rocksdb/table/block.cc
Hans Wennborg 36a5f8ed7f A number of fixes:
- Replace raw slice comparison with a call to user comparator.
  Added test for custom comparators.

- Fix end of namespace comments.

- Fixed bug in picking inputs for a level-0 compaction.

  When finding overlapping files, the covered range may expand
  as files are added to the input set.  We now correctly expand
  the range when this happens instead of continuing to use the
  old range.  For example, suppose L0 contains files with the
  following ranges:

      F1: a .. d
      F2:    c .. g
      F3:       f .. j

  and the initial compaction target is F3.  We used to search
  for range f..j which yielded {F2,F3}.  However we now expand
  the range as soon as another file is added.  In this case,
  when F2 is added, we expand the range to c..j and restart the
  search.  That picks up file F1 as well.

  This change fixes a bug related to deleted keys showing up
  incorrectly after a compaction as described in Issue 44.

(Sync with upstream @25072954)
2011-10-31 17:22:06 +00:00

264 lines
7.7 KiB
C++

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
//
// Decodes the blocks generated by block_builder.cc.
#include "table/block.h"
#include <vector>
#include <algorithm>
#include "leveldb/comparator.h"
#include "util/coding.h"
#include "util/logging.h"
namespace leveldb {
inline uint32_t Block::NumRestarts() const {
assert(size_ >= 2*sizeof(uint32_t));
return DecodeFixed32(data_ + size_ - sizeof(uint32_t));
}
Block::Block(const char* data, size_t size)
: data_(data),
size_(size) {
if (size_ < sizeof(uint32_t)) {
size_ = 0; // Error marker
} else {
restart_offset_ = size_ - (1 + NumRestarts()) * sizeof(uint32_t);
if (restart_offset_ > size_ - sizeof(uint32_t)) {
// The size is too small for NumRestarts() and therefore
// restart_offset_ wrapped around.
size_ = 0;
}
}
}
Block::~Block() {
delete[] data_;
}
// Helper routine: decode the next block entry starting at "p",
// storing the number of shared key bytes, non_shared key bytes,
// and the length of the value in "*shared", "*non_shared", and
// "*value_length", respectively. Will not derefence past "limit".
//
// If any errors are detected, returns NULL. Otherwise, returns a
// pointer to the key delta (just past the three decoded values).
static inline const char* DecodeEntry(const char* p, const char* limit,
uint32_t* shared,
uint32_t* non_shared,
uint32_t* value_length) {
if (limit - p < 3) return NULL;
*shared = reinterpret_cast<const unsigned char*>(p)[0];
*non_shared = reinterpret_cast<const unsigned char*>(p)[1];
*value_length = reinterpret_cast<const unsigned char*>(p)[2];
if ((*shared | *non_shared | *value_length) < 128) {
// Fast path: all three values are encoded in one byte each
p += 3;
} else {
if ((p = GetVarint32Ptr(p, limit, shared)) == NULL) return NULL;
if ((p = GetVarint32Ptr(p, limit, non_shared)) == NULL) return NULL;
if ((p = GetVarint32Ptr(p, limit, value_length)) == NULL) return NULL;
}
if (static_cast<uint32_t>(limit - p) < (*non_shared + *value_length)) {
return NULL;
}
return p;
}
class Block::Iter : public Iterator {
private:
const Comparator* const comparator_;
const char* const data_; // underlying block contents
uint32_t const restarts_; // Offset of restart array (list of fixed32)
uint32_t const num_restarts_; // Number of uint32_t entries in restart array
// current_ is offset in data_ of current entry. >= restarts_ if !Valid
uint32_t current_;
uint32_t restart_index_; // Index of restart block in which current_ falls
std::string key_;
Slice value_;
Status status_;
inline int Compare(const Slice& a, const Slice& b) const {
return comparator_->Compare(a, b);
}
// Return the offset in data_ just past the end of the current entry.
inline uint32_t NextEntryOffset() const {
return (value_.data() + value_.size()) - data_;
}
uint32_t GetRestartPoint(uint32_t index) {
assert(index < num_restarts_);
return DecodeFixed32(data_ + restarts_ + index * sizeof(uint32_t));
}
void SeekToRestartPoint(uint32_t index) {
key_.clear();
restart_index_ = index;
// current_ will be fixed by ParseNextKey();
// ParseNextKey() starts at the end of value_, so set value_ accordingly
uint32_t offset = GetRestartPoint(index);
value_ = Slice(data_ + offset, 0);
}
public:
Iter(const Comparator* comparator,
const char* data,
uint32_t restarts,
uint32_t num_restarts)
: comparator_(comparator),
data_(data),
restarts_(restarts),
num_restarts_(num_restarts),
current_(restarts_),
restart_index_(num_restarts_) {
assert(num_restarts_ > 0);
}
virtual bool Valid() const { return current_ < restarts_; }
virtual Status status() const { return status_; }
virtual Slice key() const {
assert(Valid());
return key_;
}
virtual Slice value() const {
assert(Valid());
return value_;
}
virtual void Next() {
assert(Valid());
ParseNextKey();
}
virtual void Prev() {
assert(Valid());
// Scan backwards to a restart point before current_
const uint32_t original = current_;
while (GetRestartPoint(restart_index_) >= original) {
if (restart_index_ == 0) {
// No more entries
current_ = restarts_;
restart_index_ = num_restarts_;
return;
}
restart_index_--;
}
SeekToRestartPoint(restart_index_);
do {
// Loop until end of current entry hits the start of original entry
} while (ParseNextKey() && NextEntryOffset() < original);
}
virtual void Seek(const Slice& target) {
// Binary search in restart array to find the first restart point
// with a key >= target
uint32_t left = 0;
uint32_t right = num_restarts_ - 1;
while (left < right) {
uint32_t mid = (left + right + 1) / 2;
uint32_t region_offset = GetRestartPoint(mid);
uint32_t shared, non_shared, value_length;
const char* key_ptr = DecodeEntry(data_ + region_offset,
data_ + restarts_,
&shared, &non_shared, &value_length);
if (key_ptr == NULL || (shared != 0)) {
CorruptionError();
return;
}
Slice mid_key(key_ptr, non_shared);
if (Compare(mid_key, target) < 0) {
// Key at "mid" is smaller than "target". Therefore all
// blocks before "mid" are uninteresting.
left = mid;
} else {
// Key at "mid" is >= "target". Therefore all blocks at or
// after "mid" are uninteresting.
right = mid - 1;
}
}
// Linear search (within restart block) for first key >= target
SeekToRestartPoint(left);
while (true) {
if (!ParseNextKey()) {
return;
}
if (Compare(key_, target) >= 0) {
return;
}
}
}
virtual void SeekToFirst() {
SeekToRestartPoint(0);
ParseNextKey();
}
virtual void SeekToLast() {
SeekToRestartPoint(num_restarts_ - 1);
while (ParseNextKey() && NextEntryOffset() < restarts_) {
// Keep skipping
}
}
private:
void CorruptionError() {
current_ = restarts_;
restart_index_ = num_restarts_;
status_ = Status::Corruption("bad entry in block");
key_.clear();
value_.clear();
}
bool ParseNextKey() {
current_ = NextEntryOffset();
const char* p = data_ + current_;
const char* limit = data_ + restarts_; // Restarts come right after data
if (p >= limit) {
// No more entries to return. Mark as invalid.
current_ = restarts_;
restart_index_ = num_restarts_;
return false;
}
// Decode next entry
uint32_t shared, non_shared, value_length;
p = DecodeEntry(p, limit, &shared, &non_shared, &value_length);
if (p == NULL || key_.size() < shared) {
CorruptionError();
return false;
} else {
key_.resize(shared);
key_.append(p, non_shared);
value_ = Slice(p + non_shared, value_length);
while (restart_index_ + 1 < num_restarts_ &&
GetRestartPoint(restart_index_ + 1) < current_) {
++restart_index_;
}
return true;
}
}
};
Iterator* Block::NewIterator(const Comparator* cmp) {
if (size_ < 2*sizeof(uint32_t)) {
return NewErrorIterator(Status::Corruption("bad block contents"));
}
const uint32_t num_restarts = NumRestarts();
if (num_restarts == 0) {
return NewEmptyIterator();
} else {
return new Iter(cmp, data_, restart_offset_, num_restarts);
}
}
} // namespace leveldb