(2)) {
fault_fs_guard->DeleteFilesCreatedAfterLastDirSync(IOOptions(),
nullptr);
}
if (rand.OneIn(3)) {
fault_fs_guard->DropUnsyncedFileData();
} else if (rand.OneIn(2)) {
fault_fs_guard->DropRandomUnsyncedFileData(&rand);
}
}
continue;
}
}
break;
}
} else {
if (FLAGS_use_optimistic_txn) {
OptimisticTransactionDBOptions optimistic_txn_db_options;
optimistic_txn_db_options.validate_policy =
static_cast<OccValidationPolicy>(FLAGS_occ_validation_policy);
if (FLAGS_share_occ_lock_buckets) {
optimistic_txn_db_options.shared_lock_buckets =
MakeSharedOccLockBuckets(FLAGS_occ_lock_bucket_count);
} else {
optimistic_txn_db_options.occ_lock_buckets =
FLAGS_occ_lock_bucket_count;
optimistic_txn_db_options.shared_lock_buckets = nullptr;
}
s = OptimisticTransactionDB::Open(
options_, optimistic_txn_db_options, FLAGS_db, cf_descriptors,
&column_families_, &optimistic_txn_db_);
if (!s.ok()) {
fprintf(stderr, "Error in opening the OptimisticTransactionDB [%s]\n",
s.ToString().c_str());
fflush(stderr);
}
assert(s.ok());
{
db_ = optimistic_txn_db_;
db_aptr_.store(optimistic_txn_db_, std::memory_order_release);
}
} else {
TransactionDBOptions txn_db_options;
assert(FLAGS_txn_write_policy <= TxnDBWritePolicy::WRITE_UNPREPARED);
txn_db_options.write_policy =
static_cast<TxnDBWritePolicy>(FLAGS_txn_write_policy);
if (FLAGS_unordered_write) {
assert(txn_db_options.write_policy ==
TxnDBWritePolicy::WRITE_PREPARED);
options_.unordered_write = true;
options_.two_write_queues = true;
txn_db_options.skip_concurrency_control = true;
} else {
options_.two_write_queues = FLAGS_two_write_queues;
}
txn_db_options.wp_snapshot_cache_bits =
static_cast<size_t>(FLAGS_wp_snapshot_cache_bits);
txn_db_options.wp_commit_cache_bits =
static_cast<size_t>(FLAGS_wp_commit_cache_bits);
PrepareTxnDbOptions(shared, txn_db_options);
s = TransactionDB::Open(options_, txn_db_options, FLAGS_db,
cf_descriptors, &column_families_, &txn_db_);
if (!s.ok()) {
fprintf(stderr, "Error in opening the TransactionDB [%s]\n",
s.ToString().c_str());
fflush(stderr);
}
assert(s.ok());
// Do not swap the order of the following.
{
db_ = txn_db_;
db_aptr_.store(txn_db_, std::memory_order_release);
}
}
}
if (!s.ok()) {
fprintf(stderr, "Error in opening the DB [%s]\n", s.ToString().c_str());
fflush(stderr);
}
assert(s.ok());
assert(column_families_.size() ==
static_cast<size_t>(FLAGS_column_families));
// Secondary instance does not support write-prepared/write-unprepared
// transactions, thus just disable secondary instance if we use
// transaction.
if (s.ok() && FLAGS_test_secondary && !FLAGS_use_txn) {
Options tmp_opts;
// TODO(yanqin) support max_open_files != -1 for secondary instance.
tmp_opts.max_open_files = -1;
tmp_opts.env = db_stress_env;
const std::string& secondary_path = FLAGS_secondaries_base;
s = DB::OpenAsSecondary(tmp_opts, FLAGS_db, secondary_path,
cf_descriptors, &cmp_cfhs_, &cmp_db_);
assert(s.ok());
assert(cmp_cfhs_.size() == static_cast<size_t>(FLAGS_column_families));
}
} else {
DBWithTTL* db_with_ttl;
s = DBWithTTL::Open(options_, FLAGS_db, &db_with_ttl, FLAGS_ttl);
db_ = db_with_ttl;
}
if (FLAGS_preserve_unverified_changes) {
// Up until now, no live file should have become obsolete due to these
// options. After `DisableFileDeletions()` we can reenable auto compactions
// since, even if live files become obsolete, they won't be deleted.
assert(options_.avoid_flush_during_recovery);
assert(options_.disable_auto_compactions);
if (s.ok()) {
s = db_->DisableFileDeletions();
}
if (s.ok()) {
s = db_->EnableAutoCompaction(column_families_);
}
}
if (!s.ok()) {
fprintf(stderr, "open error: %s\n", s.ToString().c_str());
exit(1);
}
}
void StressTest::Reopen(ThreadState* thread) {
// BG jobs in WritePrepared must be canceled first because i) they can access
// the db via a callbac ii) they hold on to a snapshot and the upcoming
// ::Close would complain about it.
const bool write_prepared = FLAGS_use_txn && FLAGS_txn_write_policy != 0;
bool bg_canceled __attribute__((unused)) = false;
if (write_prepared || thread->rand.OneIn(2)) {
const bool wait =
write_prepared || static_cast<bool>(thread->rand.OneIn(2));
CancelAllBackgroundWork(db_, wait);
bg_canceled = wait;
}
assert(!write_prepared || bg_canceled);
for (auto cf : column_families_) {
delete cf;
}
column_families_.clear();
// Currently reopen does not restore expected state
// with potential data loss in mind like the first open before
// crash-recovery verification does. Therefore it always expects no data loss
// and we should ensure no data loss in testing.
// TODO(hx235): eliminate the FlushWAL(true /* sync */)/SyncWAL() below
if (!FLAGS_disable_wal && !FLAGS_avoid_flush_during_shutdown) {
Status s;
if (FLAGS_manual_wal_flush_one_in > 0) {
s = db_->FlushWAL(/*sync=*/true);
} else {
s = db_->SyncWAL();
}
if (!s.ok()) {
fprintf(stderr,
"Error persisting WAL data which is needed before reopening the "
"DB: %s\n",
s.ToString().c_str());
exit(1);
}
}
if (thread->rand.OneIn(2)) {
Status s = db_->Close();
if (!s.ok()) {
fprintf(stderr, "Non-ok close status: %s\n", s.ToString().c_str());
fflush(stderr);
}
assert(s.ok());
}
assert((txn_db_ == nullptr && optimistic_txn_db_ == nullptr) ||
(db_ == txn_db_ || db_ == optimistic_txn_db_));
delete db_;
db_ = nullptr;
txn_db_ = nullptr;
optimistic_txn_db_ = nullptr;
num_times_reopened_++;
auto now = clock_->NowMicros();
fprintf(stdout, "%s Reopening database for the %dth time\n",
clock_->TimeToString(now / 1000000).c_str(), num_times_reopened_);
Open(thread->shared, /*reopen=*/true);
if (thread->shared->GetStressTest()->MightHaveUnsyncedDataLoss() &&
IsStateTracked()) {
Status s = thread->shared->SaveAtAndAfter(db_);
if (!s.ok()) {
fprintf(stderr, "Error enabling history tracing: %s\n",
s.ToString().c_str());
exit(1);
}
}
}
bool StressTest::MaybeUseOlderTimestampForPointLookup(ThreadState* thread,
std::string& ts_str,
Slice& ts_slice,
ReadOptions& read_opts) {
if (FLAGS_user_timestamp_size == 0) {
return false;
}
if (!FLAGS_persist_user_defined_timestamps) {
// Not read with older timestamps to avoid get InvalidArgument.
return false;
}
assert(thread);
if (!thread->rand.OneInOpt(3)) {
return false;
}
const SharedState* const shared = thread->shared;
assert(shared);
const uint64_t start_ts = shared->GetStartTimestamp();
uint64_t now = db_stress_env->NowNanos();
assert(now > start_ts);
uint64_t time_diff = now - start_ts;
uint64_t ts = start_ts + (thread->rand.Next64() % time_diff);
ts_str.clear();
PutFixed64(&ts_str, ts);
ts_slice = ts_str;
read_opts.timestamp = &ts_slice;
return true;
}
void StressTest::MaybeUseOlderTimestampForRangeScan(ThreadState* thread,
std::string& ts_str,
Slice& ts_slice,
ReadOptions& read_opts) {
if (FLAGS_user_timestamp_size == 0) {
return;
}
if (!FLAGS_persist_user_defined_timestamps) {
// Not read with older timestamps to avoid get InvalidArgument.
return;
}
assert(thread);
if (!thread->rand.OneInOpt(3)) {
return;
}
const Slice* const saved_ts = read_opts.timestamp;
assert(saved_ts != nullptr);
const SharedState* const shared = thread->shared;
assert(shared);
const uint64_t start_ts = shared->GetStartTimestamp();
uint64_t now = db_stress_env->NowNanos();
assert(now > start_ts);
uint64_t time_diff = now - start_ts;
uint64_t ts = start_ts + (thread->rand.Next64() % time_diff);
ts_str.clear();
PutFixed64(&ts_str, ts);
ts_slice = ts_str;
read_opts.timestamp = &ts_slice;
// TODO (yanqin): support Merge with iter_start_ts
if (!thread->rand.OneInOpt(3) || FLAGS_use_merge || FLAGS_use_full_merge_v1) {
return;
}
ts_str.clear();
PutFixed64(&ts_str, start_ts);
ts_slice = ts_str;
read_opts.iter_start_ts = &ts_slice;
read_opts.timestamp = saved_ts;
}
void CheckAndSetOptionsForUserTimestamp(Options& options) {
assert(FLAGS_user_timestamp_size > 0);
const Comparator* const cmp = test::BytewiseComparatorWithU64TsWrapper();
assert(cmp);
if (FLAGS_user_timestamp_size != cmp->timestamp_size()) {
fprintf(stderr,
"Only -user_timestamp_size=%d is supported in stress test.\n",
static_cast<int>(cmp->timestamp_size()));
exit(1);
}
if (FLAGS_use_txn) {
fprintf(stderr, "TransactionDB does not support timestamp yet.\n");
exit(1);
}
if (FLAGS_test_cf_consistency || FLAGS_test_batches_snapshots) {
fprintf(stderr,
"Due to per-key ts-seq ordering constraint, only the (default) "
"non-batched test is supported with timestamp.\n");
exit(1);
}
if (FLAGS_ingest_external_file_one_in > 0) {
fprintf(stderr, "Bulk loading may not support timestamp yet.\n");
exit(1);
}
options.comparator = cmp;
options.persist_user_defined_timestamps =
FLAGS_persist_user_defined_timestamps;
}
bool InitializeOptionsFromFile(Options& options) {
DBOptions db_options;
ConfigOptions config_options;
config_options.ignore_unknown_options = false;
config_options.input_strings_escaped = true;
config_options.env = db_stress_env;
std::vector<ColumnFamilyDescriptor> cf_descriptors;
if (!FLAGS_options_file.empty()) {
Status s = LoadOptionsFromFile(config_options, FLAGS_options_file,
&db_options, &cf_descriptors);
if (!s.ok()) {
fprintf(stderr, "Unable to load options file %s --- %s\n",
FLAGS_options_file.c_str(), s.ToString().c_str());
exit(1);
}
db_options.env = new CompositeEnvWrapper(db_stress_env);
options = Options(db_options, cf_descriptors[0].options);
return true;
}
return false;
}
void InitializeOptionsFromFlags(
const std::shared_ptr<Cache>& cache,
const std::shared_ptr<const FilterPolicy>& filter_policy,
Options& options) {
BlockBasedTableOptions block_based_options;
block_based_options.block_cache = cache;
block_based_options.cache_index_and_filter_blocks =
FLAGS_cache_index_and_filter_blocks;
block_based_options.metadata_cache_options.top_level_index_pinning =
static_cast<PinningTier>(FLAGS_top_level_index_pinning);
block_based_options.metadata_cache_options.partition_pinning =
static_cast<PinningTier>(FLAGS_partition_pinning);
block_based_options.metadata_cache_options.unpartitioned_pinning =
static_cast<PinningTier>(FLAGS_unpartitioned_pinning);
block_based_options.checksum = checksum_type_e;
block_based_options.block_size = FLAGS_block_size;
block_based_options.cache_usage_options.options_overrides.insert(
{CacheEntryRole::kCompressionDictionaryBuildingBuffer,
{/*.charged = */ FLAGS_charge_compression_dictionary_building_buffer
? CacheEntryRoleOptions::Decision::kEnabled
: CacheEntryRoleOptions::Decision::kDisabled}});
block_based_options.cache_usage_options.options_overrides.insert(
{CacheEntryRole::kFilterConstruction,
{/*.charged = */ FLAGS_charge_filter_construction
? CacheEntryRoleOptions::Decision::kEnabled
: CacheEntryRoleOptions::Decision::kDisabled}});
block_based_options.cache_usage_options.options_overrides.insert(
{CacheEntryRole::kBlockBasedTableReader,
{/*.charged = */ FLAGS_charge_table_reader
? CacheEntryRoleOptions::Decision::kEnabled
: CacheEntryRoleOptions::Decision::kDisabled}});
block_based_options.cache_usage_options.options_overrides.insert(
{CacheEntryRole::kFileMetadata,
{/*.charged = */ FLAGS_charge_file_metadata
? CacheEntryRoleOptions::Decision::kEnabled
: CacheEntryRoleOptions::Decision::kDisabled}});
block_based_options.cache_usage_options.options_overrides.insert(
{CacheEntryRole::kBlobCache,
{/*.charged = */ FLAGS_charge_blob_cache
? CacheEntryRoleOptions::Decision::kEnabled
: CacheEntryRoleOptions::Decision::kDisabled}});
block_based_options.format_version =
static_cast<uint32_t>(FLAGS_format_version);
block_based_options.index_block_restart_interval =
static_cast<int32_t>(FLAGS_index_block_restart_interval);
block_based_options.filter_policy = filter_policy;
block_based_options.partition_filters = FLAGS_partition_filters;
block_based_options.optimize_filters_for_memory =
FLAGS_optimize_filters_for_memory;
block_based_options.detect_filter_construct_corruption =
FLAGS_detect_filter_construct_corruption;
block_based_options.index_type =
static_cast<BlockBasedTableOptions::IndexType>(FLAGS_index_type);
block_based_options.data_block_index_type =
static_cast<BlockBasedTableOptions::DataBlockIndexType>(
FLAGS_data_block_index_type);
block_based_options.prepopulate_block_cache =
static_cast<BlockBasedTableOptions::PrepopulateBlockCache>(
FLAGS_prepopulate_block_cache);
block_based_options.initial_auto_readahead_size =
FLAGS_initial_auto_readahead_size;
block_based_options.max_auto_readahead_size = FLAGS_max_auto_readahead_size;
block_based_options.num_file_reads_for_auto_readahead =
FLAGS_num_file_reads_for_auto_readahead;
block_based_options.cache_index_and_filter_blocks_with_high_priority =
FLAGS_cache_index_and_filter_blocks_with_high_priority;
block_based_options.use_delta_encoding = FLAGS_use_delta_encoding;
block_based_options.verify_compression = FLAGS_verify_compression;
block_based_options.read_amp_bytes_per_bit = FLAGS_read_amp_bytes_per_bit;
block_based_options.enable_index_compression = FLAGS_enable_index_compression;
block_based_options.index_shortening =
static_cast<BlockBasedTableOptions::IndexShorteningMode>(
FLAGS_index_shortening);
block_based_options.block_align = FLAGS_block_align;
options.table_factory.reset(NewBlockBasedTableFactory(block_based_options));
options.db_write_buffer_size = FLAGS_db_write_buffer_size;
options.write_buffer_size = FLAGS_write_buffer_size;
options.max_write_buffer_number = FLAGS_max_write_buffer_number;
options.min_write_buffer_number_to_merge =
FLAGS_min_write_buffer_number_to_merge;
options.max_write_buffer_number_to_maintain =
FLAGS_max_write_buffer_number_to_maintain;
options.max_write_buffer_size_to_maintain =
FLAGS_max_write_buffer_size_to_maintain;
options.memtable_prefix_bloom_size_ratio =
FLAGS_memtable_prefix_bloom_size_ratio;
if (FLAGS_use_write_buffer_manager) {
options.write_buffer_manager.reset(
new WriteBufferManager(FLAGS_db_write_buffer_size, block_cache));
}
options.memtable_whole_key_filtering = FLAGS_memtable_whole_key_filtering;
options.disable_auto_compactions = FLAGS_disable_auto_compactions;
options.max_background_compactions = FLAGS_max_background_compactions;
options.max_background_flushes = FLAGS_max_background_flushes;
options.compaction_style =
static_cast<ROCKSDB_NAMESPACE::CompactionStyle>(FLAGS_compaction_style);
if (options.compaction_style ==
ROCKSDB_NAMESPACE::CompactionStyle::kCompactionStyleFIFO) {
options.compaction_options_fifo.allow_compaction =
FLAGS_fifo_allow_compaction;
}
options.compaction_pri =
static_cast<ROCKSDB_NAMESPACE::CompactionPri>(FLAGS_compaction_pri);
options.num_levels = FLAGS_num_levels;
if (FLAGS_prefix_size >= 0) {
options.prefix_extractor.reset(NewFixedPrefixTransform(FLAGS_prefix_size));
if (FLAGS_enable_memtable_insert_with_hint_prefix_extractor) {
options.memtable_insert_with_hint_prefix_extractor =
options.prefix_extractor;
}
}
options.max_open_files = FLAGS_open_files;
options.statistics = dbstats;
options.env = db_stress_env;
options.use_fsync = FLAGS_use_fsync;
options.compaction_readahead_size = FLAGS_compaction_readahead_size;
options.allow_mmap_reads = FLAGS_mmap_read;
options.allow_mmap_writes = FLAGS_mmap_write;
options.use_direct_reads = FLAGS_use_direct_reads;
options.use_direct_io_for_flush_and_compaction =
FLAGS_use_direct_io_for_flush_and_compaction;
options.recycle_log_file_num =
static_cast<size_t>(FLAGS_recycle_log_file_num);
options.target_file_size_base = FLAGS_target_file_size_base;
options.target_file_size_multiplier = FLAGS_target_file_size_multiplier;
options.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base;
options.max_bytes_for_level_multiplier = FLAGS_max_bytes_for_level_multiplier;
options.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger;
options.level0_slowdown_writes_trigger = FLAGS_level0_slowdown_writes_trigger;
options.level0_file_num_compaction_trigger =
FLAGS_level0_file_num_compaction_trigger;
options.compression = compression_type_e;
options.bottommost_compression = bottommost_compression_type_e;
options.compression_opts.max_dict_bytes = FLAGS_compression_max_dict_bytes;
options.compression_opts.zstd_max_train_bytes =
FLAGS_compression_zstd_max_train_bytes;
options.compression_opts.parallel_threads =
FLAGS_compression_parallel_threads;
options.compression_opts.max_dict_buffer_bytes =
FLAGS_compression_max_dict_buffer_bytes;
if (ZSTD_FinalizeDictionarySupported()) {
options.compression_opts.use_zstd_dict_trainer =
FLAGS_compression_use_zstd_dict_trainer;
} else if (!FLAGS_compression_use_zstd_dict_trainer) {
fprintf(
stdout,
"WARNING: use_zstd_dict_trainer is false but zstd finalizeDictionary "
"cannot be used because ZSTD 1.4.5+ is not linked with the binary."
" zstd dictionary trainer will be used.\n");
}
if (FLAGS_compression_checksum) {
options.compression_opts.checksum = true;
}
options.max_manifest_file_size = FLAGS_max_manifest_file_size;
options.max_subcompactions = static_cast<uint32_t>(FLAGS_subcompactions);
options.allow_concurrent_memtable_write =
FLAGS_allow_concurrent_memtable_write;
options.experimental_mempurge_threshold =
FLAGS_experimental_mempurge_threshold;
options.periodic_compaction_seconds = FLAGS_periodic_compaction_seconds;
options.daily_offpeak_time_utc = FLAGS_daily_offpeak_time_utc;
options.stats_dump_period_sec =
static_cast<unsigned int>(FLAGS_stats_dump_period_sec);
options.ttl = FLAGS_compaction_ttl;
options.enable_pipelined_write = FLAGS_enable_pipelined_write;
options.enable_write_thread_adaptive_yield =
FLAGS_enable_write_thread_adaptive_yield;
options.compaction_options_universal.size_ratio = FLAGS_universal_size_ratio;
options.compaction_options_universal.min_merge_width =
FLAGS_universal_min_merge_width;
options.compaction_options_universal.max_merge_width =
FLAGS_universal_max_merge_width;
options.compaction_options_universal.max_size_amplification_percent =
FLAGS_universal_max_size_amplification_percent;
options.compaction_options_universal.max_read_amp =
FLAGS_universal_max_read_amp;
options.atomic_flush = FLAGS_atomic_flush;
options.manual_wal_flush = FLAGS_manual_wal_flush_one_in > 0 ? true : false;
options.avoid_unnecessary_blocking_io = FLAGS_avoid_unnecessary_blocking_io;
options.write_dbid_to_manifest = FLAGS_write_dbid_to_manifest;
options.avoid_flush_during_recovery = FLAGS_avoid_flush_during_recovery;
options.max_write_batch_group_size_bytes =
FLAGS_max_write_batch_group_size_bytes;
options.level_compaction_dynamic_level_bytes =
FLAGS_level_compaction_dynamic_level_bytes;
options.track_and_verify_wals_in_manifest = true;
options.verify_sst_unique_id_in_manifest =
FLAGS_verify_sst_unique_id_in_manifest;
options.memtable_protection_bytes_per_key =
FLAGS_memtable_protection_bytes_per_key;
options.block_protection_bytes_per_key = FLAGS_block_protection_bytes_per_key;
// Integrated BlobDB
options.enable_blob_files = FLAGS_enable_blob_files;
options.min_blob_size = FLAGS_min_blob_size;
options.blob_file_size = FLAGS_blob_file_size;
options.blob_compression_type =
StringToCompressionType(FLAGS_blob_compression_type.c_str());
options.enable_blob_garbage_collection = FLAGS_enable_blob_garbage_collection;
options.blob_garbage_collection_age_cutoff =
FLAGS_blob_garbage_collection_age_cutoff;
options.blob_garbage_collection_force_threshold =
FLAGS_blob_garbage_collection_force_threshold;
options.blob_compaction_readahead_size = FLAGS_blob_compaction_readahead_size;
options.blob_file_starting_level = FLAGS_blob_file_starting_level;
if (FLAGS_use_blob_cache) {
if (FLAGS_use_shared_block_and_blob_cache) {
options.blob_cache = cache;
} else {
if (FLAGS_blob_cache_size > 0) {
LRUCacheOptions co;
co.capacity = FLAGS_blob_cache_size;
co.num_shard_bits = FLAGS_blob_cache_numshardbits;
options.blob_cache = NewLRUCache(co);
} else {
fprintf(stderr,
"Unable to create a standalone blob cache if blob_cache_size "
"<= 0.\n");
exit(1);
}
}
switch (FLAGS_prepopulate_blob_cache) {
case 0:
options.prepopulate_blob_cache = PrepopulateBlobCache::kDisable;
break;
case 1:
options.prepopulate_blob_cache = PrepopulateBlobCache::kFlushOnly;
break;
default:
fprintf(stderr, "Unknown prepopulate blob cache mode\n");
exit(1);
}
}
options.wal_compression =
StringToCompressionType(FLAGS_wal_compression.c_str());
options.last_level_temperature =
StringToTemperature(FLAGS_last_level_temperature.c_str());
options.default_write_temperature =
StringToTemperature(FLAGS_default_write_temperature.c_str());
options.default_temperature =
StringToTemperature(FLAGS_default_temperature.c_str());
options.preclude_last_level_data_seconds =
FLAGS_preclude_last_level_data_seconds;
options.preserve_internal_time_seconds = FLAGS_preserve_internal_time_seconds;
switch (FLAGS_rep_factory) {
case kSkipList:
// no need to do anything
break;
case kHashSkipList:
options.memtable_factory.reset(NewHashSkipListRepFactory(10000));
break;
case kVectorRep:
options.memtable_factory.reset(new VectorRepFactory());
break;
}
InitializeMergeOperator(options);
if (FLAGS_enable_compaction_filter) {
options.compaction_filter_factory =
std::make_shared<DbStressCompactionFilterFactory>();
}
options.best_efforts_recovery = FLAGS_best_efforts_recovery;
options.paranoid_file_checks = FLAGS_paranoid_file_checks;
options.fail_if_options_file_error = FLAGS_fail_if_options_file_error;
if (FLAGS_user_timestamp_size > 0) {
CheckAndSetOptionsForUserTimestamp(options);
}
options.allow_data_in_errors = FLAGS_allow_data_in_errors;
options.enable_thread_tracking = FLAGS_enable_thread_tracking;
options.memtable_max_range_deletions = FLAGS_memtable_max_range_deletions;
options.bottommost_file_compaction_delay =
FLAGS_bottommost_file_compaction_delay;
options.allow_fallocate = FLAGS_allow_fallocate;
options.table_cache_numshardbits = FLAGS_table_cache_numshardbits;
options.log_readahead_size = FLAGS_log_readahead_size;
options.bgerror_resume_retry_interval = FLAGS_bgerror_resume_retry_interval;
options.delete_obsolete_files_period_micros =
FLAGS_delete_obsolete_files_period_micros;
options.max_log_file_size = FLAGS_max_log_file_size;
options.log_file_time_to_roll = FLAGS_log_file_time_to_roll;
options.use_adaptive_mutex = FLAGS_use_adaptive_mutex;
options.advise_random_on_open = FLAGS_advise_random_on_open;
// TODO (hx235): test the functionality of `WAL_ttl_seconds`,
// `WAL_size_limit_MB` i.e, `GetUpdatesSince()`
options.WAL_ttl_seconds = FLAGS_WAL_ttl_seconds;
options.WAL_size_limit_MB = FLAGS_WAL_size_limit_MB;
options.wal_bytes_per_sync = FLAGS_wal_bytes_per_sync;
options.strict_bytes_per_sync = FLAGS_strict_bytes_per_sync;
options.avoid_flush_during_shutdown = FLAGS_avoid_flush_during_shutdown;
options.dump_malloc_stats = FLAGS_dump_malloc_stats;
options.stats_history_buffer_size = FLAGS_stats_history_buffer_size;
options.skip_stats_update_on_db_open = FLAGS_skip_stats_update_on_db_open;
options.optimize_filters_for_hits = FLAGS_optimize_filters_for_hits;
options.sample_for_compression = FLAGS_sample_for_compression;
options.report_bg_io_stats = FLAGS_report_bg_io_stats;
options.manifest_preallocation_size = FLAGS_manifest_preallocation_size;
if (FLAGS_enable_checksum_handoff) {
options.checksum_handoff_file_types = {FileTypeSet::All()};
} else {
options.checksum_handoff_file_types = {};
}
options.max_total_wal_size = FLAGS_max_total_wal_size;
options.soft_pending_compaction_bytes_limit =
FLAGS_soft_pending_compaction_bytes_limit;
options.hard_pending_compaction_bytes_limit =
FLAGS_hard_pending_compaction_bytes_limit;
options.max_sequential_skip_in_iterations =
FLAGS_max_sequential_skip_in_iterations;
if (FLAGS_enable_sst_partitioner_factory) {
options.sst_partitioner_factory = std::shared_ptr<SstPartitionerFactory>(
NewSstPartitionerFixedPrefixFactory(1));
}
options.lowest_used_cache_tier =
static_cast<CacheTier>(FLAGS_lowest_used_cache_tier);
options.inplace_update_support = FLAGS_inplace_update_support;
options.uncache_aggressiveness = FLAGS_uncache_aggressiveness;
}
void InitializeOptionsGeneral(
const std::shared_ptr<Cache>& cache,
const std::shared_ptr<const FilterPolicy>& filter_policy,
const std::shared_ptr<SstQueryFilterConfigsManager::Factory>& sqfc_factory,
Options& options) {
options.create_missing_column_families = true;
options.create_if_missing = true;
if (!options.statistics) {
options.statistics = dbstats;
}
if (options.env == Options().env) {
options.env = db_stress_env;
}
assert(options.table_factory);
auto table_options =
options.table_factory->GetOptions<BlockBasedTableOptions>();
if (table_options) {
if (FLAGS_cache_size > 0) {
table_options->block_cache = cache;
}
if (!table_options->filter_policy) {
table_options->filter_policy = filter_policy;
}
}
// TODO: row_cache, thread-pool IO priority, CPU priority.
if (!options.rate_limiter) {
if (FLAGS_rate_limiter_bytes_per_sec > 0) {
options.rate_limiter.reset(NewGenericRateLimiter(
FLAGS_rate_limiter_bytes_per_sec, 1000 /* refill_period_us */,
10 /* fairness */,
FLAGS_rate_limit_bg_reads ? RateLimiter::Mode::kReadsOnly
: RateLimiter::Mode::kWritesOnly));
}
}
if (!options.file_checksum_gen_factory) {
options.file_checksum_gen_factory =
GetFileChecksumImpl(FLAGS_file_checksum_impl);
}
if (FLAGS_sst_file_manager_bytes_per_sec > 0 ||
FLAGS_sst_file_manager_bytes_per_truncate > 0) {
Status status;
options.sst_file_manager.reset(NewSstFileManager(
db_stress_env, options.info_log, "" /* trash_dir */,
static_cast<int64_t>(FLAGS_sst_file_manager_bytes_per_sec),
true /* delete_existing_trash */, &status,
0.25 /* max_trash_db_ratio */,
FLAGS_sst_file_manager_bytes_per_truncate));
if (!status.ok()) {
fprintf(stderr, "SstFileManager creation failed: %s\n",
status.ToString().c_str());
exit(1);
}
}
if (FLAGS_preserve_unverified_changes) {
if (!options.avoid_flush_during_recovery) {
fprintf(stderr,
"WARNING: flipping `avoid_flush_during_recovery` to true for "
"`preserve_unverified_changes` to keep all files\n");
options.avoid_flush_during_recovery = true;
}
// Together with `avoid_flush_during_recovery == true`, this will prevent
// live files from becoming obsolete and deleted between `DB::Open()` and
// `DisableFileDeletions()` due to flush or compaction. We do not need to
// warn the user since we will reenable compaction soon.
options.disable_auto_compactions = true;
}
options.table_properties_collector_factories.emplace_back(
std::make_shared<DbStressTablePropertiesCollectorFactory>());
if (sqfc_factory && !sqfc_factory->GetConfigs().IsEmptyNotFound()) {
options.table_properties_collector_factories.emplace_back(sqfc_factory);
}
}
} // namespace ROCKSDB_NAMESPACE
#endif // GFLAGS