rocksdb/utilities/fault_injection_fs.cc
Peter Dillinger 05a1d52e77 Use FaultInjectionTestFS in transaction_test, clarify Close() APIs (#11499)
Summary:
... instead of race-condition-laden FaultInjectionTestEnv. See https://app.circleci.com/pipelines/github/facebook/rocksdb/27912/workflows/4c63e5a8-597e-439d-8c7e-82308056af02/jobs/609648 and similar PR https://github.com/facebook/rocksdb/issues/11271

Had to fix the semantics of FaultInjectionTestFS Close() operations to allow a non-OK Close() to fulfill the obligation to close before destruction. To me, this is the obvious choice of Close contract, because what is the caller supposed to do if Close() fails and they still have an obligation to successfully close before object destruction? Call Close() in an infinite loop? Leak the object? I have added API comments to the Env and Filesystem Close() functions to clarify the contracts.

Note that `DB::Close()` has one exception to this kind of Close contract, but it is clearly described in API comments and it is really only for catching programming mistakes, not for dealing with exogenous errors.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11499

Test Plan: watch CI

Reviewed By: jowlyzhang

Differential Revision: D46375708

Pulled By: pdillinger

fbshipit-source-id: 03d4d8251e5df50a82ecd139f7e83f613015fe40
2023-06-21 23:38:54 -07:00

1072 lines
34 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright 2014 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
// This test uses a custom FileSystem to keep track of the state of a file
// system the last "Sync". The data being written is cached in a "buffer".
// Only when "Sync" is called, the data will be persistent. It can simulate
// file data loss (or entire files) not protected by a "Sync". For any of the
// FileSystem related operations, by specify the "IOStatus Error", a specific
// error can be returned when file system is not activated.
#include "utilities/fault_injection_fs.h"
#include <algorithm>
#include <functional>
#include <utility>
#include "env/composite_env_wrapper.h"
#include "port/lang.h"
#include "port/stack_trace.h"
#include "test_util/sync_point.h"
#include "util/coding.h"
#include "util/crc32c.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/string_util.h"
#include "util/xxhash.h"
namespace ROCKSDB_NAMESPACE {
const std::string kNewFileNoOverwrite = "";
// Assume a filename, and not a directory name like "/foo/bar/"
std::string TestFSGetDirName(const std::string filename) {
size_t found = filename.find_last_of("/\\");
if (found == std::string::npos) {
return "";
} else {
return filename.substr(0, found);
}
}
// Trim the tailing "/" in the end of `str`
std::string TestFSTrimDirname(const std::string& str) {
size_t found = str.find_last_not_of("/");
if (found == std::string::npos) {
return str;
}
return str.substr(0, found + 1);
}
// Return pair <parent directory name, file name> of a full path.
std::pair<std::string, std::string> TestFSGetDirAndName(
const std::string& name) {
std::string dirname = TestFSGetDirName(name);
std::string fname = name.substr(dirname.size() + 1);
return std::make_pair(dirname, fname);
}
// Calculate the checksum of the data with corresponding checksum
// type. If name does not match, no checksum is returned.
void CalculateTypedChecksum(const ChecksumType& checksum_type, const char* data,
size_t size, std::string* checksum) {
if (checksum_type == ChecksumType::kCRC32c) {
uint32_t v_crc32c = crc32c::Extend(0, data, size);
PutFixed32(checksum, v_crc32c);
return;
} else if (checksum_type == ChecksumType::kxxHash) {
uint32_t v = XXH32(data, size, 0);
PutFixed32(checksum, v);
}
return;
}
IOStatus FSFileState::DropUnsyncedData() {
buffer_.resize(0);
return IOStatus::OK();
}
IOStatus FSFileState::DropRandomUnsyncedData(Random* rand) {
int range = static_cast<int>(buffer_.size());
size_t truncated_size = static_cast<size_t>(rand->Uniform(range));
buffer_.resize(truncated_size);
return IOStatus::OK();
}
IOStatus TestFSDirectory::Fsync(const IOOptions& options, IODebugContext* dbg) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
{
IOStatus in_s = fs_->InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
fs_->SyncDir(dirname_);
IOStatus s = dir_->Fsync(options, dbg);
{
IOStatus in_s = fs_->InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
return s;
}
IOStatus TestFSDirectory::Close(const IOOptions& options, IODebugContext* dbg) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
IOStatus s = dir_->Close(options, dbg);
return s;
}
IOStatus TestFSDirectory::FsyncWithDirOptions(
const IOOptions& options, IODebugContext* dbg,
const DirFsyncOptions& dir_fsync_options) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
{
IOStatus in_s = fs_->InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
fs_->SyncDir(dirname_);
IOStatus s = dir_->FsyncWithDirOptions(options, dbg, dir_fsync_options);
{
IOStatus in_s = fs_->InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
return s;
}
TestFSWritableFile::TestFSWritableFile(const std::string& fname,
const FileOptions& file_opts,
std::unique_ptr<FSWritableFile>&& f,
FaultInjectionTestFS* fs)
: state_(fname),
file_opts_(file_opts),
target_(std::move(f)),
writable_file_opened_(true),
fs_(fs) {
assert(target_ != nullptr);
state_.pos_ = 0;
}
TestFSWritableFile::~TestFSWritableFile() {
if (writable_file_opened_) {
Close(IOOptions(), nullptr).PermitUncheckedError();
}
}
IOStatus TestFSWritableFile::Append(const Slice& data, const IOOptions& options,
IODebugContext* dbg) {
MutexLock l(&mutex_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
if (target_->use_direct_io()) {
target_->Append(data, options, dbg).PermitUncheckedError();
} else {
state_.buffer_.append(data.data(), data.size());
state_.pos_ += data.size();
fs_->WritableFileAppended(state_);
}
IOStatus io_s = fs_->InjectWriteError(state_.filename_);
return io_s;
}
// By setting the IngestDataCorruptionBeforeWrite(), the data corruption is
// simulated.
IOStatus TestFSWritableFile::Append(
const Slice& data, const IOOptions& options,
const DataVerificationInfo& verification_info, IODebugContext* dbg) {
MutexLock l(&mutex_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
if (fs_->ShouldDataCorruptionBeforeWrite()) {
return IOStatus::Corruption("Data is corrupted!");
}
// Calculate the checksum
std::string checksum;
CalculateTypedChecksum(fs_->GetChecksumHandoffFuncType(), data.data(),
data.size(), &checksum);
if (fs_->GetChecksumHandoffFuncType() != ChecksumType::kNoChecksum &&
checksum != verification_info.checksum.ToString()) {
std::string msg = "Data is corrupted! Origin data checksum: " +
verification_info.checksum.ToString() +
"current data checksum: " + checksum;
return IOStatus::Corruption(msg);
}
if (target_->use_direct_io()) {
target_->Append(data, options, dbg).PermitUncheckedError();
} else {
state_.buffer_.append(data.data(), data.size());
state_.pos_ += data.size();
fs_->WritableFileAppended(state_);
}
IOStatus io_s = fs_->InjectWriteError(state_.filename_);
return io_s;
}
IOStatus TestFSWritableFile::PositionedAppend(
const Slice& data, uint64_t offset, const IOOptions& options,
const DataVerificationInfo& verification_info, IODebugContext* dbg) {
MutexLock l(&mutex_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
if (fs_->ShouldDataCorruptionBeforeWrite()) {
return IOStatus::Corruption("Data is corrupted!");
}
// Calculate the checksum
std::string checksum;
CalculateTypedChecksum(fs_->GetChecksumHandoffFuncType(), data.data(),
data.size(), &checksum);
if (fs_->GetChecksumHandoffFuncType() != ChecksumType::kNoChecksum &&
checksum != verification_info.checksum.ToString()) {
std::string msg = "Data is corrupted! Origin data checksum: " +
verification_info.checksum.ToString() +
"current data checksum: " + checksum;
return IOStatus::Corruption(msg);
}
target_->PositionedAppend(data, offset, options, dbg);
IOStatus io_s = fs_->InjectWriteError(state_.filename_);
return io_s;
}
IOStatus TestFSWritableFile::Close(const IOOptions& options,
IODebugContext* dbg) {
MutexLock l(&mutex_);
fs_->WritableFileClosed(state_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
{
IOStatus in_s = fs_->InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
writable_file_opened_ = false;
IOStatus io_s;
if (!target_->use_direct_io()) {
io_s = target_->Append(state_.buffer_, options, dbg);
}
if (io_s.ok()) {
state_.buffer_.resize(0);
// Ignore sync errors
target_->Sync(options, dbg).PermitUncheckedError();
io_s = target_->Close(options, dbg);
}
if (io_s.ok()) {
IOStatus in_s = fs_->InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
return io_s;
}
IOStatus TestFSWritableFile::Flush(const IOOptions&, IODebugContext*) {
MutexLock l(&mutex_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
if (fs_->IsFilesystemActive()) {
state_.pos_at_last_flush_ = state_.pos_;
}
return IOStatus::OK();
}
IOStatus TestFSWritableFile::Sync(const IOOptions& options,
IODebugContext* dbg) {
MutexLock l(&mutex_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
if (target_->use_direct_io()) {
// For Direct IO mode, we don't buffer anything in TestFSWritableFile.
// So just return
return IOStatus::OK();
}
IOStatus io_s = target_->Append(state_.buffer_, options, dbg);
state_.buffer_.resize(0);
// Ignore sync errors
target_->Sync(options, dbg).PermitUncheckedError();
state_.pos_at_last_sync_ = state_.pos_;
fs_->WritableFileSynced(state_);
return io_s;
}
IOStatus TestFSWritableFile::RangeSync(uint64_t offset, uint64_t nbytes,
const IOOptions& options,
IODebugContext* dbg) {
MutexLock l(&mutex_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
// Assumes caller passes consecutive byte ranges.
uint64_t sync_limit = offset + nbytes;
uint64_t buf_begin =
state_.pos_at_last_sync_ < 0 ? 0 : state_.pos_at_last_sync_;
IOStatus io_s;
if (sync_limit < buf_begin) {
return io_s;
}
uint64_t num_to_sync = std::min(static_cast<uint64_t>(state_.buffer_.size()),
sync_limit - buf_begin);
Slice buf_to_sync(state_.buffer_.data(), num_to_sync);
io_s = target_->Append(buf_to_sync, options, dbg);
state_.buffer_ = state_.buffer_.substr(num_to_sync);
// Ignore sync errors
target_->RangeSync(offset, nbytes, options, dbg).PermitUncheckedError();
state_.pos_at_last_sync_ = offset + num_to_sync;
fs_->WritableFileSynced(state_);
return io_s;
}
TestFSRandomRWFile::TestFSRandomRWFile(const std::string& /*fname*/,
std::unique_ptr<FSRandomRWFile>&& f,
FaultInjectionTestFS* fs)
: target_(std::move(f)), file_opened_(true), fs_(fs) {
assert(target_ != nullptr);
}
TestFSRandomRWFile::~TestFSRandomRWFile() {
if (file_opened_) {
Close(IOOptions(), nullptr).PermitUncheckedError();
}
}
IOStatus TestFSRandomRWFile::Write(uint64_t offset, const Slice& data,
const IOOptions& options,
IODebugContext* dbg) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
return target_->Write(offset, data, options, dbg);
}
IOStatus TestFSRandomRWFile::Read(uint64_t offset, size_t n,
const IOOptions& options, Slice* result,
char* scratch, IODebugContext* dbg) const {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
return target_->Read(offset, n, options, result, scratch, dbg);
}
IOStatus TestFSRandomRWFile::Close(const IOOptions& options,
IODebugContext* dbg) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
file_opened_ = false;
return target_->Close(options, dbg);
}
IOStatus TestFSRandomRWFile::Flush(const IOOptions& options,
IODebugContext* dbg) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
return target_->Flush(options, dbg);
}
IOStatus TestFSRandomRWFile::Sync(const IOOptions& options,
IODebugContext* dbg) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
return target_->Sync(options, dbg);
}
TestFSRandomAccessFile::TestFSRandomAccessFile(
const std::string& /*fname*/, std::unique_ptr<FSRandomAccessFile>&& f,
FaultInjectionTestFS* fs)
: target_(std::move(f)), fs_(fs) {
assert(target_ != nullptr);
}
IOStatus TestFSRandomAccessFile::Read(uint64_t offset, size_t n,
const IOOptions& options, Slice* result,
char* scratch,
IODebugContext* dbg) const {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
IOStatus s = target_->Read(offset, n, options, result, scratch, dbg);
if (s.ok()) {
s = fs_->InjectThreadSpecificReadError(
FaultInjectionTestFS::ErrorOperation::kRead, result, use_direct_io(),
scratch, /*need_count_increase=*/true, /*fault_injected=*/nullptr);
}
if (s.ok() && fs_->ShouldInjectRandomReadError()) {
return IOStatus::IOError("Injected read error");
}
return s;
}
IOStatus TestFSRandomAccessFile::ReadAsync(
FSReadRequest& req, const IOOptions& opts,
std::function<void(const FSReadRequest&, void*)> cb, void* cb_arg,
void** io_handle, IOHandleDeleter* del_fn, IODebugContext* /*dbg*/) {
IOStatus ret;
IOStatus s;
FSReadRequest res;
if (!fs_->IsFilesystemActive()) {
ret = fs_->GetError();
} else {
ret = fs_->InjectThreadSpecificReadError(
FaultInjectionTestFS::ErrorOperation::kRead, &res.result,
use_direct_io(), req.scratch, /*need_count_increase=*/true,
/*fault_injected=*/nullptr);
}
if (ret.ok()) {
if (fs_->ShouldInjectRandomReadError()) {
ret = IOStatus::IOError("Injected read error");
} else {
s = target_->ReadAsync(req, opts, cb, cb_arg, io_handle, del_fn, nullptr);
}
}
if (!ret.ok()) {
res.status = ret;
cb(res, cb_arg);
}
return s;
}
IOStatus TestFSRandomAccessFile::MultiRead(FSReadRequest* reqs, size_t num_reqs,
const IOOptions& options,
IODebugContext* dbg) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
IOStatus s = target_->MultiRead(reqs, num_reqs, options, dbg);
bool injected_error = false;
for (size_t i = 0; i < num_reqs; i++) {
if (!reqs[i].status.ok()) {
// Already seeing an error.
break;
}
bool this_injected_error;
reqs[i].status = fs_->InjectThreadSpecificReadError(
FaultInjectionTestFS::ErrorOperation::kMultiReadSingleReq,
&(reqs[i].result), use_direct_io(), reqs[i].scratch,
/*need_count_increase=*/true,
/*fault_injected=*/&this_injected_error);
injected_error |= this_injected_error;
}
if (s.ok()) {
s = fs_->InjectThreadSpecificReadError(
FaultInjectionTestFS::ErrorOperation::kMultiRead, nullptr,
use_direct_io(), nullptr, /*need_count_increase=*/!injected_error,
/*fault_injected=*/nullptr);
}
if (s.ok() && fs_->ShouldInjectRandomReadError()) {
return IOStatus::IOError("Injected read error");
}
return s;
}
size_t TestFSRandomAccessFile::GetUniqueId(char* id, size_t max_size) const {
if (fs_->ShouldFailGetUniqueId()) {
return 0;
} else {
return target_->GetUniqueId(id, max_size);
}
}
IOStatus TestFSSequentialFile::Read(size_t n, const IOOptions& options,
Slice* result, char* scratch,
IODebugContext* dbg) {
IOStatus s = target()->Read(n, options, result, scratch, dbg);
if (s.ok() && fs_->ShouldInjectRandomReadError()) {
return IOStatus::IOError("Injected seq read error");
}
return s;
}
IOStatus TestFSSequentialFile::PositionedRead(uint64_t offset, size_t n,
const IOOptions& options,
Slice* result, char* scratch,
IODebugContext* dbg) {
IOStatus s =
target()->PositionedRead(offset, n, options, result, scratch, dbg);
if (s.ok() && fs_->ShouldInjectRandomReadError()) {
return IOStatus::IOError("Injected seq positioned read error");
}
return s;
}
IOStatus FaultInjectionTestFS::NewDirectory(
const std::string& name, const IOOptions& options,
std::unique_ptr<FSDirectory>* result, IODebugContext* dbg) {
std::unique_ptr<FSDirectory> r;
IOStatus io_s = target()->NewDirectory(name, options, &r, dbg);
if (!io_s.ok()) {
return io_s;
}
result->reset(
new TestFSDirectory(this, TestFSTrimDirname(name), r.release()));
return IOStatus::OK();
}
IOStatus FaultInjectionTestFS::NewWritableFile(
const std::string& fname, const FileOptions& file_opts,
std::unique_ptr<FSWritableFile>* result, IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
{
IOStatus in_s = InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
if (ShouldUseDiretWritable(fname)) {
return target()->NewWritableFile(fname, file_opts, result, dbg);
}
IOStatus io_s = target()->NewWritableFile(fname, file_opts, result, dbg);
if (io_s.ok()) {
result->reset(
new TestFSWritableFile(fname, file_opts, std::move(*result), this));
// WritableFileWriter* file is opened
// again then it will be truncated - so forget our saved state.
UntrackFile(fname);
{
MutexLock l(&mutex_);
open_managed_files_.insert(fname);
auto dir_and_name = TestFSGetDirAndName(fname);
auto& list = dir_to_new_files_since_last_sync_[dir_and_name.first];
// The new file could overwrite an old one. Here we simplify
// the implementation by assuming no file of this name after
// dropping unsynced files.
list[dir_and_name.second] = kNewFileNoOverwrite;
}
{
IOStatus in_s = InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::ReopenWritableFile(
const std::string& fname, const FileOptions& file_opts,
std::unique_ptr<FSWritableFile>* result, IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
if (ShouldUseDiretWritable(fname)) {
return target()->ReopenWritableFile(fname, file_opts, result, dbg);
}
{
IOStatus in_s = InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
bool exists;
IOStatus io_s,
exists_s = target()->FileExists(fname, IOOptions(), nullptr /* dbg */);
if (exists_s.IsNotFound()) {
exists = false;
} else if (exists_s.ok()) {
exists = true;
} else {
io_s = exists_s;
exists = false;
}
if (io_s.ok()) {
io_s = target()->ReopenWritableFile(fname, file_opts, result, dbg);
}
// Only track files we created. Files created outside of this
// `FaultInjectionTestFS` are not eligible for tracking/data dropping
// (for example, they may contain data a previous db_stress run expects to
// be recovered). This could be extended to track/drop data appended once
// the file is under `FaultInjectionTestFS`'s control.
if (io_s.ok()) {
bool should_track;
{
MutexLock l(&mutex_);
if (db_file_state_.find(fname) != db_file_state_.end()) {
// It was written by this `FileSystem` earlier.
assert(exists);
should_track = true;
} else if (!exists) {
// It was created by this `FileSystem` just now.
should_track = true;
open_managed_files_.insert(fname);
auto dir_and_name = TestFSGetDirAndName(fname);
auto& list = dir_to_new_files_since_last_sync_[dir_and_name.first];
list[dir_and_name.second] = kNewFileNoOverwrite;
} else {
should_track = false;
}
}
if (should_track) {
result->reset(
new TestFSWritableFile(fname, file_opts, std::move(*result), this));
}
{
IOStatus in_s = InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::NewRandomRWFile(
const std::string& fname, const FileOptions& file_opts,
std::unique_ptr<FSRandomRWFile>* result, IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
if (ShouldUseDiretWritable(fname)) {
return target()->NewRandomRWFile(fname, file_opts, result, dbg);
}
{
IOStatus in_s = InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
IOStatus io_s = target()->NewRandomRWFile(fname, file_opts, result, dbg);
if (io_s.ok()) {
result->reset(new TestFSRandomRWFile(fname, std::move(*result), this));
// WritableFileWriter* file is opened
// again then it will be truncated - so forget our saved state.
UntrackFile(fname);
{
MutexLock l(&mutex_);
open_managed_files_.insert(fname);
auto dir_and_name = TestFSGetDirAndName(fname);
auto& list = dir_to_new_files_since_last_sync_[dir_and_name.first];
// It could be overwriting an old file, but we simplify the
// implementation by ignoring it.
list[dir_and_name.second] = kNewFileNoOverwrite;
}
{
IOStatus in_s = InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::NewRandomAccessFile(
const std::string& fname, const FileOptions& file_opts,
std::unique_ptr<FSRandomAccessFile>* result, IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
if (ShouldInjectRandomReadError()) {
return IOStatus::IOError("Injected error when open random access file");
}
IOStatus io_s = InjectThreadSpecificReadError(ErrorOperation::kOpen, nullptr,
false, nullptr,
/*need_count_increase=*/true,
/*fault_injected=*/nullptr);
if (io_s.ok()) {
io_s = target()->NewRandomAccessFile(fname, file_opts, result, dbg);
}
if (io_s.ok()) {
result->reset(new TestFSRandomAccessFile(fname, std::move(*result), this));
}
return io_s;
}
IOStatus FaultInjectionTestFS::NewSequentialFile(
const std::string& fname, const FileOptions& file_opts,
std::unique_ptr<FSSequentialFile>* result, IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
if (ShouldInjectRandomReadError()) {
return IOStatus::IOError("Injected read error when creating seq file");
}
IOStatus io_s = target()->NewSequentialFile(fname, file_opts, result, dbg);
if (io_s.ok()) {
result->reset(new TestFSSequentialFile(std::move(*result), this));
}
return io_s;
}
IOStatus FaultInjectionTestFS::DeleteFile(const std::string& f,
const IOOptions& options,
IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
{
IOStatus in_s = InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
IOStatus io_s = FileSystemWrapper::DeleteFile(f, options, dbg);
if (io_s.ok()) {
UntrackFile(f);
{
IOStatus in_s = InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::RenameFile(const std::string& s,
const std::string& t,
const IOOptions& options,
IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
{
IOStatus in_s = InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
// We preserve contents of overwritten files up to a size threshold.
// We could keep previous file in another name, but we need to worry about
// garbage collect the those files. We do it if it is needed later.
// We ignore I/O errors here for simplicity.
std::string previous_contents = kNewFileNoOverwrite;
if (target()->FileExists(t, IOOptions(), nullptr).ok()) {
uint64_t file_size;
if (target()->GetFileSize(t, IOOptions(), &file_size, nullptr).ok() &&
file_size < 1024) {
ReadFileToString(target(), t, &previous_contents).PermitUncheckedError();
}
}
IOStatus io_s = FileSystemWrapper::RenameFile(s, t, options, dbg);
if (io_s.ok()) {
{
MutexLock l(&mutex_);
if (db_file_state_.find(s) != db_file_state_.end()) {
db_file_state_[t] = db_file_state_[s];
db_file_state_.erase(s);
}
auto sdn = TestFSGetDirAndName(s);
auto tdn = TestFSGetDirAndName(t);
if (dir_to_new_files_since_last_sync_[sdn.first].erase(sdn.second) != 0) {
auto& tlist = dir_to_new_files_since_last_sync_[tdn.first];
assert(tlist.find(tdn.second) == tlist.end());
tlist[tdn.second] = previous_contents;
}
}
IOStatus in_s = InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::LinkFile(const std::string& s,
const std::string& t,
const IOOptions& options,
IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
{
IOStatus in_s = InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
// Using the value in `dir_to_new_files_since_last_sync_` for the source file
// may be a more reasonable choice.
std::string previous_contents = kNewFileNoOverwrite;
IOStatus io_s = FileSystemWrapper::LinkFile(s, t, options, dbg);
if (io_s.ok()) {
{
MutexLock l(&mutex_);
if (db_file_state_.find(s) != db_file_state_.end()) {
db_file_state_[t] = db_file_state_[s];
}
auto sdn = TestFSGetDirAndName(s);
auto tdn = TestFSGetDirAndName(t);
if (dir_to_new_files_since_last_sync_[sdn.first].find(sdn.second) !=
dir_to_new_files_since_last_sync_[sdn.first].end()) {
auto& tlist = dir_to_new_files_since_last_sync_[tdn.first];
assert(tlist.find(tdn.second) == tlist.end());
tlist[tdn.second] = previous_contents;
}
}
IOStatus in_s = InjectMetadataWriteError();
if (!in_s.ok()) {
return in_s;
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::Poll(std::vector<void*>& io_handles,
size_t min_completions) {
return target()->Poll(io_handles, min_completions);
}
IOStatus FaultInjectionTestFS::AbortIO(std::vector<void*>& io_handles) {
return target()->AbortIO(io_handles);
}
void FaultInjectionTestFS::WritableFileClosed(const FSFileState& state) {
MutexLock l(&mutex_);
if (open_managed_files_.find(state.filename_) != open_managed_files_.end()) {
db_file_state_[state.filename_] = state;
open_managed_files_.erase(state.filename_);
}
}
void FaultInjectionTestFS::WritableFileSynced(const FSFileState& state) {
MutexLock l(&mutex_);
if (open_managed_files_.find(state.filename_) != open_managed_files_.end()) {
if (db_file_state_.find(state.filename_) == db_file_state_.end()) {
db_file_state_.insert(std::make_pair(state.filename_, state));
} else {
db_file_state_[state.filename_] = state;
}
}
}
void FaultInjectionTestFS::WritableFileAppended(const FSFileState& state) {
MutexLock l(&mutex_);
if (open_managed_files_.find(state.filename_) != open_managed_files_.end()) {
if (db_file_state_.find(state.filename_) == db_file_state_.end()) {
db_file_state_.insert(std::make_pair(state.filename_, state));
} else {
db_file_state_[state.filename_] = state;
}
}
}
IOStatus FaultInjectionTestFS::DropUnsyncedFileData() {
IOStatus io_s;
MutexLock l(&mutex_);
for (std::map<std::string, FSFileState>::iterator it = db_file_state_.begin();
io_s.ok() && it != db_file_state_.end(); ++it) {
FSFileState& fs_state = it->second;
if (!fs_state.IsFullySynced()) {
io_s = fs_state.DropUnsyncedData();
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::DropRandomUnsyncedFileData(Random* rnd) {
IOStatus io_s;
MutexLock l(&mutex_);
for (std::map<std::string, FSFileState>::iterator it = db_file_state_.begin();
io_s.ok() && it != db_file_state_.end(); ++it) {
FSFileState& fs_state = it->second;
if (!fs_state.IsFullySynced()) {
io_s = fs_state.DropRandomUnsyncedData(rnd);
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::DeleteFilesCreatedAfterLastDirSync(
const IOOptions& options, IODebugContext* dbg) {
// Because DeleteFile access this container make a copy to avoid deadlock
std::map<std::string, std::map<std::string, std::string>> map_copy;
{
MutexLock l(&mutex_);
map_copy.insert(dir_to_new_files_since_last_sync_.begin(),
dir_to_new_files_since_last_sync_.end());
}
for (auto& pair : map_copy) {
for (auto& file_pair : pair.second) {
if (file_pair.second == kNewFileNoOverwrite) {
IOStatus io_s =
DeleteFile(pair.first + "/" + file_pair.first, options, dbg);
if (!io_s.ok()) {
return io_s;
}
} else {
IOStatus io_s =
WriteStringToFile(target(), file_pair.second,
pair.first + "/" + file_pair.first, true);
if (!io_s.ok()) {
return io_s;
}
}
}
}
return IOStatus::OK();
}
void FaultInjectionTestFS::ResetState() {
MutexLock l(&mutex_);
db_file_state_.clear();
dir_to_new_files_since_last_sync_.clear();
SetFilesystemActiveNoLock(true);
}
void FaultInjectionTestFS::UntrackFile(const std::string& f) {
MutexLock l(&mutex_);
auto dir_and_name = TestFSGetDirAndName(f);
dir_to_new_files_since_last_sync_[dir_and_name.first].erase(
dir_and_name.second);
db_file_state_.erase(f);
open_managed_files_.erase(f);
}
IOStatus FaultInjectionTestFS::InjectThreadSpecificReadError(
ErrorOperation op, Slice* result, bool direct_io, char* scratch,
bool need_count_increase, bool* fault_injected) {
bool dummy_bool;
bool& ret_fault_injected = fault_injected ? *fault_injected : dummy_bool;
ret_fault_injected = false;
ErrorContext* ctx = static_cast<ErrorContext*>(thread_local_error_->Get());
if (ctx == nullptr || !ctx->enable_error_injection || !ctx->one_in) {
return IOStatus::OK();
}
if (ctx->rand.OneIn(ctx->one_in)) {
if (ctx->count == 0) {
ctx->message = "";
}
if (need_count_increase) {
ctx->count++;
}
if (ctx->callstack) {
free(ctx->callstack);
}
ctx->callstack = port::SaveStack(&ctx->frames);
if (op != ErrorOperation::kMultiReadSingleReq) {
// Likely non-per read status code for MultiRead
ctx->message += "error; ";
ret_fault_injected = true;
return IOStatus::IOError();
} else if (Random::GetTLSInstance()->OneIn(8)) {
assert(result);
// For a small chance, set the failure to status but turn the
// result to be empty, which is supposed to be caught for a check.
*result = Slice();
ctx->message += "inject empty result; ";
ret_fault_injected = true;
} else if (!direct_io && Random::GetTLSInstance()->OneIn(7) &&
scratch != nullptr && result->data() == scratch) {
assert(result);
// With direct I/O, many extra bytes might be read so corrupting
// one byte might not cause checksum mismatch. Skip checksum
// corruption injection.
// We only corrupt data if the result is filled to `scratch`. For other
// cases, the data might not be able to be modified (e.g mmaped files)
// or has unintended side effects.
// For a small chance, set the failure to status but corrupt the
// result in a way that checksum checking is supposed to fail.
// Corrupt the last byte, which is supposed to be a checksum byte
// It would work for CRC. Not 100% sure for xxhash and will adjust
// if it is not the case.
const_cast<char*>(result->data())[result->size() - 1]++;
ctx->message += "corrupt last byte; ";
ret_fault_injected = true;
} else {
ctx->message += "error result multiget single; ";
ret_fault_injected = true;
return IOStatus::IOError();
}
}
return IOStatus::OK();
}
bool FaultInjectionTestFS::TryParseFileName(const std::string& file_name,
uint64_t* number, FileType* type) {
std::size_t found = file_name.find_last_of("/");
std::string file = file_name.substr(found);
return ParseFileName(file, number, type);
}
IOStatus FaultInjectionTestFS::InjectWriteError(const std::string& file_name) {
MutexLock l(&mutex_);
if (!enable_write_error_injection_ || !write_error_one_in_) {
return IOStatus::OK();
}
bool allowed_type = false;
if (inject_for_all_file_types_) {
allowed_type = true;
} else {
uint64_t number;
FileType cur_type = kTempFile;
if (TryParseFileName(file_name, &number, &cur_type)) {
for (const auto& type : write_error_allowed_types_) {
if (cur_type == type) {
allowed_type = true;
}
}
}
}
if (allowed_type) {
if (write_error_rand_.OneIn(write_error_one_in_)) {
return GetError();
}
}
return IOStatus::OK();
}
IOStatus FaultInjectionTestFS::InjectMetadataWriteError() {
{
MutexLock l(&mutex_);
if (!enable_metadata_write_error_injection_ ||
!metadata_write_error_one_in_ ||
!write_error_rand_.OneIn(metadata_write_error_one_in_)) {
return IOStatus::OK();
}
}
TEST_SYNC_POINT("FaultInjectionTestFS::InjectMetadataWriteError:Injected");
return IOStatus::IOError();
}
void FaultInjectionTestFS::PrintFaultBacktrace() {
#if defined(OS_LINUX)
ErrorContext* ctx = static_cast<ErrorContext*>(thread_local_error_->Get());
if (ctx == nullptr) {
return;
}
fprintf(stderr, "Injected error type = %d\n", ctx->type);
fprintf(stderr, "Message: %s\n", ctx->message.c_str());
port::PrintAndFreeStack(ctx->callstack, ctx->frames);
ctx->callstack = nullptr;
#endif
}
} // namespace ROCKSDB_NAMESPACE