mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-26 16:30:56 +00:00
68ce5d84f6
Summary: This PR resolves https://github.com/facebook/rocksdb/issues/10487 & https://github.com/facebook/rocksdb/issues/10536, user code needs to call Refresh() periodically. The main code change is to support range deletions. A range tombstone iterator uses a sequence number as upper bound to decide which range tombstones are effective. During Iterator refresh, this sequence number upper bound needs to be updated for all range tombstone iterators under DBIter and LevelIterator. LevelIterator may create new table iterators and range tombstone iterator during scanning, so it needs to be aware of iterator refresh. The code path that propagates this change is `db_iter_->set_sequence(read_seq) -> MergingIterator::SetRangeDelReadSeqno() -> TruncatedRangeDelIterator::SetRangeDelReadSeqno() and LevelIterator::SetRangeDelReadSeqno()`. This change also fixes an issue where range tombstone iterators created by LevelIterator may access ReadOptions::snapshot, even though we do not explicitly require users to keep a snapshot alive after creating an Iterator. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10594 Test Plan: * New unit tests. * Add Iterator::Refresh(snapshot) to stress test. Note that this change only adds tests for refreshing to the same snapshot since this is the main target use case. TODO in a following PR: * Stress test Iterator::Refresh() to different snapshots or no snapshot. Reviewed By: ajkr Differential Revision: D48456896 Pulled By: cbi42 fbshipit-source-id: 2e642c04e91235cc9542ef4cd37b3c20823bd779
1746 lines
73 KiB
C++
1746 lines
73 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "table/merging_iterator.h"
|
|
|
|
#include "db/arena_wrapped_db_iter.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
// MergingIterator uses a min/max heap to combine data from point iterators.
|
|
// Range tombstones can be added and keys covered by range tombstones will be
|
|
// skipped.
|
|
//
|
|
// The following are implementation details and can be ignored by user.
|
|
// For merging iterator to process range tombstones, it treats the start and end
|
|
// keys of a range tombstone as two keys and put them into minHeap_ or maxHeap_
|
|
// together with regular point keys. Each range tombstone is active only within
|
|
// its internal key range [start_key, end_key). An `active_` set is used to
|
|
// track levels that have an active range tombstone. Take forward scanning
|
|
// for example. Level j is in active_ if its current range tombstone has its
|
|
// start_key popped from minHeap_ and its end_key in minHeap_. If the top of
|
|
// minHeap_ is a point key from level L, we can determine if the point key is
|
|
// covered by any range tombstone by checking if there is an l <= L in active_.
|
|
// The case of l == L also involves checking range tombstone's sequence number.
|
|
//
|
|
// The following (non-exhaustive) list of invariants are maintained by
|
|
// MergingIterator during forward scanning. After each InternalIterator API,
|
|
// i.e., Seek*() and Next(), and FindNextVisibleKey(), if minHeap_ is not empty:
|
|
// (1) minHeap_.top().type == ITERATOR
|
|
// (2) minHeap_.top()->key() is not covered by any range tombstone.
|
|
//
|
|
// After each call to SeekImpl() in addition to the functions mentioned above:
|
|
// (3) For all level i and j <= i, range_tombstone_iters_[j].prev.end_key() <
|
|
// children_[i].iter.key(). That is, range_tombstone_iters_[j] is at or before
|
|
// the first range tombstone from level j with end_key() >
|
|
// children_[i].iter.key().
|
|
// (4) For all level i and j <= i, if j in active_, then
|
|
// range_tombstone_iters_[j]->start_key() < children_[i].iter.key().
|
|
// - When range_tombstone_iters_[j] is !Valid(), we consider its `prev` to be
|
|
// the last range tombstone from that range tombstone iterator.
|
|
// - When referring to range tombstone start/end keys, assume it is the value of
|
|
// HeapItem::tombstone_pik. This value has op_type = kMaxValid, which makes
|
|
// range tombstone keys have distinct values from point keys.
|
|
//
|
|
// Applicable class variables have their own (forward scanning) invariants
|
|
// listed in the comments above their definition.
|
|
class MergingIterator : public InternalIterator {
|
|
public:
|
|
MergingIterator(const InternalKeyComparator* comparator,
|
|
InternalIterator** children, int n, bool is_arena_mode,
|
|
bool prefix_seek_mode,
|
|
const Slice* iterate_upper_bound = nullptr)
|
|
: is_arena_mode_(is_arena_mode),
|
|
prefix_seek_mode_(prefix_seek_mode),
|
|
direction_(kForward),
|
|
comparator_(comparator),
|
|
current_(nullptr),
|
|
minHeap_(MinHeapItemComparator(comparator_)),
|
|
pinned_iters_mgr_(nullptr),
|
|
iterate_upper_bound_(iterate_upper_bound) {
|
|
children_.resize(n);
|
|
for (int i = 0; i < n; i++) {
|
|
children_[i].level = i;
|
|
children_[i].iter.Set(children[i]);
|
|
}
|
|
}
|
|
|
|
void considerStatus(Status s) {
|
|
if (!s.ok() && status_.ok()) {
|
|
status_ = s;
|
|
}
|
|
}
|
|
|
|
virtual void AddIterator(InternalIterator* iter) {
|
|
children_.emplace_back(children_.size(), iter);
|
|
if (pinned_iters_mgr_) {
|
|
iter->SetPinnedItersMgr(pinned_iters_mgr_);
|
|
}
|
|
// Invalidate to ensure `Seek*()` is called to construct the heaps before
|
|
// use.
|
|
current_ = nullptr;
|
|
}
|
|
|
|
// There must be either no range tombstone iterator or the same number of
|
|
// range tombstone iterators as point iterators after all iters are added.
|
|
// The i-th added range tombstone iterator and the i-th point iterator
|
|
// must point to the same LSM level.
|
|
// Merging iterator takes ownership of `iter` and is responsible for freeing
|
|
// it. One exception to this is when a LevelIterator moves to a different SST
|
|
// file or when Iterator::Refresh() is called, the range tombstone iterator
|
|
// could be updated. In that case, this merging iterator is only responsible
|
|
// for freeing the new range tombstone iterator that it has pointers to in
|
|
// range_tombstone_iters_.
|
|
void AddRangeTombstoneIterator(TruncatedRangeDelIterator* iter) {
|
|
range_tombstone_iters_.emplace_back(iter);
|
|
}
|
|
|
|
// Called by MergingIteratorBuilder when all point iterators and range
|
|
// tombstone iterators are added. Initializes HeapItems for range tombstone
|
|
// iterators.
|
|
void Finish() {
|
|
if (!range_tombstone_iters_.empty()) {
|
|
assert(range_tombstone_iters_.size() == children_.size());
|
|
pinned_heap_item_.resize(range_tombstone_iters_.size());
|
|
for (size_t i = 0; i < range_tombstone_iters_.size(); ++i) {
|
|
pinned_heap_item_[i].level = i;
|
|
// Range tombstone end key is exclusive. If a point internal key has the
|
|
// same user key and sequence number as the start or end key of a range
|
|
// tombstone, the order will be start < end key < internal key with the
|
|
// following op_type change. This is helpful to ensure keys popped from
|
|
// heap are in expected order since range tombstone start/end keys will
|
|
// be distinct from point internal keys. Strictly speaking, this is only
|
|
// needed for tombstone end points that are truncated in
|
|
// TruncatedRangeDelIterator since untruncated tombstone end points
|
|
// always have kMaxSequenceNumber and kTypeRangeDeletion (see
|
|
// TruncatedRangeDelIterator::start_key()/end_key()).
|
|
pinned_heap_item_[i].tombstone_pik.type = kTypeMaxValid;
|
|
}
|
|
}
|
|
}
|
|
|
|
~MergingIterator() override {
|
|
for (auto child : range_tombstone_iters_) {
|
|
delete child;
|
|
}
|
|
|
|
for (auto& child : children_) {
|
|
child.iter.DeleteIter(is_arena_mode_);
|
|
}
|
|
status_.PermitUncheckedError();
|
|
}
|
|
|
|
void SetRangeDelReadSeqno(SequenceNumber read_seqno) override {
|
|
for (auto& child : children_) {
|
|
// This should only be needed for LevelIterator (iterators from L1+).
|
|
child.iter.SetRangeDelReadSeqno(read_seqno);
|
|
}
|
|
for (auto& child : range_tombstone_iters_) {
|
|
if (child) {
|
|
child->SetRangeDelReadSeqno(read_seqno);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Valid() const override { return current_ != nullptr && status_.ok(); }
|
|
|
|
Status status() const override { return status_; }
|
|
|
|
// Add range_tombstone_iters_[level] into min heap.
|
|
// Updates active_ if the end key of a range tombstone is inserted.
|
|
// pinned_heap_items_[level].type is updated based on `start_key`.
|
|
//
|
|
// If range_tombstone_iters_[level] is after iterate_upper_bound_,
|
|
// it is removed from the heap.
|
|
// @param start_key specifies which end point of the range tombstone to add.
|
|
void InsertRangeTombstoneToMinHeap(size_t level, bool start_key = true,
|
|
bool replace_top = false) {
|
|
assert(!range_tombstone_iters_.empty() &&
|
|
range_tombstone_iters_[level]->Valid());
|
|
// Maintains Invariant(phi)
|
|
if (start_key) {
|
|
pinned_heap_item_[level].type = HeapItem::Type::DELETE_RANGE_START;
|
|
ParsedInternalKey pik = range_tombstone_iters_[level]->start_key();
|
|
// iterate_upper_bound does not have timestamp
|
|
if (iterate_upper_bound_ &&
|
|
comparator_->user_comparator()->CompareWithoutTimestamp(
|
|
pik.user_key, true /* a_has_ts */, *iterate_upper_bound_,
|
|
false /* b_has_ts */) >= 0) {
|
|
if (replace_top) {
|
|
// replace_top implies this range tombstone iterator is still in
|
|
// minHeap_ and at the top.
|
|
minHeap_.pop();
|
|
}
|
|
return;
|
|
}
|
|
pinned_heap_item_[level].SetTombstoneKey(std::move(pik));
|
|
// Checks Invariant(active_)
|
|
assert(active_.count(level) == 0);
|
|
} else {
|
|
// allow end key to go over upper bound (if present) since start key is
|
|
// before upper bound and the range tombstone could still cover a
|
|
// range before upper bound.
|
|
// Maintains Invariant(active_)
|
|
pinned_heap_item_[level].SetTombstoneKey(
|
|
range_tombstone_iters_[level]->end_key());
|
|
pinned_heap_item_[level].type = HeapItem::Type::DELETE_RANGE_END;
|
|
active_.insert(level);
|
|
}
|
|
if (replace_top) {
|
|
minHeap_.replace_top(&pinned_heap_item_[level]);
|
|
} else {
|
|
minHeap_.push(&pinned_heap_item_[level]);
|
|
}
|
|
}
|
|
|
|
// Add range_tombstone_iters_[level] into max heap.
|
|
// Updates active_ if the start key of a range tombstone is inserted.
|
|
// @param end_key specifies which end point of the range tombstone to add.
|
|
void InsertRangeTombstoneToMaxHeap(size_t level, bool end_key = true,
|
|
bool replace_top = false) {
|
|
assert(!range_tombstone_iters_.empty() &&
|
|
range_tombstone_iters_[level]->Valid());
|
|
if (end_key) {
|
|
pinned_heap_item_[level].SetTombstoneKey(
|
|
range_tombstone_iters_[level]->end_key());
|
|
pinned_heap_item_[level].type = HeapItem::Type::DELETE_RANGE_END;
|
|
assert(active_.count(level) == 0);
|
|
} else {
|
|
pinned_heap_item_[level].SetTombstoneKey(
|
|
range_tombstone_iters_[level]->start_key());
|
|
pinned_heap_item_[level].type = HeapItem::Type::DELETE_RANGE_START;
|
|
active_.insert(level);
|
|
}
|
|
if (replace_top) {
|
|
maxHeap_->replace_top(&pinned_heap_item_[level]);
|
|
} else {
|
|
maxHeap_->push(&pinned_heap_item_[level]);
|
|
}
|
|
}
|
|
|
|
// Remove HeapItems from top of minHeap_ that are of type DELETE_RANGE_START
|
|
// until minHeap_ is empty or the top of the minHeap_ is not of type
|
|
// DELETE_RANGE_START. Each such item means a range tombstone becomes active,
|
|
// so `active_` is updated accordingly.
|
|
void PopDeleteRangeStart() {
|
|
while (!minHeap_.empty() &&
|
|
minHeap_.top()->type == HeapItem::Type::DELETE_RANGE_START) {
|
|
TEST_SYNC_POINT_CALLBACK("MergeIterator::PopDeleteRangeStart", nullptr);
|
|
// Invariant(rti) holds since
|
|
// range_tombstone_iters_[minHeap_.top()->level] is still valid, and
|
|
// parameter `replace_top` is set to true here to ensure only one such
|
|
// HeapItem is in minHeap_.
|
|
InsertRangeTombstoneToMinHeap(
|
|
minHeap_.top()->level, false /* start_key */, true /* replace_top */);
|
|
}
|
|
}
|
|
|
|
// Remove HeapItems from top of maxHeap_ that are of type DELETE_RANGE_END
|
|
// until maxHeap_ is empty or the top of the maxHeap_ is not of type
|
|
// DELETE_RANGE_END. Each such item means a range tombstone becomes active,
|
|
// so `active_` is updated accordingly.
|
|
void PopDeleteRangeEnd() {
|
|
while (!maxHeap_->empty() &&
|
|
maxHeap_->top()->type == HeapItem::Type::DELETE_RANGE_END) {
|
|
// insert start key of this range tombstone and updates active_
|
|
InsertRangeTombstoneToMaxHeap(maxHeap_->top()->level, false /* end_key */,
|
|
true /* replace_top */);
|
|
}
|
|
}
|
|
|
|
void SeekToFirst() override {
|
|
ClearHeaps();
|
|
status_ = Status::OK();
|
|
for (auto& child : children_) {
|
|
child.iter.SeekToFirst();
|
|
AddToMinHeapOrCheckStatus(&child);
|
|
}
|
|
|
|
for (size_t i = 0; i < range_tombstone_iters_.size(); ++i) {
|
|
if (range_tombstone_iters_[i]) {
|
|
range_tombstone_iters_[i]->SeekToFirst();
|
|
if (range_tombstone_iters_[i]->Valid()) {
|
|
// It is possible to be invalid due to snapshots.
|
|
InsertRangeTombstoneToMinHeap(i);
|
|
}
|
|
}
|
|
}
|
|
FindNextVisibleKey();
|
|
direction_ = kForward;
|
|
current_ = CurrentForward();
|
|
}
|
|
|
|
void SeekToLast() override {
|
|
ClearHeaps();
|
|
InitMaxHeap();
|
|
status_ = Status::OK();
|
|
for (auto& child : children_) {
|
|
child.iter.SeekToLast();
|
|
AddToMaxHeapOrCheckStatus(&child);
|
|
}
|
|
|
|
for (size_t i = 0; i < range_tombstone_iters_.size(); ++i) {
|
|
if (range_tombstone_iters_[i]) {
|
|
range_tombstone_iters_[i]->SeekToLast();
|
|
if (range_tombstone_iters_[i]->Valid()) {
|
|
// It is possible to be invalid due to snapshots.
|
|
InsertRangeTombstoneToMaxHeap(i);
|
|
}
|
|
}
|
|
}
|
|
FindPrevVisibleKey();
|
|
direction_ = kReverse;
|
|
current_ = CurrentReverse();
|
|
}
|
|
|
|
// Position this merging iterator at the first key >= target (internal key).
|
|
// If range tombstones are present, keys covered by range tombstones are
|
|
// skipped, and this merging iter points to the first non-range-deleted key >=
|
|
// target after Seek(). If !Valid() and status().ok() then this iterator
|
|
// reaches the end.
|
|
//
|
|
// If range tombstones are present, cascading seeks may be called (an
|
|
// optimization adapted from Pebble https://github.com/cockroachdb/pebble).
|
|
// Roughly, if there is a range tombstone [start, end) that covers the
|
|
// target user key at level L, then this range tombstone must cover the range
|
|
// [target key, end) in all levels > L. So for all levels > L, we can pretend
|
|
// the target key is `end`. This optimization is applied at each level and
|
|
// hence the name "cascading seek".
|
|
void Seek(const Slice& target) override {
|
|
// Define LevelNextVisible(i, k) to be the first key >= k in level i that is
|
|
// not covered by any range tombstone.
|
|
// After SeekImpl(target, 0), invariants (3) and (4) hold.
|
|
// For all level i, target <= children_[i].iter.key() <= LevelNextVisible(i,
|
|
// target). By the contract of FindNextVisibleKey(), Invariants (1)-(4)
|
|
// holds after this call, and minHeap_.top().iter points to the
|
|
// first key >= target among children_ that is not covered by any range
|
|
// tombstone.
|
|
status_ = Status::OK();
|
|
SeekImpl(target);
|
|
FindNextVisibleKey();
|
|
|
|
direction_ = kForward;
|
|
{
|
|
PERF_TIMER_GUARD(seek_min_heap_time);
|
|
current_ = CurrentForward();
|
|
}
|
|
}
|
|
|
|
void SeekForPrev(const Slice& target) override {
|
|
assert(range_tombstone_iters_.empty() ||
|
|
range_tombstone_iters_.size() == children_.size());
|
|
status_ = Status::OK();
|
|
SeekForPrevImpl(target);
|
|
FindPrevVisibleKey();
|
|
|
|
direction_ = kReverse;
|
|
{
|
|
PERF_TIMER_GUARD(seek_max_heap_time);
|
|
current_ = CurrentReverse();
|
|
}
|
|
}
|
|
|
|
void Next() override {
|
|
assert(Valid());
|
|
// Ensure that all children are positioned after key().
|
|
// If we are moving in the forward direction, it is already
|
|
// true for all the non-current children since current_ is
|
|
// the smallest child and key() == current_->key().
|
|
if (direction_ != kForward) {
|
|
// The loop advanced all non-current children to be > key() so current_
|
|
// should still be strictly the smallest key.
|
|
SwitchToForward();
|
|
}
|
|
|
|
// For the heap modifications below to be correct, current_ must be the
|
|
// current top of the heap.
|
|
assert(current_ == CurrentForward());
|
|
// as the current points to the current record. move the iterator forward.
|
|
current_->Next();
|
|
if (current_->Valid()) {
|
|
// current is still valid after the Next() call above. Call
|
|
// replace_top() to restore the heap property. When the same child
|
|
// iterator yields a sequence of keys, this is cheap.
|
|
assert(current_->status().ok());
|
|
minHeap_.replace_top(minHeap_.top());
|
|
} else {
|
|
// current stopped being valid, remove it from the heap.
|
|
considerStatus(current_->status());
|
|
minHeap_.pop();
|
|
}
|
|
// Invariants (3) and (4) hold when after advancing current_.
|
|
// Let k be the smallest key among children_[i].iter.key().
|
|
// k <= children_[i].iter.key() <= LevelNextVisible(i, k) holds for all
|
|
// level i. After FindNextVisible(), Invariants (1)-(4) hold and
|
|
// minHeap_.top()->key() is the first key >= k from any children_ that is
|
|
// not covered by any range tombstone.
|
|
FindNextVisibleKey();
|
|
current_ = CurrentForward();
|
|
}
|
|
|
|
bool NextAndGetResult(IterateResult* result) override {
|
|
Next();
|
|
bool is_valid = Valid();
|
|
if (is_valid) {
|
|
result->key = key();
|
|
result->bound_check_result = UpperBoundCheckResult();
|
|
result->value_prepared = current_->IsValuePrepared();
|
|
}
|
|
return is_valid;
|
|
}
|
|
|
|
void Prev() override {
|
|
assert(Valid());
|
|
// Ensure that all children are positioned before key().
|
|
// If we are moving in the reverse direction, it is already
|
|
// true for all the non-current children since current_ is
|
|
// the largest child and key() == current_->key().
|
|
if (direction_ != kReverse) {
|
|
// Otherwise, retreat the non-current children. We retreat current_
|
|
// just after the if-block.
|
|
SwitchToBackward();
|
|
}
|
|
|
|
// For the heap modifications below to be correct, current_ must be the
|
|
// current top of the heap.
|
|
assert(current_ == CurrentReverse());
|
|
current_->Prev();
|
|
if (current_->Valid()) {
|
|
// current is still valid after the Prev() call above. Call
|
|
// replace_top() to restore the heap property. When the same child
|
|
// iterator yields a sequence of keys, this is cheap.
|
|
assert(current_->status().ok());
|
|
maxHeap_->replace_top(maxHeap_->top());
|
|
} else {
|
|
// current stopped being valid, remove it from the heap.
|
|
considerStatus(current_->status());
|
|
maxHeap_->pop();
|
|
}
|
|
FindPrevVisibleKey();
|
|
current_ = CurrentReverse();
|
|
}
|
|
|
|
Slice key() const override {
|
|
assert(Valid());
|
|
return current_->key();
|
|
}
|
|
|
|
Slice value() const override {
|
|
assert(Valid());
|
|
return current_->value();
|
|
}
|
|
|
|
bool PrepareValue() override {
|
|
assert(Valid());
|
|
if (current_->PrepareValue()) {
|
|
return true;
|
|
}
|
|
|
|
considerStatus(current_->status());
|
|
assert(!status_.ok());
|
|
return false;
|
|
}
|
|
|
|
// Here we simply relay MayBeOutOfLowerBound/MayBeOutOfUpperBound result
|
|
// from current child iterator. Potentially as long as one of child iterator
|
|
// report out of bound is not possible, we know current key is within bound.
|
|
bool MayBeOutOfLowerBound() override {
|
|
assert(Valid());
|
|
return current_->MayBeOutOfLowerBound();
|
|
}
|
|
|
|
IterBoundCheck UpperBoundCheckResult() override {
|
|
assert(Valid());
|
|
return current_->UpperBoundCheckResult();
|
|
}
|
|
|
|
void SetPinnedItersMgr(PinnedIteratorsManager* pinned_iters_mgr) override {
|
|
pinned_iters_mgr_ = pinned_iters_mgr;
|
|
for (auto& child : children_) {
|
|
child.iter.SetPinnedItersMgr(pinned_iters_mgr);
|
|
}
|
|
}
|
|
|
|
bool IsKeyPinned() const override {
|
|
assert(Valid());
|
|
return pinned_iters_mgr_ && pinned_iters_mgr_->PinningEnabled() &&
|
|
current_->IsKeyPinned();
|
|
}
|
|
|
|
bool IsValuePinned() const override {
|
|
assert(Valid());
|
|
return pinned_iters_mgr_ && pinned_iters_mgr_->PinningEnabled() &&
|
|
current_->IsValuePinned();
|
|
}
|
|
|
|
private:
|
|
// Represents an element in the min/max heap. Each HeapItem corresponds to a
|
|
// point iterator or a range tombstone iterator, differentiated by
|
|
// HeapItem::type.
|
|
struct HeapItem {
|
|
HeapItem() = default;
|
|
|
|
// corresponding point iterator
|
|
IteratorWrapper iter;
|
|
size_t level = 0;
|
|
// corresponding range tombstone iterator's start or end key value
|
|
// depending on value of `type`.
|
|
ParsedInternalKey tombstone_pik;
|
|
// Will be overwritten before use, initialize here so compiler does not
|
|
// complain.
|
|
enum class Type { ITERATOR, DELETE_RANGE_START, DELETE_RANGE_END };
|
|
Type type = Type::ITERATOR;
|
|
|
|
explicit HeapItem(size_t _level, InternalIteratorBase<Slice>* _iter)
|
|
: level(_level), type(Type::ITERATOR) {
|
|
iter.Set(_iter);
|
|
}
|
|
|
|
void SetTombstoneKey(ParsedInternalKey&& pik) {
|
|
// op_type is already initialized in MergingIterator::Finish().
|
|
tombstone_pik.user_key = pik.user_key;
|
|
tombstone_pik.sequence = pik.sequence;
|
|
}
|
|
};
|
|
|
|
class MinHeapItemComparator {
|
|
public:
|
|
explicit MinHeapItemComparator(const InternalKeyComparator* comparator)
|
|
: comparator_(comparator) {}
|
|
|
|
bool operator()(HeapItem* a, HeapItem* b) const {
|
|
if (LIKELY(a->type == HeapItem::Type::ITERATOR)) {
|
|
if (LIKELY(b->type == HeapItem::Type::ITERATOR)) {
|
|
return comparator_->Compare(a->iter.key(), b->iter.key()) > 0;
|
|
} else {
|
|
return comparator_->Compare(a->iter.key(), b->tombstone_pik) > 0;
|
|
}
|
|
} else {
|
|
if (LIKELY(b->type == HeapItem::Type::ITERATOR)) {
|
|
return comparator_->Compare(a->tombstone_pik, b->iter.key()) > 0;
|
|
} else {
|
|
return comparator_->Compare(a->tombstone_pik, b->tombstone_pik) > 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
const InternalKeyComparator* comparator_;
|
|
};
|
|
|
|
class MaxHeapItemComparator {
|
|
public:
|
|
explicit MaxHeapItemComparator(const InternalKeyComparator* comparator)
|
|
: comparator_(comparator) {}
|
|
|
|
bool operator()(HeapItem* a, HeapItem* b) const {
|
|
if (LIKELY(a->type == HeapItem::Type::ITERATOR)) {
|
|
if (LIKELY(b->type == HeapItem::Type::ITERATOR)) {
|
|
return comparator_->Compare(a->iter.key(), b->iter.key()) < 0;
|
|
} else {
|
|
return comparator_->Compare(a->iter.key(), b->tombstone_pik) < 0;
|
|
}
|
|
} else {
|
|
if (LIKELY(b->type == HeapItem::Type::ITERATOR)) {
|
|
return comparator_->Compare(a->tombstone_pik, b->iter.key()) < 0;
|
|
} else {
|
|
return comparator_->Compare(a->tombstone_pik, b->tombstone_pik) < 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
const InternalKeyComparator* comparator_;
|
|
};
|
|
|
|
using MergerMinIterHeap = BinaryHeap<HeapItem*, MinHeapItemComparator>;
|
|
using MergerMaxIterHeap = BinaryHeap<HeapItem*, MaxHeapItemComparator>;
|
|
|
|
friend class MergeIteratorBuilder;
|
|
// Clears heaps for both directions, used when changing direction or seeking
|
|
void ClearHeaps(bool clear_active = true);
|
|
// Ensures that maxHeap_ is initialized when starting to go in the reverse
|
|
// direction
|
|
void InitMaxHeap();
|
|
// Advance this merging iterator until the current key (minHeap_.top()) is
|
|
// from a point iterator and is not covered by any range tombstone,
|
|
// or that there is no more keys (heap is empty). SeekImpl() may be called
|
|
// to seek to the end of a range tombstone as an optimization.
|
|
void FindNextVisibleKey();
|
|
void FindPrevVisibleKey();
|
|
|
|
// Advance this merging iterators to the first key >= `target` for all
|
|
// components from levels >= starting_level. All iterators before
|
|
// starting_level are untouched.
|
|
//
|
|
// @param range_tombstone_reseek Whether target is some range tombstone
|
|
// end, i.e., whether this SeekImpl() call is a part of a "cascading seek".
|
|
// This is used only for recoding relevant perf_context.
|
|
void SeekImpl(const Slice& target, size_t starting_level = 0,
|
|
bool range_tombstone_reseek = false);
|
|
|
|
// Seek to fist key <= target key (internal key) for
|
|
// children_[starting_level:].
|
|
void SeekForPrevImpl(const Slice& target, size_t starting_level = 0,
|
|
bool range_tombstone_reseek = false);
|
|
|
|
bool is_arena_mode_;
|
|
bool prefix_seek_mode_;
|
|
// Which direction is the iterator moving?
|
|
enum Direction : uint8_t { kForward, kReverse };
|
|
Direction direction_;
|
|
const InternalKeyComparator* comparator_;
|
|
// HeapItem for all child point iterators.
|
|
// Invariant(children_): children_[i] is in minHeap_ iff
|
|
// children_[i].iter.Valid(), and at most one children_[i] is in minHeap_.
|
|
// TODO: We could use an autovector with a larger reserved size.
|
|
std::vector<HeapItem> children_;
|
|
// HeapItem for range tombstone start and end keys.
|
|
// pinned_heap_item_[i] corresponds to range_tombstone_iters_[i].
|
|
// Invariant(phi): If range_tombstone_iters_[i]->Valid(),
|
|
// pinned_heap_item_[i].tombstone_pik is equal to
|
|
// range_tombstone_iters_[i]->start_key() when
|
|
// pinned_heap_item_[i].type is DELETE_RANGE_START and
|
|
// range_tombstone_iters_[i]->end_key() when
|
|
// pinned_heap_item_[i].type is DELETE_RANGE_END (ignoring op_type which is
|
|
// kMaxValid for all pinned_heap_item_.tombstone_pik).
|
|
// pinned_heap_item_[i].type is either DELETE_RANGE_START or DELETE_RANGE_END.
|
|
std::vector<HeapItem> pinned_heap_item_;
|
|
// range_tombstone_iters_[i] contains range tombstones in the sorted run that
|
|
// corresponds to children_[i]. range_tombstone_iters_.empty() means not
|
|
// handling range tombstones in merging iterator. range_tombstone_iters_[i] ==
|
|
// nullptr means the sorted run of children_[i] does not have range
|
|
// tombstones.
|
|
// Invariant(rti): pinned_heap_item_[i] is in minHeap_ iff
|
|
// range_tombstone_iters_[i]->Valid() and at most one pinned_heap_item_[i] is
|
|
// in minHeap_.
|
|
std::vector<TruncatedRangeDelIterator*> range_tombstone_iters_;
|
|
|
|
// Levels (indices into range_tombstone_iters_/children_ ) that currently have
|
|
// "active" range tombstones. See comments above MergingIterator for meaning
|
|
// of "active".
|
|
// Invariant(active_): i is in active_ iff range_tombstone_iters_[i]->Valid()
|
|
// and pinned_heap_item_[i].type == DELETE_RANGE_END.
|
|
std::set<size_t> active_;
|
|
|
|
bool SkipNextDeleted();
|
|
|
|
bool SkipPrevDeleted();
|
|
|
|
// Invariant: at the end of each InternalIterator API,
|
|
// current_ points to minHeap_.top().iter (maxHeap_ if backward scanning)
|
|
// or nullptr if no child iterator is valid.
|
|
// This follows from that current_ = CurrentForward()/CurrentReverse() is
|
|
// called at the end of each InternalIterator API.
|
|
IteratorWrapper* current_;
|
|
// If any of the children have non-ok status, this is one of them.
|
|
Status status_;
|
|
// Invariant: min heap property is maintained (parent is always <= child).
|
|
// This holds by using only BinaryHeap APIs to modify heap. One
|
|
// exception is to modify heap top item directly (by caller iter->Next()), and
|
|
// it should be followed by a call to replace_top() or pop().
|
|
MergerMinIterHeap minHeap_;
|
|
|
|
// Max heap is used for reverse iteration, which is way less common than
|
|
// forward. Lazily initialize it to save memory.
|
|
std::unique_ptr<MergerMaxIterHeap> maxHeap_;
|
|
PinnedIteratorsManager* pinned_iters_mgr_;
|
|
|
|
// Used to bound range tombstones. For point keys, DBIter and SSTable iterator
|
|
// take care of boundary checking.
|
|
const Slice* iterate_upper_bound_;
|
|
|
|
// In forward direction, process a child that is not in the min heap.
|
|
// If valid, add to the min heap. Otherwise, check status.
|
|
void AddToMinHeapOrCheckStatus(HeapItem*);
|
|
|
|
// In backward direction, process a child that is not in the max heap.
|
|
// If valid, add to the min heap. Otherwise, check status.
|
|
void AddToMaxHeapOrCheckStatus(HeapItem*);
|
|
|
|
void SwitchToForward();
|
|
|
|
// Switch the direction from forward to backward without changing the
|
|
// position. Iterator should still be valid.
|
|
void SwitchToBackward();
|
|
|
|
IteratorWrapper* CurrentForward() const {
|
|
assert(direction_ == kForward);
|
|
assert(minHeap_.empty() ||
|
|
minHeap_.top()->type == HeapItem::Type::ITERATOR);
|
|
return !minHeap_.empty() ? &minHeap_.top()->iter : nullptr;
|
|
}
|
|
|
|
IteratorWrapper* CurrentReverse() const {
|
|
assert(direction_ == kReverse);
|
|
assert(maxHeap_);
|
|
assert(maxHeap_->empty() ||
|
|
maxHeap_->top()->type == HeapItem::Type::ITERATOR);
|
|
return !maxHeap_->empty() ? &maxHeap_->top()->iter : nullptr;
|
|
}
|
|
};
|
|
|
|
// Pre-condition:
|
|
// - Invariants (3) and (4) hold for i < starting_level
|
|
// - For i < starting_level, range_tombstone_iters_[i].prev.end_key() <
|
|
// `target`.
|
|
// - For i < starting_level, if i in active_, then
|
|
// range_tombstone_iters_[i]->start_key() < `target`.
|
|
//
|
|
// Post-condition:
|
|
// - Invariants (3) and (4) hold for all level i.
|
|
// - (*) target <= children_[i].iter.key() <= LevelNextVisible(i, target)
|
|
// for i >= starting_level
|
|
// - (**) target < pinned_heap_item_[i].tombstone_pik if
|
|
// range_tombstone_iters_[i].Valid() for i >= starting_level
|
|
//
|
|
// Proof sketch:
|
|
// Invariant (3) holds for all level i.
|
|
// For j <= i < starting_level, it follows from Pre-condition that (3) holds
|
|
// and that SeekImpl(-, starting_level) does not update children_[i] or
|
|
// range_tombstone_iters_[j].
|
|
// For j < starting_level and i >= starting_level, it follows from
|
|
// - Pre-condition that range_tombstone_iters_[j].prev.end_key() < `target`
|
|
// - range_tombstone_iters_[j] is not updated in SeekImpl(), and
|
|
// - children_[i].iter.Seek(current_search_key) is called with
|
|
// current_search_key >= target (shown below).
|
|
// When current_search_key is updated, it is updated to some
|
|
// range_tombstone_iter->end_key() after
|
|
// range_tombstone_iter->SeekInternalKey(current_search_key) was called. So
|
|
// current_search_key increases if updated and >= target.
|
|
// For starting_level <= j <= i:
|
|
// children_[i].iter.Seek(k1) and range_tombstone_iters_[j]->SeekInternalKey(k2)
|
|
// are called in SeekImpl(). Seek(k1) positions children_[i] at the first key >=
|
|
// k1 from level i. SeekInternalKey(k2) positions range_tombstone_iters_[j] at
|
|
// the first range tombstone from level j with end_key() > k2. It suffices to
|
|
// show that k1 >= k2. Since k1 and k2 are values of current_search_key where
|
|
// k1 = k2 or k1 is value of a later current_search_key than k2, so k1 >= k2.
|
|
//
|
|
// Invariant (4) holds for all level >= 0.
|
|
// By Pre-condition Invariant (4) holds for i < starting_level.
|
|
// Since children_[i], range_tombstone_iters_[i] and contents of active_ for
|
|
// i < starting_level do not change (4) holds for j <= i < starting_level.
|
|
// By Pre-condition: for all j < starting_level, if j in active_, then
|
|
// range_tombstone_iters_[j]->start_key() < target. For i >= starting_level,
|
|
// children_[i].iter.Seek(k) is called for k >= target. So
|
|
// children_[i].iter.key() >= target > range_tombstone_iters_[j]->start_key()
|
|
// for j < starting_level and i >= starting_level. So invariant (4) holds for
|
|
// j < starting_level and i >= starting_level.
|
|
// For starting_level <= j <= i, j is added to active_ only if
|
|
// - range_tombstone_iters_[j]->SeekInternalKey(k1) was called
|
|
// - range_tombstone_iters_[j]->start_key() <= k1
|
|
// Since children_[i].iter.Seek(k2) is called for some k2 >= k1 and for all
|
|
// starting_level <= j <= i, (4) also holds for all starting_level <= j <= i.
|
|
//
|
|
// Post-condition (*): target <= children_[i].iter.key() <= LevelNextVisible(i,
|
|
// target) for i >= starting_level.
|
|
// target <= children_[i].iter.key() follows from that Seek() is called on some
|
|
// current_search_key >= target for children_[i].iter. If current_search_key
|
|
// is updated from k1 to k2 when level = i, we show that the range [k1, k2) is
|
|
// not visible for children_[j] for any j > i. When current_search_key is
|
|
// updated from k1 to k2,
|
|
// - range_tombstone_iters_[i]->SeekInternalKey(k1) was called
|
|
// - range_tombstone_iters_[i]->Valid()
|
|
// - range_tombstone_iters_[i]->start_key().user_key <= k1.user_key
|
|
// - k2 = range_tombstone_iters_[i]->end_key()
|
|
// We assume that range_tombstone_iters_[i]->start_key() has a higher sequence
|
|
// number compared to any key from levels > i that has the same user key. So no
|
|
// point key from levels > i in range [k1, k2) is visible. So
|
|
// children_[i].iter.key() <= LevelNextVisible(i, target).
|
|
//
|
|
// Post-condition (**) target < pinned_heap_item_[i].tombstone_pik for i >=
|
|
// starting_level if range_tombstone_iters_[i].Valid(). This follows from that
|
|
// SeekInternalKey() being called for each range_tombstone_iters_ with some key
|
|
// >= `target` and that we pick start/end key that is > `target` to insert to
|
|
// minHeap_.
|
|
void MergingIterator::SeekImpl(const Slice& target, size_t starting_level,
|
|
bool range_tombstone_reseek) {
|
|
// active range tombstones before `starting_level` remain active
|
|
ClearHeaps(false /* clear_active */);
|
|
ParsedInternalKey pik;
|
|
if (!range_tombstone_iters_.empty()) {
|
|
// pik is only used in InsertRangeTombstoneToMinHeap().
|
|
ParseInternalKey(target, &pik, false).PermitUncheckedError();
|
|
}
|
|
|
|
// TODO: perhaps we could save some upheap cost by add all child iters first
|
|
// and then do a single heapify.
|
|
// Invariant(children_) for level < starting_level
|
|
for (size_t level = 0; level < starting_level; ++level) {
|
|
PERF_TIMER_GUARD(seek_min_heap_time);
|
|
AddToMinHeapOrCheckStatus(&children_[level]);
|
|
}
|
|
if (!range_tombstone_iters_.empty()) {
|
|
// Add range tombstones from levels < starting_level. We can insert from
|
|
// pinned_heap_item_ for the following reasons:
|
|
// - pinned_heap_item_[level] is in minHeap_ iff
|
|
// range_tombstone_iters[level]->Valid().
|
|
// - If `level` is in active_, then range_tombstone_iters_[level]->Valid()
|
|
// and pinned_heap_item_[level] is of type RANGE_DELETION_END.
|
|
for (size_t level = 0; level < starting_level; ++level) {
|
|
// Restores Invariants(rti), (phi) and (active_) for level <
|
|
// starting_level
|
|
if (range_tombstone_iters_[level] &&
|
|
range_tombstone_iters_[level]->Valid()) {
|
|
// use an iterator on active_ if performance becomes an issue here
|
|
if (active_.count(level) > 0) {
|
|
assert(pinned_heap_item_[level].type ==
|
|
HeapItem::Type::DELETE_RANGE_END);
|
|
// if it was active, then start key must be within upper_bound,
|
|
// so we can add to minHeap_ directly.
|
|
minHeap_.push(&pinned_heap_item_[level]);
|
|
} else {
|
|
assert(pinned_heap_item_[level].type ==
|
|
HeapItem::Type::DELETE_RANGE_START);
|
|
// this takes care of checking iterate_upper_bound, but with an extra
|
|
// key comparison if range_tombstone_iters_[level] was already out of
|
|
// bound. Consider using a new HeapItem type or some flag to remember
|
|
// boundary checking result.
|
|
InsertRangeTombstoneToMinHeap(level);
|
|
}
|
|
} else {
|
|
assert(!active_.count(level));
|
|
}
|
|
}
|
|
// levels >= starting_level will be reseeked below, so clearing their active
|
|
// state here.
|
|
active_.erase(active_.lower_bound(starting_level), active_.end());
|
|
}
|
|
|
|
IterKey current_search_key;
|
|
current_search_key.SetInternalKey(target, false /* copy */);
|
|
// Seek target might change to some range tombstone end key, so
|
|
// we need to remember them for async requests.
|
|
// (level, target) pairs
|
|
autovector<std::pair<size_t, std::string>> prefetched_target;
|
|
for (auto level = starting_level; level < children_.size(); ++level) {
|
|
{
|
|
PERF_TIMER_GUARD(seek_child_seek_time);
|
|
children_[level].iter.Seek(current_search_key.GetInternalKey());
|
|
}
|
|
|
|
PERF_COUNTER_ADD(seek_child_seek_count, 1);
|
|
|
|
if (!range_tombstone_iters_.empty()) {
|
|
if (range_tombstone_reseek) {
|
|
// This seek is to some range tombstone end key.
|
|
// Should only happen when there are range tombstones.
|
|
PERF_COUNTER_ADD(internal_range_del_reseek_count, 1);
|
|
}
|
|
if (children_[level].iter.status().IsTryAgain()) {
|
|
prefetched_target.emplace_back(
|
|
level, current_search_key.GetInternalKey().ToString());
|
|
}
|
|
auto range_tombstone_iter = range_tombstone_iters_[level];
|
|
if (range_tombstone_iter) {
|
|
range_tombstone_iter->SeekInternalKey(
|
|
current_search_key.GetInternalKey());
|
|
// Invariants (rti) and (phi)
|
|
if (range_tombstone_iter->Valid()) {
|
|
// If range tombstone starts after `current_search_key`,
|
|
// we should insert start key to heap as the range tombstone is not
|
|
// active yet.
|
|
InsertRangeTombstoneToMinHeap(
|
|
level, comparator_->Compare(range_tombstone_iter->start_key(),
|
|
pik) > 0 /* start_key */);
|
|
// current_search_key < end_key guaranteed by the SeekInternalKey()
|
|
// and Valid() calls above. Here we only need to compare user_key
|
|
// since if target.user_key ==
|
|
// range_tombstone_iter->start_key().user_key and target <
|
|
// range_tombstone_iter->start_key(), no older level would have any
|
|
// key in range [target, range_tombstone_iter->start_key()], so no
|
|
// keys in range [target, range_tombstone_iter->end_key()) from older
|
|
// level would be visible. So it is safe to seek to
|
|
// range_tombstone_iter->end_key().
|
|
//
|
|
// TODO: range_tombstone_iter->Seek() finds the max covering
|
|
// sequence number, can make it cheaper by not looking for max.
|
|
if (comparator_->user_comparator()->Compare(
|
|
range_tombstone_iter->start_key().user_key,
|
|
current_search_key.GetUserKey()) <= 0) {
|
|
range_tombstone_reseek = true;
|
|
// Note that for prefix seek case, it is possible that the prefix
|
|
// is not the same as the original target, it should not affect
|
|
// correctness. Besides, in most cases, range tombstone start and
|
|
// end key should have the same prefix?
|
|
current_search_key.SetInternalKey(range_tombstone_iter->end_key());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// child.iter.status() is set to Status::TryAgain indicating asynchronous
|
|
// request for retrieval of data blocks has been submitted. So it should
|
|
// return at this point and Seek should be called again to retrieve the
|
|
// requested block and add the child to min heap.
|
|
if (children_[level].iter.status().IsTryAgain()) {
|
|
continue;
|
|
}
|
|
{
|
|
// Strictly, we timed slightly more than min heap operation,
|
|
// but these operations are very cheap.
|
|
PERF_TIMER_GUARD(seek_min_heap_time);
|
|
AddToMinHeapOrCheckStatus(&children_[level]);
|
|
}
|
|
}
|
|
|
|
if (range_tombstone_iters_.empty()) {
|
|
for (auto& child : children_) {
|
|
if (child.iter.status().IsTryAgain()) {
|
|
child.iter.Seek(target);
|
|
{
|
|
PERF_TIMER_GUARD(seek_min_heap_time);
|
|
AddToMinHeapOrCheckStatus(&child);
|
|
}
|
|
PERF_COUNTER_ADD(number_async_seek, 1);
|
|
}
|
|
}
|
|
} else {
|
|
for (auto& prefetch : prefetched_target) {
|
|
// (level, target) pairs
|
|
children_[prefetch.first].iter.Seek(prefetch.second);
|
|
{
|
|
PERF_TIMER_GUARD(seek_min_heap_time);
|
|
AddToMinHeapOrCheckStatus(&children_[prefetch.first]);
|
|
}
|
|
PERF_COUNTER_ADD(number_async_seek, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns true iff the current key (min heap top) should not be returned
|
|
// to user (of the merging iterator). This can be because the current key
|
|
// is deleted by some range tombstone, the current key is some fake file
|
|
// boundary sentinel key, or the current key is an end point of a range
|
|
// tombstone. Advance the iterator at heap top if needed. Heap order is restored
|
|
// and `active_` is updated accordingly.
|
|
// See FindNextVisibleKey() for more detail on internal implementation
|
|
// of advancing child iters.
|
|
// When false is returned, if minHeap is not empty, then minHeap_.top().type
|
|
// == ITERATOR
|
|
//
|
|
// REQUIRES:
|
|
// - min heap is currently not empty, and iter is in kForward direction.
|
|
// - minHeap_ top is not DELETE_RANGE_START (so that `active_` is current).
|
|
bool MergingIterator::SkipNextDeleted() {
|
|
// 3 types of keys:
|
|
// - point key
|
|
// - file boundary sentinel keys
|
|
// - range deletion end key
|
|
auto current = minHeap_.top();
|
|
if (current->type == HeapItem::Type::DELETE_RANGE_END) {
|
|
// Invariant(active_): range_tombstone_iters_[current->level] is about to
|
|
// become !Valid() or that its start key is going to be added to minHeap_.
|
|
active_.erase(current->level);
|
|
assert(range_tombstone_iters_[current->level] &&
|
|
range_tombstone_iters_[current->level]->Valid());
|
|
range_tombstone_iters_[current->level]->Next();
|
|
// Maintain Invariants (rti) and (phi)
|
|
if (range_tombstone_iters_[current->level]->Valid()) {
|
|
InsertRangeTombstoneToMinHeap(current->level, true /* start_key */,
|
|
true /* replace_top */);
|
|
} else {
|
|
// TruncatedRangeDelIterator does not have status
|
|
minHeap_.pop();
|
|
}
|
|
return true /* current key deleted */;
|
|
}
|
|
if (current->iter.IsDeleteRangeSentinelKey()) {
|
|
// If the file boundary is defined by a range deletion, the range
|
|
// tombstone's end key must come before this sentinel key (see op_type in
|
|
// SetTombstoneKey()).
|
|
assert(ExtractValueType(current->iter.key()) != kTypeRangeDeletion ||
|
|
active_.count(current->level) == 0);
|
|
// When entering a new file, range tombstone iter from the old file is
|
|
// freed, but the last key from that range tombstone iter may still be in
|
|
// the heap. We need to ensure the data underlying its corresponding key
|
|
// Slice is still alive. We do so by popping the range tombstone key from
|
|
// heap before calling iter->Next(). Technically, this change is not needed:
|
|
// if there is a range tombstone end key that is after file boundary
|
|
// sentinel key in minHeap_, the range tombstone end key must have been
|
|
// truncated at file boundary. The underlying data of the range tombstone
|
|
// end key Slice is the SST file's largest internal key stored as file
|
|
// metadata in Version. However, since there are too many implicit
|
|
// assumptions made, it is safer to just ensure range tombstone iter is
|
|
// still alive.
|
|
minHeap_.pop();
|
|
// Remove last SST file's range tombstone end key if there is one.
|
|
// This means file boundary is before range tombstone end key,
|
|
// which could happen when a range tombstone and a user key
|
|
// straddle two SST files. Note that in TruncatedRangeDelIterator
|
|
// constructor, parsed_largest.sequence is decremented 1 in this case.
|
|
// Maintains Invariant(rti) that at most one
|
|
// pinned_heap_item_[current->level] is in minHeap_.
|
|
if (range_tombstone_iters_[current->level] &&
|
|
range_tombstone_iters_[current->level]->Valid()) {
|
|
if (!minHeap_.empty() && minHeap_.top()->level == current->level) {
|
|
assert(minHeap_.top()->type == HeapItem::Type::DELETE_RANGE_END);
|
|
minHeap_.pop();
|
|
// Invariant(active_): we are about to enter a new SST file with new
|
|
// range_tombstone_iters[current->level]. Either it is !Valid() or its
|
|
// start key is going to be added to minHeap_.
|
|
active_.erase(current->level);
|
|
} else {
|
|
// range tombstone is still valid, but it is not on heap.
|
|
// This should only happen if the range tombstone is over iterator
|
|
// upper bound.
|
|
assert(iterate_upper_bound_ &&
|
|
comparator_->user_comparator()->CompareWithoutTimestamp(
|
|
range_tombstone_iters_[current->level]->start_key().user_key,
|
|
true /* a_has_ts */, *iterate_upper_bound_,
|
|
false /* b_has_ts */) >= 0);
|
|
}
|
|
}
|
|
// LevelIterator enters a new SST file
|
|
current->iter.Next();
|
|
// Invariant(children_): current is popped from heap and added back only if
|
|
// it is valid
|
|
if (current->iter.Valid()) {
|
|
assert(current->iter.status().ok());
|
|
minHeap_.push(current);
|
|
} else {
|
|
// TODO(cbi): check status and early return if non-ok.
|
|
considerStatus(current->iter.status());
|
|
}
|
|
// Invariants (rti) and (phi)
|
|
if (range_tombstone_iters_[current->level] &&
|
|
range_tombstone_iters_[current->level]->Valid()) {
|
|
InsertRangeTombstoneToMinHeap(current->level);
|
|
}
|
|
return true /* current key deleted */;
|
|
}
|
|
assert(current->type == HeapItem::Type::ITERATOR);
|
|
// Point key case: check active_ for range tombstone coverage.
|
|
ParsedInternalKey pik;
|
|
ParseInternalKey(current->iter.key(), &pik, false).PermitUncheckedError();
|
|
if (!active_.empty()) {
|
|
auto i = *active_.begin();
|
|
if (i < current->level) {
|
|
// range tombstone is from a newer level, definitely covers
|
|
assert(comparator_->Compare(range_tombstone_iters_[i]->start_key(),
|
|
pik) <= 0);
|
|
assert(comparator_->Compare(pik, range_tombstone_iters_[i]->end_key()) <
|
|
0);
|
|
std::string target;
|
|
AppendInternalKey(&target, range_tombstone_iters_[i]->end_key());
|
|
SeekImpl(target, current->level, true);
|
|
return true /* current key deleted */;
|
|
} else if (i == current->level) {
|
|
// range tombstone is from the same level as current, check sequence
|
|
// number. By `active_` we know current key is between start key and end
|
|
// key.
|
|
assert(comparator_->Compare(range_tombstone_iters_[i]->start_key(),
|
|
pik) <= 0);
|
|
assert(comparator_->Compare(pik, range_tombstone_iters_[i]->end_key()) <
|
|
0);
|
|
if (pik.sequence < range_tombstone_iters_[current->level]->seq()) {
|
|
// covered by range tombstone
|
|
current->iter.Next();
|
|
// Invariant (children_)
|
|
if (current->iter.Valid()) {
|
|
minHeap_.replace_top(current);
|
|
} else {
|
|
considerStatus(current->iter.status());
|
|
minHeap_.pop();
|
|
}
|
|
return true /* current key deleted */;
|
|
} else {
|
|
return false /* current key not deleted */;
|
|
}
|
|
} else {
|
|
return false /* current key not deleted */;
|
|
// range tombstone from an older sorted run with current key < end key.
|
|
// current key is not deleted and the older sorted run will have its range
|
|
// tombstone updated when the range tombstone's end key are popped from
|
|
// minHeap_.
|
|
}
|
|
}
|
|
// we can reach here only if active_ is empty
|
|
assert(active_.empty());
|
|
assert(minHeap_.top()->type == HeapItem::Type::ITERATOR);
|
|
return false /* current key not deleted */;
|
|
}
|
|
|
|
void MergingIterator::SeekForPrevImpl(const Slice& target,
|
|
size_t starting_level,
|
|
bool range_tombstone_reseek) {
|
|
// active range tombstones before `starting_level` remain active
|
|
ClearHeaps(false /* clear_active */);
|
|
InitMaxHeap();
|
|
ParsedInternalKey pik;
|
|
if (!range_tombstone_iters_.empty()) {
|
|
ParseInternalKey(target, &pik, false).PermitUncheckedError();
|
|
}
|
|
for (size_t level = 0; level < starting_level; ++level) {
|
|
PERF_TIMER_GUARD(seek_max_heap_time);
|
|
AddToMaxHeapOrCheckStatus(&children_[level]);
|
|
}
|
|
if (!range_tombstone_iters_.empty()) {
|
|
// Add range tombstones before starting_level.
|
|
for (size_t level = 0; level < starting_level; ++level) {
|
|
if (range_tombstone_iters_[level] &&
|
|
range_tombstone_iters_[level]->Valid()) {
|
|
assert(static_cast<bool>(active_.count(level)) ==
|
|
(pinned_heap_item_[level].type ==
|
|
HeapItem::Type::DELETE_RANGE_START));
|
|
maxHeap_->push(&pinned_heap_item_[level]);
|
|
} else {
|
|
assert(!active_.count(level));
|
|
}
|
|
}
|
|
// levels >= starting_level will be reseeked below,
|
|
active_.erase(active_.lower_bound(starting_level), active_.end());
|
|
}
|
|
|
|
IterKey current_search_key;
|
|
current_search_key.SetInternalKey(target, false /* copy */);
|
|
// Seek target might change to some range tombstone end key, so
|
|
// we need to remember them for async requests.
|
|
// (level, target) pairs
|
|
autovector<std::pair<size_t, std::string>> prefetched_target;
|
|
for (auto level = starting_level; level < children_.size(); ++level) {
|
|
{
|
|
PERF_TIMER_GUARD(seek_child_seek_time);
|
|
children_[level].iter.SeekForPrev(current_search_key.GetInternalKey());
|
|
}
|
|
|
|
PERF_COUNTER_ADD(seek_child_seek_count, 1);
|
|
|
|
if (!range_tombstone_iters_.empty()) {
|
|
if (range_tombstone_reseek) {
|
|
// This seek is to some range tombstone end key.
|
|
// Should only happen when there are range tombstones.
|
|
PERF_COUNTER_ADD(internal_range_del_reseek_count, 1);
|
|
}
|
|
if (children_[level].iter.status().IsTryAgain()) {
|
|
prefetched_target.emplace_back(
|
|
level, current_search_key.GetInternalKey().ToString());
|
|
}
|
|
auto range_tombstone_iter = range_tombstone_iters_[level];
|
|
if (range_tombstone_iter) {
|
|
range_tombstone_iter->SeekForPrev(current_search_key.GetUserKey());
|
|
if (range_tombstone_iter->Valid()) {
|
|
InsertRangeTombstoneToMaxHeap(
|
|
level, comparator_->Compare(range_tombstone_iter->end_key(),
|
|
pik) <= 0 /* end_key */);
|
|
// start key <= current_search_key guaranteed by the Seek() call above
|
|
// Only interested in user key coverage since older sorted runs must
|
|
// have smaller sequence numbers than this tombstone.
|
|
if (comparator_->user_comparator()->Compare(
|
|
current_search_key.GetUserKey(),
|
|
range_tombstone_iter->end_key().user_key) < 0) {
|
|
range_tombstone_reseek = true;
|
|
current_search_key.SetInternalKey(
|
|
range_tombstone_iter->start_key().user_key, kMaxSequenceNumber,
|
|
kValueTypeForSeekForPrev);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// child.iter.status() is set to Status::TryAgain indicating asynchronous
|
|
// request for retrieval of data blocks has been submitted. So it should
|
|
// return at this point and Seek should be called again to retrieve the
|
|
// requested block and add the child to min heap.
|
|
if (children_[level].iter.status().IsTryAgain()) {
|
|
continue;
|
|
}
|
|
{
|
|
// Strictly, we timed slightly more than min heap operation,
|
|
// but these operations are very cheap.
|
|
PERF_TIMER_GUARD(seek_max_heap_time);
|
|
AddToMaxHeapOrCheckStatus(&children_[level]);
|
|
}
|
|
}
|
|
|
|
if (range_tombstone_iters_.empty()) {
|
|
for (auto& child : children_) {
|
|
if (child.iter.status().IsTryAgain()) {
|
|
child.iter.SeekForPrev(target);
|
|
{
|
|
PERF_TIMER_GUARD(seek_min_heap_time);
|
|
AddToMaxHeapOrCheckStatus(&child);
|
|
}
|
|
PERF_COUNTER_ADD(number_async_seek, 1);
|
|
}
|
|
}
|
|
} else {
|
|
for (auto& prefetch : prefetched_target) {
|
|
// (level, target) pairs
|
|
children_[prefetch.first].iter.SeekForPrev(prefetch.second);
|
|
{
|
|
PERF_TIMER_GUARD(seek_max_heap_time);
|
|
AddToMaxHeapOrCheckStatus(&children_[prefetch.first]);
|
|
}
|
|
PERF_COUNTER_ADD(number_async_seek, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// See more in comments above SkipNextDeleted().
|
|
// REQUIRES:
|
|
// - max heap is currently not empty, and iter is in kReverse direction.
|
|
// - maxHeap_ top is not DELETE_RANGE_END (so that `active_` is current).
|
|
bool MergingIterator::SkipPrevDeleted() {
|
|
// 3 types of keys:
|
|
// - point key
|
|
// - file boundary sentinel keys
|
|
// - range deletion start key
|
|
auto current = maxHeap_->top();
|
|
if (current->type == HeapItem::Type::DELETE_RANGE_START) {
|
|
active_.erase(current->level);
|
|
assert(range_tombstone_iters_[current->level] &&
|
|
range_tombstone_iters_[current->level]->Valid());
|
|
range_tombstone_iters_[current->level]->Prev();
|
|
if (range_tombstone_iters_[current->level]->Valid()) {
|
|
InsertRangeTombstoneToMaxHeap(current->level, true /* end_key */,
|
|
true /* replace_top */);
|
|
} else {
|
|
maxHeap_->pop();
|
|
}
|
|
return true /* current key deleted */;
|
|
}
|
|
if (current->iter.IsDeleteRangeSentinelKey()) {
|
|
// LevelIterator enters a new SST file
|
|
maxHeap_->pop();
|
|
// Remove last SST file's range tombstone key if there is one.
|
|
if (!maxHeap_->empty() && maxHeap_->top()->level == current->level &&
|
|
maxHeap_->top()->type == HeapItem::Type::DELETE_RANGE_START) {
|
|
maxHeap_->pop();
|
|
active_.erase(current->level);
|
|
}
|
|
current->iter.Prev();
|
|
if (current->iter.Valid()) {
|
|
assert(current->iter.status().ok());
|
|
maxHeap_->push(current);
|
|
} else {
|
|
considerStatus(current->iter.status());
|
|
}
|
|
|
|
if (range_tombstone_iters_[current->level] &&
|
|
range_tombstone_iters_[current->level]->Valid()) {
|
|
InsertRangeTombstoneToMaxHeap(current->level);
|
|
}
|
|
return true /* current key deleted */;
|
|
}
|
|
assert(current->type == HeapItem::Type::ITERATOR);
|
|
// Point key case: check active_ for range tombstone coverage.
|
|
ParsedInternalKey pik;
|
|
ParseInternalKey(current->iter.key(), &pik, false).PermitUncheckedError();
|
|
if (!active_.empty()) {
|
|
auto i = *active_.begin();
|
|
if (i < current->level) {
|
|
// range tombstone is from a newer level, definitely covers
|
|
assert(comparator_->Compare(range_tombstone_iters_[i]->start_key(),
|
|
pik) <= 0);
|
|
assert(comparator_->Compare(pik, range_tombstone_iters_[i]->end_key()) <
|
|
0);
|
|
std::string target;
|
|
AppendInternalKey(&target, range_tombstone_iters_[i]->start_key());
|
|
// This is different from SkipNextDeleted() which does reseek at sorted
|
|
// runs >= level (instead of i+1 here). With min heap, if level L is at
|
|
// top of the heap, then levels <L all have internal keys > level L's
|
|
// current internal key, which means levels <L are already at a different
|
|
// user key. With max heap, if level L is at top of the heap, then levels
|
|
// <L all have internal keys smaller than level L's current internal key,
|
|
// which might still be the same user key.
|
|
SeekForPrevImpl(target, i + 1, true);
|
|
return true /* current key deleted */;
|
|
} else if (i == current->level) {
|
|
// By `active_` we know current key is between start key and end key.
|
|
assert(comparator_->Compare(range_tombstone_iters_[i]->start_key(),
|
|
pik) <= 0);
|
|
assert(comparator_->Compare(pik, range_tombstone_iters_[i]->end_key()) <
|
|
0);
|
|
if (pik.sequence < range_tombstone_iters_[current->level]->seq()) {
|
|
current->iter.Prev();
|
|
if (current->iter.Valid()) {
|
|
maxHeap_->replace_top(current);
|
|
} else {
|
|
considerStatus(current->iter.status());
|
|
maxHeap_->pop();
|
|
}
|
|
return true /* current key deleted */;
|
|
} else {
|
|
return false /* current key not deleted */;
|
|
}
|
|
} else {
|
|
return false /* current key not deleted */;
|
|
}
|
|
}
|
|
|
|
assert(active_.empty());
|
|
assert(maxHeap_->top()->type == HeapItem::Type::ITERATOR);
|
|
return false /* current key not deleted */;
|
|
}
|
|
|
|
void MergingIterator::AddToMinHeapOrCheckStatus(HeapItem* child) {
|
|
// Invariant(children_)
|
|
if (child->iter.Valid()) {
|
|
assert(child->iter.status().ok());
|
|
minHeap_.push(child);
|
|
} else {
|
|
considerStatus(child->iter.status());
|
|
}
|
|
}
|
|
|
|
void MergingIterator::AddToMaxHeapOrCheckStatus(HeapItem* child) {
|
|
if (child->iter.Valid()) {
|
|
assert(child->iter.status().ok());
|
|
maxHeap_->push(child);
|
|
} else {
|
|
considerStatus(child->iter.status());
|
|
}
|
|
}
|
|
|
|
// Advance all non current_ child to > current_.key().
|
|
// We advance current_ after the this function call as it does not require
|
|
// Seek().
|
|
// Advance all range tombstones iters, including the one corresponding to
|
|
// current_, to the first tombstone with end_key > current_.key().
|
|
// TODO: potentially do cascading seek here too
|
|
// TODO: show that invariants hold
|
|
void MergingIterator::SwitchToForward() {
|
|
ClearHeaps();
|
|
Slice target = key();
|
|
for (auto& child : children_) {
|
|
if (&child.iter != current_) {
|
|
child.iter.Seek(target);
|
|
// child.iter.status() is set to Status::TryAgain indicating asynchronous
|
|
// request for retrieval of data blocks has been submitted. So it should
|
|
// return at this point and Seek should be called again to retrieve the
|
|
// requested block and add the child to min heap.
|
|
if (child.iter.status() == Status::TryAgain()) {
|
|
continue;
|
|
}
|
|
if (child.iter.Valid() && comparator_->Equal(target, child.iter.key())) {
|
|
assert(child.iter.status().ok());
|
|
child.iter.Next();
|
|
}
|
|
}
|
|
AddToMinHeapOrCheckStatus(&child);
|
|
}
|
|
|
|
for (auto& child : children_) {
|
|
if (child.iter.status() == Status::TryAgain()) {
|
|
child.iter.Seek(target);
|
|
if (child.iter.Valid() && comparator_->Equal(target, child.iter.key())) {
|
|
assert(child.iter.status().ok());
|
|
child.iter.Next();
|
|
}
|
|
AddToMinHeapOrCheckStatus(&child);
|
|
}
|
|
}
|
|
|
|
// Current range tombstone iter also needs to seek for the following case:
|
|
// Previous direction is backward, so range tombstone iter may point to a
|
|
// tombstone before current_. If there is no such tombstone, then the range
|
|
// tombstone iter is !Valid(). Need to reseek here to make it valid again.
|
|
if (!range_tombstone_iters_.empty()) {
|
|
ParsedInternalKey pik;
|
|
ParseInternalKey(target, &pik, false /* log_err_key */)
|
|
.PermitUncheckedError();
|
|
for (size_t i = 0; i < range_tombstone_iters_.size(); ++i) {
|
|
auto iter = range_tombstone_iters_[i];
|
|
if (iter) {
|
|
iter->Seek(pik.user_key);
|
|
// The while loop is needed as the Seek() call above is only for user
|
|
// key. We could have a range tombstone with end_key covering user_key,
|
|
// but still is smaller than target. This happens when the range
|
|
// tombstone is truncated at iter.largest_.
|
|
while (iter->Valid() &&
|
|
comparator_->Compare(iter->end_key(), pik) <= 0) {
|
|
iter->Next();
|
|
}
|
|
if (range_tombstone_iters_[i]->Valid()) {
|
|
InsertRangeTombstoneToMinHeap(
|
|
i, comparator_->Compare(range_tombstone_iters_[i]->start_key(),
|
|
pik) > 0 /* start_key */);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
direction_ = kForward;
|
|
assert(current_ == CurrentForward());
|
|
}
|
|
|
|
// Advance all range tombstones iters, including the one corresponding to
|
|
// current_, to the first tombstone with start_key <= current_.key().
|
|
void MergingIterator::SwitchToBackward() {
|
|
ClearHeaps();
|
|
InitMaxHeap();
|
|
Slice target = key();
|
|
for (auto& child : children_) {
|
|
if (&child.iter != current_) {
|
|
child.iter.SeekForPrev(target);
|
|
TEST_SYNC_POINT_CALLBACK("MergeIterator::Prev:BeforePrev", &child);
|
|
if (child.iter.Valid() && comparator_->Equal(target, child.iter.key())) {
|
|
assert(child.iter.status().ok());
|
|
child.iter.Prev();
|
|
}
|
|
}
|
|
AddToMaxHeapOrCheckStatus(&child);
|
|
}
|
|
|
|
ParsedInternalKey pik;
|
|
ParseInternalKey(target, &pik, false /* log_err_key */)
|
|
.PermitUncheckedError();
|
|
for (size_t i = 0; i < range_tombstone_iters_.size(); ++i) {
|
|
auto iter = range_tombstone_iters_[i];
|
|
if (iter) {
|
|
iter->SeekForPrev(pik.user_key);
|
|
// Since the SeekForPrev() call above is only for user key,
|
|
// we may end up with some range tombstone with start key having the
|
|
// same user key at current_, but with a smaller sequence number. This
|
|
// makes current_ not at maxHeap_ top for the CurrentReverse() call
|
|
// below. If there is a range tombstone start key with the same user
|
|
// key and the same sequence number as current_.key(), it will be fine as
|
|
// in InsertRangeTombstoneToMaxHeap() we change op_type to be the smallest
|
|
// op_type.
|
|
while (iter->Valid() &&
|
|
comparator_->Compare(iter->start_key(), pik) > 0) {
|
|
iter->Prev();
|
|
}
|
|
if (iter->Valid()) {
|
|
InsertRangeTombstoneToMaxHeap(
|
|
i, comparator_->Compare(range_tombstone_iters_[i]->end_key(),
|
|
pik) <= 0 /* end_key */);
|
|
}
|
|
}
|
|
}
|
|
|
|
direction_ = kReverse;
|
|
if (!prefix_seek_mode_) {
|
|
// Note that we don't do assert(current_ == CurrentReverse()) here
|
|
// because it is possible to have some keys larger than the seek-key
|
|
// inserted between Seek() and SeekToLast(), which makes current_ not
|
|
// equal to CurrentReverse().
|
|
current_ = CurrentReverse();
|
|
}
|
|
assert(current_ == CurrentReverse());
|
|
}
|
|
|
|
void MergingIterator::ClearHeaps(bool clear_active) {
|
|
minHeap_.clear();
|
|
if (maxHeap_) {
|
|
maxHeap_->clear();
|
|
}
|
|
if (clear_active) {
|
|
active_.clear();
|
|
}
|
|
}
|
|
|
|
void MergingIterator::InitMaxHeap() {
|
|
if (!maxHeap_) {
|
|
maxHeap_ =
|
|
std::make_unique<MergerMaxIterHeap>(MaxHeapItemComparator(comparator_));
|
|
}
|
|
}
|
|
|
|
// Assume there is a next key that is not covered by range tombstone.
|
|
// Pre-condition:
|
|
// - Invariants (3) and (4)
|
|
// - There is some k where k <= children_[i].iter.key() <= LevelNextVisible(i,
|
|
// k) for all levels i (LevelNextVisible() defined in Seek()).
|
|
//
|
|
// Define NextVisible(k) to be the first key >= k from among children_ that
|
|
// is not covered by any range tombstone.
|
|
// Post-condition:
|
|
// - Invariants (1)-(4) hold
|
|
// - (*): minHeap_->top()->key() == NextVisible(k)
|
|
//
|
|
// Loop invariants:
|
|
// - Invariants (3) and (4)
|
|
// - (*): k <= children_[i].iter.key() <= LevelNextVisible(i, k)
|
|
//
|
|
// Progress: minHeap_.top()->key() is non-decreasing and strictly increases in
|
|
// a finite number of iterations.
|
|
// TODO: it is possible to call SeekImpl(k2) after SeekImpl(k1) with
|
|
// k2 < k1 in the same FindNextVisibleKey(). For example, l1 has a range
|
|
// tombstone [2,3) and l2 has a range tombstone [1, 4). Point key 1 from l5
|
|
// triggers SeekImpl(4 /* target */, 5). Then point key 2 from l3 triggers
|
|
// SeekImpl(3 /* target */, 3).
|
|
// Ideally we should only move iterators forward in SeekImpl(), and the
|
|
// progress condition can be made simpler: iterator only moves forward.
|
|
//
|
|
// Proof sketch:
|
|
// Post-condition:
|
|
// Invariant (1) holds when this method returns:
|
|
// Ignoring the empty minHeap_ case, there are two cases:
|
|
// Case 1: active_ is empty and !minHeap_.top()->iter.IsDeleteRangeSentinelKey()
|
|
// By invariants (rti) and (active_), active_ being empty means if a
|
|
// pinned_heap_item_[i] is in minHeap_, it has type DELETE_RANGE_START. Note
|
|
// that PopDeleteRangeStart() was called right before the while loop condition,
|
|
// so minHeap_.top() is not of type DELETE_RANGE_START. So minHeap_.top() must
|
|
// be of type ITERATOR.
|
|
// Case 2: SkipNextDeleted() returns false. The method returns false only when
|
|
// minHeap_.top().type == ITERATOR.
|
|
//
|
|
// Invariant (2) holds when this method returns:
|
|
// From Invariant (1), minHeap_.top().type == ITERATOR. Suppose it is
|
|
// children_[i] for some i. Suppose that children_[i].iter.key() is covered by
|
|
// some range tombstone. This means there is a j <= i and a range tombstone from
|
|
// level j with start_key() < children_[i].iter.key() < end_key().
|
|
// - If range_tombstone_iters_[j]->Valid(), by Invariants (rti) and (phi),
|
|
// pinned_heap_item_[j] is in minHeap_, and pinned_heap_item_[j].tombstone_pik
|
|
// is either start or end key of this range tombstone. If
|
|
// pinned_heap_item_[j].tombstone_pik < children_[i].iter.key(), it would be at
|
|
// top of minHeap_ which would contradict Invariant (1). So
|
|
// pinned_heap_item_[j].tombstone_pik > children_[i].iter.key().
|
|
// By Invariant (3), range_tombstone_iters_[j].prev.end_key() <
|
|
// children_[i].iter.key(). We assume that in each level, range tombstones
|
|
// cover non-overlapping ranges. So range_tombstone_iters_[j] is at
|
|
// the range tombstone with start_key() < children_[i].iter.key() < end_key()
|
|
// and has its end_key() in minHeap_. By Invariants (phi) and (active_),
|
|
// j is in active_. From while loop condition, SkipNextDeleted() must have
|
|
// returned false for this method to return.
|
|
// - If j < i, then SeekImpl(range_tombstone_iters_[j']->end_key(), i)
|
|
// was called for some j' < i and j' in active_. Note that since j' is in
|
|
// active_, pinned_heap_item_[j'] is in minHeap_ and has tombstone_pik =
|
|
// range_tombstone_iters_[j']->end_key(). So
|
|
// range_tombstone_iters_[j']->end_key() must be larger than
|
|
// children_[i].iter.key() to not be at top of minHeap_. This means after
|
|
// SeekImpl(), children_[i] would be at a key > children_[i].iter.key()
|
|
// -- contradiction.
|
|
// - If j == i, children_[i]->Next() would have been called and children_[i]
|
|
// would be at a key > children_[i].iter.key() -- contradiction.
|
|
// - If !range_tombstone_iters_[j]->Valid(). Then range_tombstone_iters_[j]
|
|
// points to an SST file with all range tombstones from that file exhausted.
|
|
// The file must come before the file containing the first
|
|
// range tombstone with start_key() < children_[i].iter.key() < end_key().
|
|
// Assume files from same level have non-overlapping ranges, the current file's
|
|
// meta.largest is less than children_[i].iter.key(). So the file boundary key,
|
|
// which has value meta.largest must have been popped from minHeap_ before
|
|
// children_[i].iter.key(). So range_tombstone_iters_[j] would not point to
|
|
// this SST file -- contradiction.
|
|
// So it is impossible for children_[i].iter.key() to be covered by a range
|
|
// tombstone.
|
|
//
|
|
// Post-condition (*) holds when the function returns:
|
|
// From loop invariant (*) that k <= children_[i].iter.key() <=
|
|
// LevelNextVisible(i, k) and Invariant (2) above, when the function returns,
|
|
// minHeap_.top()->key() is the smallest LevelNextVisible(i, k) among all levels
|
|
// i. This is equal to NextVisible(k).
|
|
//
|
|
// Invariant (3) holds after each iteration:
|
|
// PopDeleteRangeStart() does not change range tombstone position.
|
|
// In SkipNextDeleted():
|
|
// - If DELETE_RANGE_END is popped from minHeap_, it means the range
|
|
// tombstone's end key is < all other point keys, so it is safe to advance to
|
|
// next range tombstone.
|
|
// - If file boundary is popped (current->iter.IsDeleteRangeSentinelKey()),
|
|
// we assume that file's last range tombstone's
|
|
// end_key <= file boundary key < all other point keys. So it is safe to
|
|
// move to the first range tombstone in the next SST file.
|
|
// - If children_[i]->Next() is called, then it is fine as it is advancing a
|
|
// point iterator.
|
|
// - If SeekImpl(target, l) is called, then (3) follows from SeekImpl()'s
|
|
// post-condition if its pre-condition holds. First pre-condition follows
|
|
// from loop invariant where Invariant (3) holds for all levels i.
|
|
// Now we should second pre-condition holds. Since Invariant (3) holds for
|
|
// all i, we have for all j <= l, range_tombstone_iters_[j].prev.end_key()
|
|
// < children_[l].iter.key(). `target` is the value of
|
|
// range_tombstone_iters_[j'].end_key() for some j' < l and j' in active_.
|
|
// By Invariant (active_) and (rti), pinned_heap_item_[j'] is in minHeap_ and
|
|
// pinned_heap_item_[j'].tombstone_pik = range_tombstone_iters_[j'].end_key().
|
|
// This end_key must be larger than children_[l].key() since it was not at top
|
|
// of minHeap_. So for all levels j <= l,
|
|
// range_tombstone_iters_[j].prev.end_key() < children_[l].iter.key() < target
|
|
//
|
|
// Invariant (4) holds after each iteration:
|
|
// A level i is inserted into active_ during calls to PopDeleteRangeStart().
|
|
// In that case, range_tombstone_iters_[i].start_key() < all point keys
|
|
// by heap property and the assumption that point keys and range tombstone keys
|
|
// are distinct.
|
|
// If SeekImpl(target, l) is called, then there is a range_tombstone_iters_[j]
|
|
// where target = range_tombstone_iters_[j]->end_key() and children_[l]->key()
|
|
// < target. By loop invariants, (3) and (4) holds for levels.
|
|
// Since target > children_[l]->key(), it also holds that for j < l,
|
|
// range_tombstone_iters_[j].prev.end_key() < target and that if j in active_,
|
|
// range_tombstone_iters_[i]->start_key() < target. So all pre-conditions of
|
|
// SeekImpl(target, l) holds, and (4) follow from its post-condition.
|
|
// All other places either in this function either advance point iterators
|
|
// or remove some level from active_, so (4) still holds.
|
|
//
|
|
// Look Invariant (*): for all level i, k <= children_[i] <= LevelNextVisible(i,
|
|
// k).
|
|
// k <= children_[i] follows from loop `progress` condition.
|
|
// Consider when children_[i] is changed for any i. It is through
|
|
// children_[i].iter.Next() or SeekImpl() in SkipNextDeleted().
|
|
// If children_[i].iter.Next() is called, there is a range tombstone from level
|
|
// i where tombstone seqno > children_[i].iter.key()'s seqno and i in active_.
|
|
// By Invariant (4), tombstone's start_key < children_[i].iter.key(). By
|
|
// invariants (active_), (phi), and (rti), tombstone's end_key is in minHeap_
|
|
// and that children_[i].iter.key() < end_key. So children_[i].iter.key() is
|
|
// not visible, and it is safe to call Next().
|
|
// If SeekImpl(target, l) is called, by its contract, when SeekImpl() returns,
|
|
// target <= children_[i]->key() <= LevelNextVisible(i, target) for i >= l,
|
|
// and children_[<l] is not touched. We know `target` is
|
|
// range_tombstone_iters_[j]->end_key() for some j < i and j is in active_.
|
|
// By Invariant (4), range_tombstone_iters_[j]->start_key() <
|
|
// children_[i].iter.key() for all i >= l. So for each level i >= l, the range
|
|
// [children_[i].iter.key(), target) is not visible. So after SeekImpl(),
|
|
// children_[i].iter.key() <= LevelNextVisible(i, target) <=
|
|
// LevelNextVisible(i, k).
|
|
//
|
|
// `Progress` holds for each iteration:
|
|
// Very sloppy intuition:
|
|
// - in PopDeleteRangeStart(): the value of a pinned_heap_item_.tombstone_pik_
|
|
// is updated from the start key to the end key of the same range tombstone.
|
|
// We assume that start key <= end key for the same range tombstone.
|
|
// - in SkipNextDeleted()
|
|
// - If the top of heap is DELETE_RANGE_END, the range tombstone is advanced
|
|
// and the relevant pinned_heap_item_.tombstone_pik is increased or popped
|
|
// from minHeap_.
|
|
// - If the top of heap is a file boundary key, then both point iter and
|
|
// range tombstone iter are advanced to the next file.
|
|
// - If the top of heap is ITERATOR and current->iter.Next() is called, it
|
|
// moves to a larger point key.
|
|
// - If the top of heap is ITERATOR and SeekImpl(k, l) is called, then all
|
|
// iterators from levels >= l are advanced to some key >= k by its contract.
|
|
// And top of minHeap_ before SeekImpl(k, l) was less than k.
|
|
// There are special cases where different heap items have the same key,
|
|
// e.g. when two range tombstone end keys share the same value). In
|
|
// these cases, iterators are being advanced, so the minimum key should increase
|
|
// in a finite number of steps.
|
|
inline void MergingIterator::FindNextVisibleKey() {
|
|
PopDeleteRangeStart();
|
|
// PopDeleteRangeStart() implies heap top is not DELETE_RANGE_START
|
|
// active_ being empty implies no DELETE_RANGE_END in heap.
|
|
// So minHeap_->top() must be of type ITERATOR.
|
|
while (
|
|
!minHeap_.empty() &&
|
|
(!active_.empty() || minHeap_.top()->iter.IsDeleteRangeSentinelKey()) &&
|
|
SkipNextDeleted()) {
|
|
PopDeleteRangeStart();
|
|
}
|
|
// Checks Invariant (1)
|
|
assert(minHeap_.empty() || minHeap_.top()->type == HeapItem::Type::ITERATOR);
|
|
}
|
|
|
|
inline void MergingIterator::FindPrevVisibleKey() {
|
|
PopDeleteRangeEnd();
|
|
// PopDeleteRangeEnd() implies heap top is not DELETE_RANGE_END
|
|
// active_ being empty implies no DELETE_RANGE_START in heap.
|
|
// So maxHeap_->top() must be of type ITERATOR.
|
|
while (
|
|
!maxHeap_->empty() &&
|
|
(!active_.empty() || maxHeap_->top()->iter.IsDeleteRangeSentinelKey()) &&
|
|
SkipPrevDeleted()) {
|
|
PopDeleteRangeEnd();
|
|
}
|
|
}
|
|
|
|
InternalIterator* NewMergingIterator(const InternalKeyComparator* cmp,
|
|
InternalIterator** list, int n,
|
|
Arena* arena, bool prefix_seek_mode) {
|
|
assert(n >= 0);
|
|
if (n == 0) {
|
|
return NewEmptyInternalIterator<Slice>(arena);
|
|
} else if (n == 1) {
|
|
return list[0];
|
|
} else {
|
|
if (arena == nullptr) {
|
|
return new MergingIterator(cmp, list, n, false, prefix_seek_mode);
|
|
} else {
|
|
auto mem = arena->AllocateAligned(sizeof(MergingIterator));
|
|
return new (mem) MergingIterator(cmp, list, n, true, prefix_seek_mode);
|
|
}
|
|
}
|
|
}
|
|
|
|
MergeIteratorBuilder::MergeIteratorBuilder(
|
|
const InternalKeyComparator* comparator, Arena* a, bool prefix_seek_mode,
|
|
const Slice* iterate_upper_bound)
|
|
: first_iter(nullptr), use_merging_iter(false), arena(a) {
|
|
auto mem = arena->AllocateAligned(sizeof(MergingIterator));
|
|
merge_iter = new (mem) MergingIterator(comparator, nullptr, 0, true,
|
|
prefix_seek_mode, iterate_upper_bound);
|
|
}
|
|
|
|
MergeIteratorBuilder::~MergeIteratorBuilder() {
|
|
if (first_iter != nullptr) {
|
|
first_iter->~InternalIterator();
|
|
}
|
|
if (merge_iter != nullptr) {
|
|
merge_iter->~MergingIterator();
|
|
}
|
|
}
|
|
|
|
void MergeIteratorBuilder::AddIterator(InternalIterator* iter) {
|
|
if (!use_merging_iter && first_iter != nullptr) {
|
|
merge_iter->AddIterator(first_iter);
|
|
use_merging_iter = true;
|
|
first_iter = nullptr;
|
|
}
|
|
if (use_merging_iter) {
|
|
merge_iter->AddIterator(iter);
|
|
} else {
|
|
first_iter = iter;
|
|
}
|
|
}
|
|
|
|
void MergeIteratorBuilder::AddPointAndTombstoneIterator(
|
|
InternalIterator* point_iter, TruncatedRangeDelIterator* tombstone_iter,
|
|
TruncatedRangeDelIterator*** tombstone_iter_ptr) {
|
|
// tombstone_iter_ptr != nullptr means point_iter is a LevelIterator.
|
|
bool add_range_tombstone = tombstone_iter ||
|
|
!merge_iter->range_tombstone_iters_.empty() ||
|
|
tombstone_iter_ptr;
|
|
if (!use_merging_iter && (add_range_tombstone || first_iter)) {
|
|
use_merging_iter = true;
|
|
if (first_iter) {
|
|
merge_iter->AddIterator(first_iter);
|
|
first_iter = nullptr;
|
|
}
|
|
}
|
|
if (use_merging_iter) {
|
|
merge_iter->AddIterator(point_iter);
|
|
if (add_range_tombstone) {
|
|
// If there was a gap, fill in nullptr as empty range tombstone iterators.
|
|
while (merge_iter->range_tombstone_iters_.size() <
|
|
merge_iter->children_.size() - 1) {
|
|
merge_iter->AddRangeTombstoneIterator(nullptr);
|
|
}
|
|
merge_iter->AddRangeTombstoneIterator(tombstone_iter);
|
|
}
|
|
|
|
if (tombstone_iter_ptr) {
|
|
// This is needed instead of setting to &range_tombstone_iters_[i]
|
|
// directly here since the memory address of range_tombstone_iters_[i]
|
|
// might change during vector resizing.
|
|
range_del_iter_ptrs_.emplace_back(
|
|
merge_iter->range_tombstone_iters_.size() - 1, tombstone_iter_ptr);
|
|
}
|
|
} else {
|
|
first_iter = point_iter;
|
|
}
|
|
}
|
|
|
|
InternalIterator* MergeIteratorBuilder::Finish(ArenaWrappedDBIter* db_iter) {
|
|
InternalIterator* ret = nullptr;
|
|
if (!use_merging_iter) {
|
|
ret = first_iter;
|
|
first_iter = nullptr;
|
|
} else {
|
|
for (auto& p : range_del_iter_ptrs_) {
|
|
*(p.second) = &(merge_iter->range_tombstone_iters_[p.first]);
|
|
}
|
|
if (db_iter && !merge_iter->range_tombstone_iters_.empty()) {
|
|
// memtable is always the first level
|
|
db_iter->SetMemtableRangetombstoneIter(
|
|
&merge_iter->range_tombstone_iters_.front());
|
|
}
|
|
merge_iter->Finish();
|
|
ret = merge_iter;
|
|
merge_iter = nullptr;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|