mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-27 20:43:57 +00:00
3a4bd36fed
Summary: To more accurately truncate range tombstones at SST boundaries, we now represent them in RangeDelAggregator using InternalKeys, which are end-key-exclusive as they were before this change. During compaction, "atomic compaction unit boundaries" (the range of keys contained in neighbouring and overlaping SSTs) are propagated down to RangeDelAggregator to truncate range tombstones at those boundariies instead. See https://github.com/facebook/rocksdb/pull/4432#discussion_r221072219 and https://github.com/facebook/rocksdb/pull/4432#discussion_r221138683 for motivating examples. Pull Request resolved: https://github.com/facebook/rocksdb/pull/4432 Differential Revision: D10263952 Pulled By: abhimadan fbshipit-source-id: 2fe85ff8a02b3a6a2de2edfe708012797a7bd579
565 lines
19 KiB
C++
565 lines
19 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "db/compaction.h"
|
|
|
|
#ifndef __STDC_FORMAT_MACROS
|
|
#define __STDC_FORMAT_MACROS
|
|
#endif
|
|
|
|
#include <inttypes.h>
|
|
#include <vector>
|
|
|
|
#include "db/column_family.h"
|
|
#include "rocksdb/compaction_filter.h"
|
|
#include "util/string_util.h"
|
|
#include "util/sync_point.h"
|
|
|
|
namespace rocksdb {
|
|
|
|
const uint64_t kRangeTombstoneSentinel =
|
|
PackSequenceAndType(kMaxSequenceNumber, kTypeRangeDeletion);
|
|
|
|
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a,
|
|
const InternalKey& b) {
|
|
auto c = user_cmp->Compare(a.user_key(), b.user_key());
|
|
if (c != 0) {
|
|
return c;
|
|
}
|
|
auto a_footer = ExtractInternalKeyFooter(a.Encode());
|
|
auto b_footer = ExtractInternalKeyFooter(b.Encode());
|
|
if (a_footer == kRangeTombstoneSentinel) {
|
|
if (b_footer != kRangeTombstoneSentinel) {
|
|
return -1;
|
|
}
|
|
} else if (b_footer == kRangeTombstoneSentinel) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey* a,
|
|
const InternalKey& b) {
|
|
if (a == nullptr) {
|
|
return -1;
|
|
}
|
|
return sstableKeyCompare(user_cmp, *a, b);
|
|
}
|
|
|
|
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a,
|
|
const InternalKey* b) {
|
|
if (b == nullptr) {
|
|
return -1;
|
|
}
|
|
return sstableKeyCompare(user_cmp, a, *b);
|
|
}
|
|
|
|
uint64_t TotalFileSize(const std::vector<FileMetaData*>& files) {
|
|
uint64_t sum = 0;
|
|
for (size_t i = 0; i < files.size() && files[i]; i++) {
|
|
sum += files[i]->fd.GetFileSize();
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
void Compaction::SetInputVersion(Version* _input_version) {
|
|
input_version_ = _input_version;
|
|
cfd_ = input_version_->cfd();
|
|
|
|
cfd_->Ref();
|
|
input_version_->Ref();
|
|
edit_.SetColumnFamily(cfd_->GetID());
|
|
}
|
|
|
|
void Compaction::GetBoundaryKeys(
|
|
VersionStorageInfo* vstorage,
|
|
const std::vector<CompactionInputFiles>& inputs, Slice* smallest_user_key,
|
|
Slice* largest_user_key) {
|
|
bool initialized = false;
|
|
const Comparator* ucmp = vstorage->InternalComparator()->user_comparator();
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
if (inputs[i].files.empty()) {
|
|
continue;
|
|
}
|
|
if (inputs[i].level == 0) {
|
|
// we need to consider all files on level 0
|
|
for (const auto* f : inputs[i].files) {
|
|
const Slice& start_user_key = f->smallest.user_key();
|
|
if (!initialized ||
|
|
ucmp->Compare(start_user_key, *smallest_user_key) < 0) {
|
|
*smallest_user_key = start_user_key;
|
|
}
|
|
const Slice& end_user_key = f->largest.user_key();
|
|
if (!initialized ||
|
|
ucmp->Compare(end_user_key, *largest_user_key) > 0) {
|
|
*largest_user_key = end_user_key;
|
|
}
|
|
initialized = true;
|
|
}
|
|
} else {
|
|
// we only need to consider the first and last file
|
|
const Slice& start_user_key = inputs[i].files[0]->smallest.user_key();
|
|
if (!initialized ||
|
|
ucmp->Compare(start_user_key, *smallest_user_key) < 0) {
|
|
*smallest_user_key = start_user_key;
|
|
}
|
|
const Slice& end_user_key = inputs[i].files.back()->largest.user_key();
|
|
if (!initialized || ucmp->Compare(end_user_key, *largest_user_key) > 0) {
|
|
*largest_user_key = end_user_key;
|
|
}
|
|
initialized = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<CompactionInputFiles> Compaction::PopulateWithAtomicBoundaries(
|
|
VersionStorageInfo* vstorage, std::vector<CompactionInputFiles> inputs) {
|
|
const Comparator* ucmp = vstorage->InternalComparator()->user_comparator();
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
if (inputs[i].level == 0 || inputs[i].files.empty()) {
|
|
continue;
|
|
}
|
|
inputs[i].atomic_compaction_unit_boundaries.reserve(inputs[i].files.size());
|
|
AtomicCompactionUnitBoundary cur_boundary;
|
|
size_t first_atomic_idx = 0;
|
|
auto add_unit_boundary = [&](size_t to) {
|
|
if (first_atomic_idx == to) return;
|
|
for (size_t k = first_atomic_idx; k < to; k++) {
|
|
inputs[i].atomic_compaction_unit_boundaries.push_back(cur_boundary);
|
|
}
|
|
first_atomic_idx = to;
|
|
};
|
|
for (size_t j = 0; j < inputs[i].files.size(); j++) {
|
|
const auto* f = inputs[i].files[j];
|
|
if (j == 0) {
|
|
// First file in a level.
|
|
cur_boundary.smallest = &f->smallest;
|
|
cur_boundary.largest = &f->largest;
|
|
} else if (sstableKeyCompare(ucmp, *cur_boundary.largest, f->smallest) ==
|
|
0) {
|
|
// SSTs overlap but the end key of the previous file was not
|
|
// artificially extended by a range tombstone. Extend the current
|
|
// boundary.
|
|
cur_boundary.largest = &f->largest;
|
|
} else {
|
|
// Atomic compaction unit has ended.
|
|
add_unit_boundary(j);
|
|
cur_boundary.smallest = &f->smallest;
|
|
cur_boundary.largest = &f->largest;
|
|
}
|
|
}
|
|
add_unit_boundary(inputs[i].files.size());
|
|
assert(inputs[i].files.size() ==
|
|
inputs[i].atomic_compaction_unit_boundaries.size());
|
|
}
|
|
return inputs;
|
|
}
|
|
|
|
// helper function to determine if compaction is creating files at the
|
|
// bottommost level
|
|
bool Compaction::IsBottommostLevel(
|
|
int output_level, VersionStorageInfo* vstorage,
|
|
const std::vector<CompactionInputFiles>& inputs) {
|
|
int output_l0_idx;
|
|
if (output_level == 0) {
|
|
output_l0_idx = 0;
|
|
for (const auto* file : vstorage->LevelFiles(0)) {
|
|
if (inputs[0].files.back() == file) {
|
|
break;
|
|
}
|
|
++output_l0_idx;
|
|
}
|
|
assert(static_cast<size_t>(output_l0_idx) < vstorage->LevelFiles(0).size());
|
|
} else {
|
|
output_l0_idx = -1;
|
|
}
|
|
Slice smallest_key, largest_key;
|
|
GetBoundaryKeys(vstorage, inputs, &smallest_key, &largest_key);
|
|
return !vstorage->RangeMightExistAfterSortedRun(smallest_key, largest_key,
|
|
output_level, output_l0_idx);
|
|
}
|
|
|
|
// test function to validate the functionality of IsBottommostLevel()
|
|
// function -- determines if compaction with inputs and storage is bottommost
|
|
bool Compaction::TEST_IsBottommostLevel(
|
|
int output_level, VersionStorageInfo* vstorage,
|
|
const std::vector<CompactionInputFiles>& inputs) {
|
|
return IsBottommostLevel(output_level, vstorage, inputs);
|
|
}
|
|
|
|
bool Compaction::IsFullCompaction(
|
|
VersionStorageInfo* vstorage,
|
|
const std::vector<CompactionInputFiles>& inputs) {
|
|
size_t num_files_in_compaction = 0;
|
|
size_t total_num_files = 0;
|
|
for (int l = 0; l < vstorage->num_levels(); l++) {
|
|
total_num_files += vstorage->NumLevelFiles(l);
|
|
}
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
num_files_in_compaction += inputs[i].size();
|
|
}
|
|
return num_files_in_compaction == total_num_files;
|
|
}
|
|
|
|
Compaction::Compaction(VersionStorageInfo* vstorage,
|
|
const ImmutableCFOptions& _immutable_cf_options,
|
|
const MutableCFOptions& _mutable_cf_options,
|
|
std::vector<CompactionInputFiles> _inputs,
|
|
int _output_level, uint64_t _target_file_size,
|
|
uint64_t _max_compaction_bytes, uint32_t _output_path_id,
|
|
CompressionType _compression,
|
|
CompressionOptions _compression_opts,
|
|
uint32_t _max_subcompactions,
|
|
std::vector<FileMetaData*> _grandparents,
|
|
bool _manual_compaction, double _score,
|
|
bool _deletion_compaction,
|
|
CompactionReason _compaction_reason)
|
|
: input_vstorage_(vstorage),
|
|
start_level_(_inputs[0].level),
|
|
output_level_(_output_level),
|
|
max_output_file_size_(_target_file_size),
|
|
max_compaction_bytes_(_max_compaction_bytes),
|
|
max_subcompactions_(_max_subcompactions),
|
|
immutable_cf_options_(_immutable_cf_options),
|
|
mutable_cf_options_(_mutable_cf_options),
|
|
input_version_(nullptr),
|
|
number_levels_(vstorage->num_levels()),
|
|
cfd_(nullptr),
|
|
output_path_id_(_output_path_id),
|
|
output_compression_(_compression),
|
|
output_compression_opts_(_compression_opts),
|
|
deletion_compaction_(_deletion_compaction),
|
|
inputs_(PopulateWithAtomicBoundaries(vstorage, std::move(_inputs))),
|
|
grandparents_(std::move(_grandparents)),
|
|
score_(_score),
|
|
bottommost_level_(IsBottommostLevel(output_level_, vstorage, inputs_)),
|
|
is_full_compaction_(IsFullCompaction(vstorage, inputs_)),
|
|
is_manual_compaction_(_manual_compaction),
|
|
is_trivial_move_(false),
|
|
compaction_reason_(_compaction_reason) {
|
|
MarkFilesBeingCompacted(true);
|
|
if (is_manual_compaction_) {
|
|
compaction_reason_ = CompactionReason::kManualCompaction;
|
|
}
|
|
if (max_subcompactions_ == 0) {
|
|
max_subcompactions_ = immutable_cf_options_.max_subcompactions;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (size_t i = 1; i < inputs_.size(); ++i) {
|
|
assert(inputs_[i].level > inputs_[i - 1].level);
|
|
}
|
|
#endif
|
|
|
|
// setup input_levels_
|
|
{
|
|
input_levels_.resize(num_input_levels());
|
|
for (size_t which = 0; which < num_input_levels(); which++) {
|
|
DoGenerateLevelFilesBrief(&input_levels_[which], inputs_[which].files,
|
|
&arena_);
|
|
}
|
|
}
|
|
|
|
GetBoundaryKeys(vstorage, inputs_, &smallest_user_key_, &largest_user_key_);
|
|
}
|
|
|
|
Compaction::~Compaction() {
|
|
if (input_version_ != nullptr) {
|
|
input_version_->Unref();
|
|
}
|
|
if (cfd_ != nullptr) {
|
|
if (cfd_->Unref()) {
|
|
delete cfd_;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Compaction::InputCompressionMatchesOutput() const {
|
|
int base_level = input_vstorage_->base_level();
|
|
bool matches = (GetCompressionType(immutable_cf_options_, input_vstorage_,
|
|
mutable_cf_options_, start_level_,
|
|
base_level) == output_compression_);
|
|
if (matches) {
|
|
TEST_SYNC_POINT("Compaction::InputCompressionMatchesOutput:Matches");
|
|
return true;
|
|
}
|
|
TEST_SYNC_POINT("Compaction::InputCompressionMatchesOutput:DidntMatch");
|
|
return matches;
|
|
}
|
|
|
|
bool Compaction::IsTrivialMove() const {
|
|
// Avoid a move if there is lots of overlapping grandparent data.
|
|
// Otherwise, the move could create a parent file that will require
|
|
// a very expensive merge later on.
|
|
// If start_level_== output_level_, the purpose is to force compaction
|
|
// filter to be applied to that level, and thus cannot be a trivial move.
|
|
|
|
// Check if start level have files with overlapping ranges
|
|
if (start_level_ == 0 && input_vstorage_->level0_non_overlapping() == false) {
|
|
// We cannot move files from L0 to L1 if the files are overlapping
|
|
return false;
|
|
}
|
|
|
|
if (is_manual_compaction_ &&
|
|
(immutable_cf_options_.compaction_filter != nullptr ||
|
|
immutable_cf_options_.compaction_filter_factory != nullptr)) {
|
|
// This is a manual compaction and we have a compaction filter that should
|
|
// be executed, we cannot do a trivial move
|
|
return false;
|
|
}
|
|
|
|
// Used in universal compaction, where trivial move can be done if the
|
|
// input files are non overlapping
|
|
if ((mutable_cf_options_.compaction_options_universal.allow_trivial_move) &&
|
|
(output_level_ != 0)) {
|
|
return is_trivial_move_;
|
|
}
|
|
|
|
if (!(start_level_ != output_level_ && num_input_levels() == 1 &&
|
|
input(0, 0)->fd.GetPathId() == output_path_id() &&
|
|
InputCompressionMatchesOutput())) {
|
|
return false;
|
|
}
|
|
|
|
// assert inputs_.size() == 1
|
|
|
|
for (const auto& file : inputs_.front().files) {
|
|
std::vector<FileMetaData*> file_grand_parents;
|
|
if (output_level_ + 1 >= number_levels_) {
|
|
continue;
|
|
}
|
|
input_vstorage_->GetOverlappingInputs(output_level_ + 1, &file->smallest,
|
|
&file->largest, &file_grand_parents);
|
|
const auto compaction_size =
|
|
file->fd.GetFileSize() + TotalFileSize(file_grand_parents);
|
|
if (compaction_size > max_compaction_bytes_) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Compaction::AddInputDeletions(VersionEdit* out_edit) {
|
|
for (size_t which = 0; which < num_input_levels(); which++) {
|
|
for (size_t i = 0; i < inputs_[which].size(); i++) {
|
|
out_edit->DeleteFile(level(which), inputs_[which][i]->fd.GetNumber());
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Compaction::KeyNotExistsBeyondOutputLevel(
|
|
const Slice& user_key, std::vector<size_t>* level_ptrs) const {
|
|
assert(input_version_ != nullptr);
|
|
assert(level_ptrs != nullptr);
|
|
assert(level_ptrs->size() == static_cast<size_t>(number_levels_));
|
|
if (bottommost_level_) {
|
|
return true;
|
|
} else if (output_level_ != 0 &&
|
|
cfd_->ioptions()->compaction_style == kCompactionStyleLevel) {
|
|
// Maybe use binary search to find right entry instead of linear search?
|
|
const Comparator* user_cmp = cfd_->user_comparator();
|
|
for (int lvl = output_level_ + 1; lvl < number_levels_; lvl++) {
|
|
const std::vector<FileMetaData*>& files =
|
|
input_vstorage_->LevelFiles(lvl);
|
|
for (; level_ptrs->at(lvl) < files.size(); level_ptrs->at(lvl)++) {
|
|
auto* f = files[level_ptrs->at(lvl)];
|
|
if (user_cmp->Compare(user_key, f->largest.user_key()) <= 0) {
|
|
// We've advanced far enough
|
|
if (user_cmp->Compare(user_key, f->smallest.user_key()) >= 0) {
|
|
// Key falls in this file's range, so definitely
|
|
// exists beyond output level
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Mark (or clear) each file that is being compacted
|
|
void Compaction::MarkFilesBeingCompacted(bool mark_as_compacted) {
|
|
for (size_t i = 0; i < num_input_levels(); i++) {
|
|
for (size_t j = 0; j < inputs_[i].size(); j++) {
|
|
assert(mark_as_compacted ? !inputs_[i][j]->being_compacted
|
|
: inputs_[i][j]->being_compacted);
|
|
inputs_[i][j]->being_compacted = mark_as_compacted;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sample output:
|
|
// If compacting 3 L0 files, 2 L3 files and 1 L4 file, and outputting to L5,
|
|
// print: "3@0 + 2@3 + 1@4 files to L5"
|
|
const char* Compaction::InputLevelSummary(
|
|
InputLevelSummaryBuffer* scratch) const {
|
|
int len = 0;
|
|
bool is_first = true;
|
|
for (auto& input_level : inputs_) {
|
|
if (input_level.empty()) {
|
|
continue;
|
|
}
|
|
if (!is_first) {
|
|
len +=
|
|
snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, " + ");
|
|
len = std::min(len, static_cast<int>(sizeof(scratch->buffer)));
|
|
} else {
|
|
is_first = false;
|
|
}
|
|
len += snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len,
|
|
"%" ROCKSDB_PRIszt "@%d", input_level.size(),
|
|
input_level.level);
|
|
len = std::min(len, static_cast<int>(sizeof(scratch->buffer)));
|
|
}
|
|
snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len,
|
|
" files to L%d", output_level());
|
|
|
|
return scratch->buffer;
|
|
}
|
|
|
|
uint64_t Compaction::CalculateTotalInputSize() const {
|
|
uint64_t size = 0;
|
|
for (auto& input_level : inputs_) {
|
|
for (auto f : input_level.files) {
|
|
size += f->fd.GetFileSize();
|
|
}
|
|
}
|
|
return size;
|
|
}
|
|
|
|
void Compaction::ReleaseCompactionFiles(Status status) {
|
|
MarkFilesBeingCompacted(false);
|
|
cfd_->compaction_picker()->ReleaseCompactionFiles(this, status);
|
|
}
|
|
|
|
void Compaction::ResetNextCompactionIndex() {
|
|
assert(input_version_ != nullptr);
|
|
input_vstorage_->ResetNextCompactionIndex(start_level_);
|
|
}
|
|
|
|
namespace {
|
|
int InputSummary(const std::vector<FileMetaData*>& files, char* output,
|
|
int len) {
|
|
*output = '\0';
|
|
int write = 0;
|
|
for (size_t i = 0; i < files.size(); i++) {
|
|
int sz = len - write;
|
|
int ret;
|
|
char sztxt[16];
|
|
AppendHumanBytes(files.at(i)->fd.GetFileSize(), sztxt, 16);
|
|
ret = snprintf(output + write, sz, "%" PRIu64 "(%s) ",
|
|
files.at(i)->fd.GetNumber(), sztxt);
|
|
if (ret < 0 || ret >= sz) break;
|
|
write += ret;
|
|
}
|
|
// if files.size() is non-zero, overwrite the last space
|
|
return write - !!files.size();
|
|
}
|
|
} // namespace
|
|
|
|
void Compaction::Summary(char* output, int len) {
|
|
int write =
|
|
snprintf(output, len, "Base version %" PRIu64 " Base level %d, inputs: [",
|
|
input_version_->GetVersionNumber(), start_level_);
|
|
if (write < 0 || write >= len) {
|
|
return;
|
|
}
|
|
|
|
for (size_t level_iter = 0; level_iter < num_input_levels(); ++level_iter) {
|
|
if (level_iter > 0) {
|
|
write += snprintf(output + write, len - write, "], [");
|
|
if (write < 0 || write >= len) {
|
|
return;
|
|
}
|
|
}
|
|
write +=
|
|
InputSummary(inputs_[level_iter].files, output + write, len - write);
|
|
if (write < 0 || write >= len) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
snprintf(output + write, len - write, "]");
|
|
}
|
|
|
|
uint64_t Compaction::OutputFilePreallocationSize() const {
|
|
uint64_t preallocation_size = 0;
|
|
|
|
for (const auto& level_files : inputs_) {
|
|
for (const auto& file : level_files.files) {
|
|
preallocation_size += file->fd.GetFileSize();
|
|
}
|
|
}
|
|
|
|
if (max_output_file_size_ != port::kMaxUint64 &&
|
|
(immutable_cf_options_.compaction_style == kCompactionStyleLevel ||
|
|
output_level() > 0)) {
|
|
preallocation_size = std::min(max_output_file_size_, preallocation_size);
|
|
}
|
|
|
|
// Over-estimate slightly so we don't end up just barely crossing
|
|
// the threshold
|
|
// No point to prellocate more than 1GB.
|
|
return std::min(uint64_t{1073741824},
|
|
preallocation_size + (preallocation_size / 10));
|
|
}
|
|
|
|
std::unique_ptr<CompactionFilter> Compaction::CreateCompactionFilter() const {
|
|
if (!cfd_->ioptions()->compaction_filter_factory) {
|
|
return nullptr;
|
|
}
|
|
|
|
CompactionFilter::Context context;
|
|
context.is_full_compaction = is_full_compaction_;
|
|
context.is_manual_compaction = is_manual_compaction_;
|
|
context.column_family_id = cfd_->GetID();
|
|
return cfd_->ioptions()->compaction_filter_factory->CreateCompactionFilter(
|
|
context);
|
|
}
|
|
|
|
bool Compaction::IsOutputLevelEmpty() const {
|
|
return inputs_.back().level != output_level_ || inputs_.back().empty();
|
|
}
|
|
|
|
bool Compaction::ShouldFormSubcompactions() const {
|
|
if (max_subcompactions_ <= 1 || cfd_ == nullptr) {
|
|
return false;
|
|
}
|
|
if (cfd_->ioptions()->compaction_style == kCompactionStyleLevel) {
|
|
return (start_level_ == 0 || is_manual_compaction_) && output_level_ > 0 &&
|
|
!IsOutputLevelEmpty();
|
|
} else if (cfd_->ioptions()->compaction_style == kCompactionStyleUniversal) {
|
|
return number_levels_ > 1 && output_level_ > 0;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
uint64_t Compaction::MaxInputFileCreationTime() const {
|
|
uint64_t max_creation_time = 0;
|
|
for (const auto& file : inputs_[0].files) {
|
|
if (file->fd.table_reader != nullptr &&
|
|
file->fd.table_reader->GetTableProperties() != nullptr) {
|
|
uint64_t creation_time =
|
|
file->fd.table_reader->GetTableProperties()->creation_time;
|
|
max_creation_time = std::max(max_creation_time, creation_time);
|
|
}
|
|
}
|
|
return max_creation_time;
|
|
}
|
|
|
|
int Compaction::GetInputBaseLevel() const {
|
|
return input_vstorage_->base_level();
|
|
}
|
|
|
|
} // namespace rocksdb
|