rocksdb/db/compaction/compaction_picker.cc
Changyu Bi 333abe9c55 Ignore max_compaction_bytes for compaction input that are within output key-range (#10835)
Summary:
When picking compaction input files, we sometimes stop picking a file that is fully included in the output key-range due to hitting max_compaction_bytes. Including these input files can potentially reduce WA at the expense of larger compactions. Larger compaction should be fine as files from input level are usually 10X smaller than files from output level. This PR adds a mutable CF option `ignore_max_compaction_bytes_for_input` that is enabled by default. We can remove this option once we are sure it is safe.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/10835

Test Plan:
- CI, a unit test on max_compaction_bytes fails before turning this flag off.
- Benchmark does not show much difference in WA: `./db_bench --benchmarks=fillrandom,waitforcompaction,stats,levelstats -max_background_jobs=12 -num=2000000000 -target_file_size_base=33554432 --write_buffer_size=33554432`
```
main:
** Compaction Stats [default] **
Level    Files   Size     Score Read(GB)  Rn(GB) Rnp1(GB) Write(GB) Wnew(GB) Moved(GB) W-Amp Rd(MB/s) Wr(MB/s) Comp(sec) CompMergeCPU(sec) Comp(cnt) Avg(sec) KeyIn KeyDrop Rblob(GB) Wblob(GB)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  L0      3/0   91.59 MB   0.8     70.9     0.0     70.9     200.8    129.9       0.0   1.5     25.2     71.2   2886.55           2463.45      9725    0.297   1093M   254K       0.0       0.0
  L1      9/0   248.03 MB   1.0    392.0   129.8    262.2     391.7    129.5       0.0   3.0     69.0     68.9   5821.71           5536.90       804    7.241   6029M  5814K       0.0       0.0
  L2     87/0    2.50 GB   1.0    537.0   128.5    408.5     533.8    125.2       0.7   4.2     69.5     69.1   7912.24           7323.70      4417    1.791   8299M    36M       0.0       0.0
  L3    836/0   24.99 GB   1.0    616.9   118.3    498.7     594.5     95.8       5.2   5.0     66.9     64.5   9442.38           8490.28      4204    2.246   9749M   306M       0.0       0.0
  L4   2355/0   62.95 GB   0.3     67.3    37.1     30.2      54.2     24.0      38.9   1.5     72.2     58.2    954.37            821.18       917    1.041   1076M   173M       0.0       0.0
 Sum   3290/0   90.77 GB   0.0   1684.2   413.7   1270.5    1775.0    504.5      44.9  13.7     63.8     67.3  27017.25          24635.52     20067    1.346     26G   522M       0.0       0.0

Cumulative compaction: 1774.96 GB write, 154.29 MB/s write, 1684.19 GB read, 146.40 MB/s read, 27017.3 seconds

This PR:
** Compaction Stats [default] **
Level    Files   Size     Score Read(GB)  Rn(GB) Rnp1(GB) Write(GB) Wnew(GB) Moved(GB) W-Amp Rd(MB/s) Wr(MB/s) Comp(sec) CompMergeCPU(sec) Comp(cnt) Avg(sec) KeyIn KeyDrop Rblob(GB) Wblob(GB)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  L0      3/0   45.71 MB   0.8     72.9     0.0     72.9     202.8    129.9       0.0   1.6     25.4     70.7   2938.16           2510.36      9741    0.302   1124M   265K       0.0       0.0
  L1      8/0   234.54 MB   0.9    384.5   129.8    254.7     384.2    129.6       0.0   3.0     69.0     68.9   5708.08           5424.43       791    7.216   5913M  5753K       0.0       0.0
  L2     84/0    2.47 GB   1.0    543.1   128.6    414.5     539.9    125.4       0.7   4.2     69.6     69.2   7989.31           7403.13      4418    1.808   8393M    36M       0.0       0.0
  L3    839/0   24.96 GB   1.0    615.6   118.4    497.2     593.2     96.0       5.1   5.0     66.6     64.1   9471.23           8489.31      4193    2.259   9726M   306M       0.0       0.0
  L4   2360/0   63.04 GB   0.3     67.6    37.3     30.3      54.4     24.1      38.9   1.5     71.5     57.6    967.30            827.99       907    1.066   1080M   173M       0.0       0.0
 Sum   3294/0   90.75 GB   0.0   1683.8   414.2   1269.6    1774.5    504.9      44.8  13.7     63.7     67.1  27074.08          24655.22     20050    1.350     26G   522M       0.0       0.0

Cumulative compaction: 1774.52 GB write, 157.09 MB/s write, 1683.77 GB read, 149.06 MB/s read, 27074.1 seconds
```

Reviewed By: ajkr

Differential Revision: D40518319

Pulled By: cbi42

fbshipit-source-id: f4ea614bc0ebefe007ffaf05bb9aec9a8ca25b60
2022-10-21 10:22:41 -07:00

1215 lines
46 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/compaction/compaction_picker.h"
#include <cinttypes>
#include <limits>
#include <queue>
#include <string>
#include <utility>
#include <vector>
#include "db/column_family.h"
#include "file/filename.h"
#include "logging/log_buffer.h"
#include "logging/logging.h"
#include "monitoring/statistics.h"
#include "test_util/sync_point.h"
#include "util/random.h"
#include "util/string_util.h"
namespace ROCKSDB_NAMESPACE {
bool FindIntraL0Compaction(const std::vector<FileMetaData*>& level_files,
size_t min_files_to_compact,
uint64_t max_compact_bytes_per_del_file,
uint64_t max_compaction_bytes,
CompactionInputFiles* comp_inputs,
SequenceNumber earliest_mem_seqno) {
// Do not pick ingested file when there is at least one memtable not flushed
// which of seqno is overlap with the sst.
TEST_SYNC_POINT("FindIntraL0Compaction");
size_t start = 0;
for (; start < level_files.size(); start++) {
if (level_files[start]->being_compacted) {
return false;
}
// If there is no data in memtable, the earliest sequence number would the
// largest sequence number in last memtable.
// Because all files are sorted in descending order by largest_seqno, so we
// only need to check the first one.
if (level_files[start]->fd.largest_seqno <= earliest_mem_seqno) {
break;
}
}
if (start >= level_files.size()) {
return false;
}
size_t compact_bytes = static_cast<size_t>(level_files[start]->fd.file_size);
size_t compact_bytes_per_del_file = std::numeric_limits<size_t>::max();
// Compaction range will be [start, limit).
size_t limit;
// Pull in files until the amount of compaction work per deleted file begins
// increasing or maximum total compaction size is reached.
size_t new_compact_bytes_per_del_file = 0;
for (limit = start + 1; limit < level_files.size(); ++limit) {
compact_bytes += static_cast<size_t>(level_files[limit]->fd.file_size);
new_compact_bytes_per_del_file = compact_bytes / (limit - start);
if (level_files[limit]->being_compacted ||
new_compact_bytes_per_del_file > compact_bytes_per_del_file ||
compact_bytes > max_compaction_bytes) {
break;
}
compact_bytes_per_del_file = new_compact_bytes_per_del_file;
}
if ((limit - start) >= min_files_to_compact &&
compact_bytes_per_del_file < max_compact_bytes_per_del_file) {
assert(comp_inputs != nullptr);
comp_inputs->level = 0;
for (size_t i = start; i < limit; ++i) {
comp_inputs->files.push_back(level_files[i]);
}
return true;
}
return false;
}
// Determine compression type, based on user options, level of the output
// file and whether compression is disabled.
// If enable_compression is false, then compression is always disabled no
// matter what the values of the other two parameters are.
// Otherwise, the compression type is determined based on options and level.
CompressionType GetCompressionType(const VersionStorageInfo* vstorage,
const MutableCFOptions& mutable_cf_options,
int level, int base_level,
const bool enable_compression) {
if (!enable_compression) {
// disable compression
return kNoCompression;
}
// If bottommost_compression is set and we are compacting to the
// bottommost level then we should use it.
if (mutable_cf_options.bottommost_compression != kDisableCompressionOption &&
level >= (vstorage->num_non_empty_levels() - 1)) {
return mutable_cf_options.bottommost_compression;
}
// If the user has specified a different compression level for each level,
// then pick the compression for that level.
if (!mutable_cf_options.compression_per_level.empty()) {
assert(level == 0 || level >= base_level);
int idx = (level == 0) ? 0 : level - base_level + 1;
const int n =
static_cast<int>(mutable_cf_options.compression_per_level.size()) - 1;
// It is possible for level_ to be -1; in that case, we use level
// 0's compression. This occurs mostly in backwards compatibility
// situations when the builder doesn't know what level the file
// belongs to. Likewise, if level is beyond the end of the
// specified compression levels, use the last value.
return mutable_cf_options
.compression_per_level[std::max(0, std::min(idx, n))];
} else {
return mutable_cf_options.compression;
}
}
CompressionOptions GetCompressionOptions(const MutableCFOptions& cf_options,
const VersionStorageInfo* vstorage,
int level,
const bool enable_compression) {
if (!enable_compression) {
return cf_options.compression_opts;
}
// If bottommost_compression_opts is enabled and we are compacting to the
// bottommost level then we should use the specified compression options.
if (level >= (vstorage->num_non_empty_levels() - 1) &&
cf_options.bottommost_compression_opts.enabled) {
return cf_options.bottommost_compression_opts;
}
return cf_options.compression_opts;
}
CompactionPicker::CompactionPicker(const ImmutableOptions& ioptions,
const InternalKeyComparator* icmp)
: ioptions_(ioptions), icmp_(icmp) {}
CompactionPicker::~CompactionPicker() {}
// Delete this compaction from the list of running compactions.
void CompactionPicker::ReleaseCompactionFiles(Compaction* c, Status status) {
UnregisterCompaction(c);
if (!status.ok()) {
c->ResetNextCompactionIndex();
}
}
void CompactionPicker::GetRange(const CompactionInputFiles& inputs,
InternalKey* smallest,
InternalKey* largest) const {
const int level = inputs.level;
assert(!inputs.empty());
smallest->Clear();
largest->Clear();
if (level == 0) {
for (size_t i = 0; i < inputs.size(); i++) {
FileMetaData* f = inputs[i];
if (i == 0) {
*smallest = f->smallest;
*largest = f->largest;
} else {
if (icmp_->Compare(f->smallest, *smallest) < 0) {
*smallest = f->smallest;
}
if (icmp_->Compare(f->largest, *largest) > 0) {
*largest = f->largest;
}
}
}
} else {
*smallest = inputs[0]->smallest;
*largest = inputs[inputs.size() - 1]->largest;
}
}
void CompactionPicker::GetRange(const CompactionInputFiles& inputs1,
const CompactionInputFiles& inputs2,
InternalKey* smallest,
InternalKey* largest) const {
assert(!inputs1.empty() || !inputs2.empty());
if (inputs1.empty()) {
GetRange(inputs2, smallest, largest);
} else if (inputs2.empty()) {
GetRange(inputs1, smallest, largest);
} else {
InternalKey smallest1, smallest2, largest1, largest2;
GetRange(inputs1, &smallest1, &largest1);
GetRange(inputs2, &smallest2, &largest2);
*smallest =
icmp_->Compare(smallest1, smallest2) < 0 ? smallest1 : smallest2;
*largest = icmp_->Compare(largest1, largest2) < 0 ? largest2 : largest1;
}
}
void CompactionPicker::GetRange(const std::vector<CompactionInputFiles>& inputs,
InternalKey* smallest, InternalKey* largest,
int exclude_level) const {
InternalKey current_smallest;
InternalKey current_largest;
bool initialized = false;
for (const auto& in : inputs) {
if (in.empty() || in.level == exclude_level) {
continue;
}
GetRange(in, &current_smallest, &current_largest);
if (!initialized) {
*smallest = current_smallest;
*largest = current_largest;
initialized = true;
} else {
if (icmp_->Compare(current_smallest, *smallest) < 0) {
*smallest = current_smallest;
}
if (icmp_->Compare(current_largest, *largest) > 0) {
*largest = current_largest;
}
}
}
assert(initialized);
}
bool CompactionPicker::ExpandInputsToCleanCut(const std::string& /*cf_name*/,
VersionStorageInfo* vstorage,
CompactionInputFiles* inputs,
InternalKey** next_smallest) {
// This isn't good compaction
assert(!inputs->empty());
const int level = inputs->level;
// GetOverlappingInputs will always do the right thing for level-0.
// So we don't need to do any expansion if level == 0.
if (level == 0) {
return true;
}
InternalKey smallest, largest;
// Keep expanding inputs until we are sure that there is a "clean cut"
// boundary between the files in input and the surrounding files.
// This will ensure that no parts of a key are lost during compaction.
int hint_index = -1;
size_t old_size;
do {
old_size = inputs->size();
GetRange(*inputs, &smallest, &largest);
inputs->clear();
vstorage->GetOverlappingInputs(level, &smallest, &largest, &inputs->files,
hint_index, &hint_index, true,
next_smallest);
} while (inputs->size() > old_size);
// we started off with inputs non-empty and the previous loop only grew
// inputs. thus, inputs should be non-empty here
assert(!inputs->empty());
// If, after the expansion, there are files that are already under
// compaction, then we must drop/cancel this compaction.
if (AreFilesInCompaction(inputs->files)) {
return false;
}
return true;
}
bool CompactionPicker::RangeOverlapWithCompaction(
const Slice& smallest_user_key, const Slice& largest_user_key,
int level) const {
const Comparator* ucmp = icmp_->user_comparator();
for (Compaction* c : compactions_in_progress_) {
if (c->output_level() == level &&
ucmp->CompareWithoutTimestamp(smallest_user_key,
c->GetLargestUserKey()) <= 0 &&
ucmp->CompareWithoutTimestamp(largest_user_key,
c->GetSmallestUserKey()) >= 0) {
// Overlap
return true;
}
if (c->SupportsPerKeyPlacement()) {
if (c->OverlapPenultimateLevelOutputRange(smallest_user_key,
largest_user_key)) {
return true;
}
}
}
// Did not overlap with any running compaction in level `level`
return false;
}
bool CompactionPicker::FilesRangeOverlapWithCompaction(
const std::vector<CompactionInputFiles>& inputs, int level) const {
bool is_empty = true;
int start_level = -1;
for (auto& in : inputs) {
if (!in.empty()) {
is_empty = false;
start_level = in.level; // inputs are sorted by level
break;
}
}
if (is_empty) {
// No files in inputs
return false;
}
InternalKey smallest, largest;
GetRange(inputs, &smallest, &largest, Compaction::kInvalidLevel);
int penultimate_level =
Compaction::EvaluatePenultimateLevel(ioptions_, start_level, level);
if (penultimate_level != Compaction::kInvalidLevel) {
if (ioptions_.compaction_style == kCompactionStyleUniversal) {
if (RangeOverlapWithCompaction(smallest.user_key(), largest.user_key(),
penultimate_level)) {
return true;
}
} else {
InternalKey penultimate_smallest, penultimate_largest;
GetRange(inputs, &penultimate_smallest, &penultimate_largest, level);
if (RangeOverlapWithCompaction(penultimate_smallest.user_key(),
penultimate_largest.user_key(),
penultimate_level)) {
return true;
}
}
}
return RangeOverlapWithCompaction(smallest.user_key(), largest.user_key(),
level);
}
// Returns true if any one of specified files are being compacted
bool CompactionPicker::AreFilesInCompaction(
const std::vector<FileMetaData*>& files) {
for (size_t i = 0; i < files.size(); i++) {
if (files[i]->being_compacted) {
return true;
}
}
return false;
}
Compaction* CompactionPicker::CompactFiles(
const CompactionOptions& compact_options,
const std::vector<CompactionInputFiles>& input_files, int output_level,
VersionStorageInfo* vstorage, const MutableCFOptions& mutable_cf_options,
const MutableDBOptions& mutable_db_options, uint32_t output_path_id) {
assert(input_files.size());
// This compaction output should not overlap with a running compaction as
// `SanitizeCompactionInputFiles` should've checked earlier and db mutex
// shouldn't have been released since.
assert(!FilesRangeOverlapWithCompaction(input_files, output_level));
CompressionType compression_type;
if (compact_options.compression == kDisableCompressionOption) {
int base_level;
if (ioptions_.compaction_style == kCompactionStyleLevel) {
base_level = vstorage->base_level();
} else {
base_level = 1;
}
compression_type = GetCompressionType(vstorage, mutable_cf_options,
output_level, base_level);
} else {
// TODO(ajkr): `CompactionOptions` offers configurable `CompressionType`
// without configurable `CompressionOptions`, which is inconsistent.
compression_type = compact_options.compression;
}
auto c = new Compaction(
vstorage, ioptions_, mutable_cf_options, mutable_db_options, input_files,
output_level, compact_options.output_file_size_limit,
mutable_cf_options.max_compaction_bytes, output_path_id, compression_type,
GetCompressionOptions(mutable_cf_options, vstorage, output_level),
Temperature::kUnknown, compact_options.max_subcompactions,
/* grandparents */ {}, true);
RegisterCompaction(c);
return c;
}
Status CompactionPicker::GetCompactionInputsFromFileNumbers(
std::vector<CompactionInputFiles>* input_files,
std::unordered_set<uint64_t>* input_set, const VersionStorageInfo* vstorage,
const CompactionOptions& /*compact_options*/) const {
if (input_set->size() == 0U) {
return Status::InvalidArgument(
"Compaction must include at least one file.");
}
assert(input_files);
std::vector<CompactionInputFiles> matched_input_files;
matched_input_files.resize(vstorage->num_levels());
int first_non_empty_level = -1;
int last_non_empty_level = -1;
// TODO(yhchiang): use a lazy-initialized mapping from
// file_number to FileMetaData in Version.
for (int level = 0; level < vstorage->num_levels(); ++level) {
for (auto file : vstorage->LevelFiles(level)) {
auto iter = input_set->find(file->fd.GetNumber());
if (iter != input_set->end()) {
matched_input_files[level].files.push_back(file);
input_set->erase(iter);
last_non_empty_level = level;
if (first_non_empty_level == -1) {
first_non_empty_level = level;
}
}
}
}
if (!input_set->empty()) {
std::string message(
"Cannot find matched SST files for the following file numbers:");
for (auto fn : *input_set) {
message += " ";
message += std::to_string(fn);
}
return Status::InvalidArgument(message);
}
for (int level = first_non_empty_level; level <= last_non_empty_level;
++level) {
matched_input_files[level].level = level;
input_files->emplace_back(std::move(matched_input_files[level]));
}
return Status::OK();
}
// Returns true if any one of the parent files are being compacted
bool CompactionPicker::IsRangeInCompaction(VersionStorageInfo* vstorage,
const InternalKey* smallest,
const InternalKey* largest,
int level, int* level_index) {
std::vector<FileMetaData*> inputs;
assert(level < NumberLevels());
vstorage->GetOverlappingInputs(level, smallest, largest, &inputs,
level_index ? *level_index : 0, level_index);
return AreFilesInCompaction(inputs);
}
// Populates the set of inputs of all other levels that overlap with the
// start level.
// Now we assume all levels except start level and output level are empty.
// Will also attempt to expand "start level" if that doesn't expand
// "output level" or cause "level" to include a file for compaction that has an
// overlapping user-key with another file.
// REQUIRES: input_level and output_level are different
// REQUIRES: inputs->empty() == false
// Returns false if files on parent level are currently in compaction, which
// means that we can't compact them
bool CompactionPicker::SetupOtherInputs(
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
VersionStorageInfo* vstorage, CompactionInputFiles* inputs,
CompactionInputFiles* output_level_inputs, int* parent_index,
int base_index, bool only_expand_towards_right) {
assert(!inputs->empty());
assert(output_level_inputs->empty());
const int input_level = inputs->level;
const int output_level = output_level_inputs->level;
if (input_level == output_level) {
// no possibility of conflict
return true;
}
// For now, we only support merging two levels, start level and output level.
// We need to assert other levels are empty.
for (int l = input_level + 1; l < output_level; l++) {
assert(vstorage->NumLevelFiles(l) == 0);
}
InternalKey smallest, largest;
// Get the range one last time.
GetRange(*inputs, &smallest, &largest);
// Populate the set of next-level files (inputs_GetOutputLevelInputs()) to
// include in compaction
vstorage->GetOverlappingInputs(output_level, &smallest, &largest,
&output_level_inputs->files, *parent_index,
parent_index);
if (AreFilesInCompaction(output_level_inputs->files)) {
return false;
}
if (!output_level_inputs->empty()) {
if (!ExpandInputsToCleanCut(cf_name, vstorage, output_level_inputs)) {
return false;
}
}
// See if we can further grow the number of inputs in "level" without
// changing the number of "level+1" files we pick up. We also choose NOT
// to expand if this would cause "level" to include some entries for some
// user key, while excluding other entries for the same user key. This
// can happen when one user key spans multiple files.
if (!output_level_inputs->empty()) {
const uint64_t limit = mutable_cf_options.max_compaction_bytes;
const uint64_t output_level_inputs_size =
TotalFileSize(output_level_inputs->files);
const uint64_t inputs_size = TotalFileSize(inputs->files);
bool expand_inputs = false;
CompactionInputFiles expanded_inputs;
expanded_inputs.level = input_level;
// Get closed interval of output level
InternalKey all_start, all_limit;
GetRange(*inputs, *output_level_inputs, &all_start, &all_limit);
bool try_overlapping_inputs = true;
if (only_expand_towards_right) {
// Round-robin compaction only allows expansion towards the larger side.
vstorage->GetOverlappingInputs(input_level, &smallest, &all_limit,
&expanded_inputs.files, base_index,
nullptr);
} else {
vstorage->GetOverlappingInputs(input_level, &all_start, &all_limit,
&expanded_inputs.files, base_index,
nullptr);
}
uint64_t expanded_inputs_size = TotalFileSize(expanded_inputs.files);
if (!ExpandInputsToCleanCut(cf_name, vstorage, &expanded_inputs)) {
try_overlapping_inputs = false;
}
if (try_overlapping_inputs && expanded_inputs.size() > inputs->size() &&
(mutable_cf_options.ignore_max_compaction_bytes_for_input ||
output_level_inputs_size + expanded_inputs_size < limit) &&
!AreFilesInCompaction(expanded_inputs.files)) {
InternalKey new_start, new_limit;
GetRange(expanded_inputs, &new_start, &new_limit);
CompactionInputFiles expanded_output_level_inputs;
expanded_output_level_inputs.level = output_level;
vstorage->GetOverlappingInputs(output_level, &new_start, &new_limit,
&expanded_output_level_inputs.files,
*parent_index, parent_index);
assert(!expanded_output_level_inputs.empty());
if (!AreFilesInCompaction(expanded_output_level_inputs.files) &&
ExpandInputsToCleanCut(cf_name, vstorage,
&expanded_output_level_inputs) &&
expanded_output_level_inputs.size() == output_level_inputs->size()) {
expand_inputs = true;
}
}
if (!expand_inputs) {
vstorage->GetCleanInputsWithinInterval(input_level, &all_start,
&all_limit, &expanded_inputs.files,
base_index, nullptr);
expanded_inputs_size = TotalFileSize(expanded_inputs.files);
if (expanded_inputs.size() > inputs->size() &&
(mutable_cf_options.ignore_max_compaction_bytes_for_input ||
output_level_inputs_size + expanded_inputs_size < limit) &&
!AreFilesInCompaction(expanded_inputs.files)) {
expand_inputs = true;
}
}
if (expand_inputs) {
ROCKS_LOG_INFO(ioptions_.logger,
"[%s] Expanding@%d %" ROCKSDB_PRIszt "+%" ROCKSDB_PRIszt
"(%" PRIu64 "+%" PRIu64 " bytes) to %" ROCKSDB_PRIszt
"+%" ROCKSDB_PRIszt " (%" PRIu64 "+%" PRIu64 " bytes)\n",
cf_name.c_str(), input_level, inputs->size(),
output_level_inputs->size(), inputs_size,
output_level_inputs_size, expanded_inputs.size(),
output_level_inputs->size(), expanded_inputs_size,
output_level_inputs_size);
inputs->files = expanded_inputs.files;
}
} else {
// Likely to be trivial move. Expand files if they are still trivial moves,
// but limit to mutable_cf_options.max_compaction_bytes or 8 files so that
// we don't create too much compaction pressure for the next level.
}
return true;
}
void CompactionPicker::GetGrandparents(
VersionStorageInfo* vstorage, const CompactionInputFiles& inputs,
const CompactionInputFiles& output_level_inputs,
std::vector<FileMetaData*>* grandparents) {
InternalKey start, limit;
GetRange(inputs, output_level_inputs, &start, &limit);
// Compute the set of grandparent files that overlap this compaction
// (parent == level+1; grandparent == level+2 or the first
// level after that has overlapping files)
for (int level = output_level_inputs.level + 1; level < NumberLevels();
level++) {
vstorage->GetOverlappingInputs(level, &start, &limit, grandparents);
if (!grandparents->empty()) {
break;
}
}
}
Compaction* CompactionPicker::CompactRange(
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
const MutableDBOptions& mutable_db_options, VersionStorageInfo* vstorage,
int input_level, int output_level,
const CompactRangeOptions& compact_range_options, const InternalKey* begin,
const InternalKey* end, InternalKey** compaction_end, bool* manual_conflict,
uint64_t max_file_num_to_ignore, const std::string& trim_ts) {
// CompactionPickerFIFO has its own implementation of compact range
assert(ioptions_.compaction_style != kCompactionStyleFIFO);
if (input_level == ColumnFamilyData::kCompactAllLevels) {
assert(ioptions_.compaction_style == kCompactionStyleUniversal);
// Universal compaction with more than one level always compacts all the
// files together to the last level.
assert(vstorage->num_levels() > 1);
// DBImpl::CompactRange() set output level to be the last level
if (ioptions_.allow_ingest_behind) {
assert(output_level == vstorage->num_levels() - 2);
} else {
assert(output_level == vstorage->num_levels() - 1);
}
// DBImpl::RunManualCompaction will make full range for universal compaction
assert(begin == nullptr);
assert(end == nullptr);
*compaction_end = nullptr;
int start_level = 0;
for (; start_level < vstorage->num_levels() &&
vstorage->NumLevelFiles(start_level) == 0;
start_level++) {
}
if (start_level == vstorage->num_levels()) {
return nullptr;
}
if ((start_level == 0) && (!level0_compactions_in_progress_.empty())) {
*manual_conflict = true;
// Only one level 0 compaction allowed
return nullptr;
}
std::vector<CompactionInputFiles> inputs(vstorage->num_levels() -
start_level);
for (int level = start_level; level < vstorage->num_levels(); level++) {
inputs[level - start_level].level = level;
auto& files = inputs[level - start_level].files;
for (FileMetaData* f : vstorage->LevelFiles(level)) {
files.push_back(f);
}
if (AreFilesInCompaction(files)) {
*manual_conflict = true;
return nullptr;
}
}
// 2 non-exclusive manual compactions could run at the same time producing
// overlaping outputs in the same level.
if (FilesRangeOverlapWithCompaction(inputs, output_level)) {
// This compaction output could potentially conflict with the output
// of a currently running compaction, we cannot run it.
*manual_conflict = true;
return nullptr;
}
Compaction* c = new Compaction(
vstorage, ioptions_, mutable_cf_options, mutable_db_options,
std::move(inputs), output_level,
MaxFileSizeForLevel(mutable_cf_options, output_level,
ioptions_.compaction_style),
/* max_compaction_bytes */ LLONG_MAX,
compact_range_options.target_path_id,
GetCompressionType(vstorage, mutable_cf_options, output_level, 1),
GetCompressionOptions(mutable_cf_options, vstorage, output_level),
Temperature::kUnknown, compact_range_options.max_subcompactions,
/* grandparents */ {}, /* is manual */ true, trim_ts, /* score */ -1,
/* deletion_compaction */ false, /* l0_files_might_overlap */ true,
CompactionReason::kUnknown,
compact_range_options.blob_garbage_collection_policy,
compact_range_options.blob_garbage_collection_age_cutoff);
RegisterCompaction(c);
vstorage->ComputeCompactionScore(ioptions_, mutable_cf_options);
return c;
}
CompactionInputFiles inputs;
inputs.level = input_level;
bool covering_the_whole_range = true;
// All files are 'overlapping' in universal style compaction.
// We have to compact the entire range in one shot.
if (ioptions_.compaction_style == kCompactionStyleUniversal) {
begin = nullptr;
end = nullptr;
}
vstorage->GetOverlappingInputs(input_level, begin, end, &inputs.files);
if (inputs.empty()) {
return nullptr;
}
if ((input_level == 0) && (!level0_compactions_in_progress_.empty())) {
// Only one level 0 compaction allowed
TEST_SYNC_POINT("CompactionPicker::CompactRange:Conflict");
*manual_conflict = true;
return nullptr;
}
// Avoid compacting too much in one shot in case the range is large.
// But we cannot do this for level-0 since level-0 files can overlap
// and we must not pick one file and drop another older file if the
// two files overlap.
if (input_level > 0) {
const uint64_t limit = mutable_cf_options.max_compaction_bytes;
uint64_t input_level_total = 0;
int hint_index = -1;
InternalKey* smallest = nullptr;
InternalKey* largest = nullptr;
for (size_t i = 0; i + 1 < inputs.size(); ++i) {
if (!smallest) {
smallest = &inputs[i]->smallest;
}
largest = &inputs[i]->largest;
uint64_t input_file_size = inputs[i]->fd.GetFileSize();
uint64_t output_level_total = 0;
if (output_level < vstorage->num_non_empty_levels()) {
std::vector<FileMetaData*> files;
vstorage->GetOverlappingInputsRangeBinarySearch(
output_level, smallest, largest, &files, hint_index, &hint_index);
for (const auto& file : files) {
output_level_total += file->fd.GetFileSize();
}
}
input_level_total += input_file_size;
if (input_level_total + output_level_total >= limit) {
covering_the_whole_range = false;
// still include the current file, so the compaction could be larger
// than max_compaction_bytes, which is also to make sure the compaction
// can make progress even `max_compaction_bytes` is small (e.g. smaller
// than an SST file).
inputs.files.resize(i + 1);
break;
}
}
}
assert(compact_range_options.target_path_id <
static_cast<uint32_t>(ioptions_.cf_paths.size()));
// for BOTTOM LEVEL compaction only, use max_file_num_to_ignore to filter out
// files that are created during the current compaction.
if (compact_range_options.bottommost_level_compaction ==
BottommostLevelCompaction::kForceOptimized &&
max_file_num_to_ignore != std::numeric_limits<uint64_t>::max()) {
assert(input_level == output_level);
// inputs_shrunk holds a continuous subset of input files which were all
// created before the current manual compaction
std::vector<FileMetaData*> inputs_shrunk;
size_t skip_input_index = inputs.size();
for (size_t i = 0; i < inputs.size(); ++i) {
if (inputs[i]->fd.GetNumber() < max_file_num_to_ignore) {
inputs_shrunk.push_back(inputs[i]);
} else if (!inputs_shrunk.empty()) {
// inputs[i] was created during the current manual compaction and
// need to be skipped
skip_input_index = i;
break;
}
}
if (inputs_shrunk.empty()) {
return nullptr;
}
if (inputs.size() != inputs_shrunk.size()) {
inputs.files.swap(inputs_shrunk);
}
// set covering_the_whole_range to false if there is any file that need to
// be compacted in the range of inputs[skip_input_index+1, inputs.size())
for (size_t i = skip_input_index + 1; i < inputs.size(); ++i) {
if (inputs[i]->fd.GetNumber() < max_file_num_to_ignore) {
covering_the_whole_range = false;
}
}
}
InternalKey key_storage;
InternalKey* next_smallest = &key_storage;
if (ExpandInputsToCleanCut(cf_name, vstorage, &inputs, &next_smallest) ==
false) {
// manual compaction is now multi-threaded, so it can
// happen that ExpandWhileOverlapping fails
// we handle it higher in RunManualCompaction
*manual_conflict = true;
return nullptr;
}
if (covering_the_whole_range || !next_smallest) {
*compaction_end = nullptr;
} else {
**compaction_end = *next_smallest;
}
CompactionInputFiles output_level_inputs;
if (output_level == ColumnFamilyData::kCompactToBaseLevel) {
assert(input_level == 0);
output_level = vstorage->base_level();
assert(output_level > 0);
}
output_level_inputs.level = output_level;
if (input_level != output_level) {
int parent_index = -1;
if (!SetupOtherInputs(cf_name, mutable_cf_options, vstorage, &inputs,
&output_level_inputs, &parent_index, -1)) {
// manual compaction is now multi-threaded, so it can
// happen that SetupOtherInputs fails
// we handle it higher in RunManualCompaction
*manual_conflict = true;
return nullptr;
}
}
std::vector<CompactionInputFiles> compaction_inputs({inputs});
if (!output_level_inputs.empty()) {
compaction_inputs.push_back(output_level_inputs);
}
for (size_t i = 0; i < compaction_inputs.size(); i++) {
if (AreFilesInCompaction(compaction_inputs[i].files)) {
*manual_conflict = true;
return nullptr;
}
}
// 2 non-exclusive manual compactions could run at the same time producing
// overlaping outputs in the same level.
if (FilesRangeOverlapWithCompaction(compaction_inputs, output_level)) {
// This compaction output could potentially conflict with the output
// of a currently running compaction, we cannot run it.
*manual_conflict = true;
return nullptr;
}
std::vector<FileMetaData*> grandparents;
GetGrandparents(vstorage, inputs, output_level_inputs, &grandparents);
Compaction* compaction = new Compaction(
vstorage, ioptions_, mutable_cf_options, mutable_db_options,
std::move(compaction_inputs), output_level,
MaxFileSizeForLevel(mutable_cf_options, output_level,
ioptions_.compaction_style, vstorage->base_level(),
ioptions_.level_compaction_dynamic_level_bytes),
mutable_cf_options.max_compaction_bytes,
compact_range_options.target_path_id,
GetCompressionType(vstorage, mutable_cf_options, output_level,
vstorage->base_level()),
GetCompressionOptions(mutable_cf_options, vstorage, output_level),
Temperature::kUnknown, compact_range_options.max_subcompactions,
std::move(grandparents), /* is manual */ true, trim_ts, /* score */ -1,
/* deletion_compaction */ false, /* l0_files_might_overlap */ true,
CompactionReason::kUnknown,
compact_range_options.blob_garbage_collection_policy,
compact_range_options.blob_garbage_collection_age_cutoff);
TEST_SYNC_POINT_CALLBACK("CompactionPicker::CompactRange:Return", compaction);
RegisterCompaction(compaction);
// Creating a compaction influences the compaction score because the score
// takes running compactions into account (by skipping files that are already
// being compacted). Since we just changed compaction score, we recalculate it
// here
vstorage->ComputeCompactionScore(ioptions_, mutable_cf_options);
return compaction;
}
#ifndef ROCKSDB_LITE
namespace {
// Test whether two files have overlapping key-ranges.
bool HaveOverlappingKeyRanges(const Comparator* c, const SstFileMetaData& a,
const SstFileMetaData& b) {
if (c->CompareWithoutTimestamp(a.smallestkey, b.smallestkey) >= 0) {
if (c->CompareWithoutTimestamp(a.smallestkey, b.largestkey) <= 0) {
// b.smallestkey <= a.smallestkey <= b.largestkey
return true;
}
} else if (c->CompareWithoutTimestamp(a.largestkey, b.smallestkey) >= 0) {
// a.smallestkey < b.smallestkey <= a.largestkey
return true;
}
if (c->CompareWithoutTimestamp(a.largestkey, b.largestkey) <= 0) {
if (c->CompareWithoutTimestamp(a.largestkey, b.smallestkey) >= 0) {
// b.smallestkey <= a.largestkey <= b.largestkey
return true;
}
} else if (c->CompareWithoutTimestamp(a.smallestkey, b.largestkey) <= 0) {
// a.smallestkey <= b.largestkey < a.largestkey
return true;
}
return false;
}
} // namespace
Status CompactionPicker::SanitizeCompactionInputFilesForAllLevels(
std::unordered_set<uint64_t>* input_files,
const ColumnFamilyMetaData& cf_meta, const int output_level) const {
auto& levels = cf_meta.levels;
auto comparator = icmp_->user_comparator();
// TODO(yhchiang): add is_adjustable to CompactionOptions
// the smallest and largest key of the current compaction input
std::string smallestkey;
std::string largestkey;
// a flag for initializing smallest and largest key
bool is_first = false;
const int kNotFound = -1;
// For each level, it does the following things:
// 1. Find the first and the last compaction input files
// in the current level.
// 2. Include all files between the first and the last
// compaction input files.
// 3. Update the compaction key-range.
// 4. For all remaining levels, include files that have
// overlapping key-range with the compaction key-range.
for (int l = 0; l <= output_level; ++l) {
auto& current_files = levels[l].files;
int first_included = static_cast<int>(current_files.size());
int last_included = kNotFound;
// identify the first and the last compaction input files
// in the current level.
for (size_t f = 0; f < current_files.size(); ++f) {
const uint64_t file_number = TableFileNameToNumber(current_files[f].name);
if (input_files->find(file_number) == input_files->end()) {
continue;
}
first_included = std::min(first_included, static_cast<int>(f));
last_included = std::max(last_included, static_cast<int>(f));
if (is_first == false) {
smallestkey = current_files[f].smallestkey;
largestkey = current_files[f].largestkey;
is_first = true;
}
}
if (last_included == kNotFound) {
continue;
}
if (l != 0) {
// expand the compaction input of the current level if it
// has overlapping key-range with other non-compaction input
// files in the same level.
while (first_included > 0) {
if (comparator->CompareWithoutTimestamp(
current_files[first_included - 1].largestkey,
current_files[first_included].smallestkey) < 0) {
break;
}
first_included--;
}
while (last_included < static_cast<int>(current_files.size()) - 1) {
if (comparator->CompareWithoutTimestamp(
current_files[last_included + 1].smallestkey,
current_files[last_included].largestkey) > 0) {
break;
}
last_included++;
}
} else if (output_level > 0) {
last_included = static_cast<int>(current_files.size() - 1);
}
// include all files between the first and the last compaction input files.
for (int f = first_included; f <= last_included; ++f) {
if (current_files[f].being_compacted) {
return Status::Aborted("Necessary compaction input file " +
current_files[f].name +
" is currently being compacted.");
}
input_files->insert(TableFileNameToNumber(current_files[f].name));
}
// update smallest and largest key
if (l == 0) {
for (int f = first_included; f <= last_included; ++f) {
if (comparator->CompareWithoutTimestamp(
smallestkey, current_files[f].smallestkey) > 0) {
smallestkey = current_files[f].smallestkey;
}
if (comparator->CompareWithoutTimestamp(
largestkey, current_files[f].largestkey) < 0) {
largestkey = current_files[f].largestkey;
}
}
} else {
if (comparator->CompareWithoutTimestamp(
smallestkey, current_files[first_included].smallestkey) > 0) {
smallestkey = current_files[first_included].smallestkey;
}
if (comparator->CompareWithoutTimestamp(
largestkey, current_files[last_included].largestkey) < 0) {
largestkey = current_files[last_included].largestkey;
}
}
SstFileMetaData aggregated_file_meta;
aggregated_file_meta.smallestkey = smallestkey;
aggregated_file_meta.largestkey = largestkey;
// For all lower levels, include all overlapping files.
// We need to add overlapping files from the current level too because even
// if there no input_files in level l, we would still need to add files
// which overlap with the range containing the input_files in levels 0 to l
// Level 0 doesn't need to be handled this way because files are sorted by
// time and not by key
for (int m = std::max(l, 1); m <= output_level; ++m) {
for (auto& next_lv_file : levels[m].files) {
if (HaveOverlappingKeyRanges(comparator, aggregated_file_meta,
next_lv_file)) {
if (next_lv_file.being_compacted) {
return Status::Aborted(
"File " + next_lv_file.name +
" that has overlapping key range with one of the compaction "
" input file is currently being compacted.");
}
input_files->insert(TableFileNameToNumber(next_lv_file.name));
}
}
}
}
if (RangeOverlapWithCompaction(smallestkey, largestkey, output_level)) {
return Status::Aborted(
"A running compaction is writing to the same output level in an "
"overlapping key range");
}
return Status::OK();
}
Status CompactionPicker::SanitizeCompactionInputFiles(
std::unordered_set<uint64_t>* input_files,
const ColumnFamilyMetaData& cf_meta, const int output_level) const {
assert(static_cast<int>(cf_meta.levels.size()) - 1 ==
cf_meta.levels[cf_meta.levels.size() - 1].level);
if (output_level >= static_cast<int>(cf_meta.levels.size())) {
return Status::InvalidArgument(
"Output level for column family " + cf_meta.name +
" must between [0, " +
std::to_string(cf_meta.levels[cf_meta.levels.size() - 1].level) + "].");
}
if (output_level > MaxOutputLevel()) {
return Status::InvalidArgument(
"Exceed the maximum output level defined by "
"the current compaction algorithm --- " +
std::to_string(MaxOutputLevel()));
}
if (output_level < 0) {
return Status::InvalidArgument("Output level cannot be negative.");
}
if (input_files->size() == 0) {
return Status::InvalidArgument(
"A compaction must contain at least one file.");
}
Status s = SanitizeCompactionInputFilesForAllLevels(input_files, cf_meta,
output_level);
if (!s.ok()) {
return s;
}
// for all input files, check whether the file number matches
// any currently-existing files.
for (auto file_num : *input_files) {
bool found = false;
int input_file_level = -1;
for (const auto& level_meta : cf_meta.levels) {
for (const auto& file_meta : level_meta.files) {
if (file_num == TableFileNameToNumber(file_meta.name)) {
if (file_meta.being_compacted) {
return Status::Aborted("Specified compaction input file " +
MakeTableFileName("", file_num) +
" is already being compacted.");
}
found = true;
input_file_level = level_meta.level;
break;
}
}
if (found) {
break;
}
}
if (!found) {
return Status::InvalidArgument(
"Specified compaction input file " + MakeTableFileName("", file_num) +
" does not exist in column family " + cf_meta.name + ".");
}
if (input_file_level > output_level) {
return Status::InvalidArgument(
"Cannot compact file to up level, input file: " +
MakeTableFileName("", file_num) + " level " +
std::to_string(input_file_level) + " > output level " +
std::to_string(output_level));
}
}
return Status::OK();
}
#endif // !ROCKSDB_LITE
void CompactionPicker::RegisterCompaction(Compaction* c) {
if (c == nullptr) {
return;
}
assert(ioptions_.compaction_style != kCompactionStyleLevel ||
c->output_level() == 0 ||
!FilesRangeOverlapWithCompaction(*c->inputs(), c->output_level()));
if (c->start_level() == 0 ||
ioptions_.compaction_style == kCompactionStyleUniversal) {
level0_compactions_in_progress_.insert(c);
}
compactions_in_progress_.insert(c);
TEST_SYNC_POINT_CALLBACK("CompactionPicker::RegisterCompaction:Registered",
c);
}
void CompactionPicker::UnregisterCompaction(Compaction* c) {
if (c == nullptr) {
return;
}
if (c->start_level() == 0 ||
ioptions_.compaction_style == kCompactionStyleUniversal) {
level0_compactions_in_progress_.erase(c);
}
compactions_in_progress_.erase(c);
}
void CompactionPicker::PickFilesMarkedForCompaction(
const std::string& cf_name, VersionStorageInfo* vstorage, int* start_level,
int* output_level, CompactionInputFiles* start_level_inputs) {
if (vstorage->FilesMarkedForCompaction().empty()) {
return;
}
auto continuation = [&, cf_name](std::pair<int, FileMetaData*> level_file) {
// If it's being compacted it has nothing to do here.
// If this assert() fails that means that some function marked some
// files as being_compacted, but didn't call ComputeCompactionScore()
assert(!level_file.second->being_compacted);
*start_level = level_file.first;
*output_level =
(*start_level == 0) ? vstorage->base_level() : *start_level + 1;
if (*start_level == 0 && !level0_compactions_in_progress()->empty()) {
return false;
}
start_level_inputs->files = {level_file.second};
start_level_inputs->level = *start_level;
return ExpandInputsToCleanCut(cf_name, vstorage, start_level_inputs);
};
// take a chance on a random file first
Random64 rnd(/* seed */ reinterpret_cast<uint64_t>(vstorage));
size_t random_file_index = static_cast<size_t>(rnd.Uniform(
static_cast<uint64_t>(vstorage->FilesMarkedForCompaction().size())));
TEST_SYNC_POINT_CALLBACK("CompactionPicker::PickFilesMarkedForCompaction",
&random_file_index);
if (continuation(vstorage->FilesMarkedForCompaction()[random_file_index])) {
// found the compaction!
return;
}
for (auto& level_file : vstorage->FilesMarkedForCompaction()) {
if (continuation(level_file)) {
// found the compaction!
return;
}
}
start_level_inputs->files.clear();
}
bool CompactionPicker::GetOverlappingL0Files(
VersionStorageInfo* vstorage, CompactionInputFiles* start_level_inputs,
int output_level, int* parent_index) {
// Two level 0 compaction won't run at the same time, so don't need to worry
// about files on level 0 being compacted.
assert(level0_compactions_in_progress()->empty());
InternalKey smallest, largest;
GetRange(*start_level_inputs, &smallest, &largest);
// Note that the next call will discard the file we placed in
// c->inputs_[0] earlier and replace it with an overlapping set
// which will include the picked file.
start_level_inputs->files.clear();
vstorage->GetOverlappingInputs(0, &smallest, &largest,
&(start_level_inputs->files));
// If we include more L0 files in the same compaction run it can
// cause the 'smallest' and 'largest' key to get extended to a
// larger range. So, re-invoke GetRange to get the new key range
GetRange(*start_level_inputs, &smallest, &largest);
if (IsRangeInCompaction(vstorage, &smallest, &largest, output_level,
parent_index)) {
return false;
}
assert(!start_level_inputs->files.empty());
return true;
}
} // namespace ROCKSDB_NAMESPACE