rocksdb/db/write_batch_test.cc
Yu Zhang dfaf4dc111 Stubs for piping write time (#12043)
Summary:
As titled. This PR contains the API and stubbed implementation for piping write time.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12043

Reviewed By: pdillinger

Differential Revision: D51076575

Pulled By: jowlyzhang

fbshipit-source-id: 3b341263498351b9ccaff27cf35d5aeb5bdf0cf1
2023-11-09 15:58:07 -08:00

1227 lines
40 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <memory>
#include "db/column_family.h"
#include "db/db_test_util.h"
#include "db/memtable.h"
#include "db/wide/wide_columns_helper.h"
#include "db/write_batch_internal.h"
#include "dbformat.h"
#include "rocksdb/comparator.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/utilities/write_batch_with_index.h"
#include "rocksdb/write_buffer_manager.h"
#include "table/scoped_arena_iterator.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/string_util.h"
namespace ROCKSDB_NAMESPACE {
static std::string PrintContents(WriteBatch* b,
bool merge_operator_supported = true) {
InternalKeyComparator cmp(BytewiseComparator());
auto factory = std::make_shared<SkipListFactory>();
Options options;
options.memtable_factory = factory;
if (merge_operator_supported) {
options.merge_operator.reset(new TestPutOperator());
}
ImmutableOptions ioptions(options);
WriteBufferManager wb(options.db_write_buffer_size);
MemTable* mem = new MemTable(cmp, ioptions, MutableCFOptions(options), &wb,
kMaxSequenceNumber, 0 /* column_family_id */);
mem->Ref();
std::string state;
ColumnFamilyMemTablesDefault cf_mems_default(mem);
Status s =
WriteBatchInternal::InsertInto(b, &cf_mems_default, nullptr, nullptr);
uint32_t count = 0;
int put_count = 0;
int delete_count = 0;
int single_delete_count = 0;
int delete_range_count = 0;
int merge_count = 0;
for (int i = 0; i < 2; ++i) {
Arena arena;
ScopedArenaIterator arena_iter_guard;
std::unique_ptr<InternalIterator> iter_guard;
InternalIterator* iter;
if (i == 0) {
iter = mem->NewIterator(ReadOptions(), &arena);
arena_iter_guard.set(iter);
} else {
iter = mem->NewRangeTombstoneIterator(ReadOptions(),
kMaxSequenceNumber /* read_seq */,
false /* immutable_memtable */);
iter_guard.reset(iter);
}
if (iter == nullptr) {
continue;
}
EXPECT_OK(iter->status());
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ParsedInternalKey ikey;
ikey.clear();
EXPECT_OK(ParseInternalKey(iter->key(), &ikey, true /* log_err_key */));
switch (ikey.type) {
case kTypeValue:
state.append("Put(");
state.append(ikey.user_key.ToString());
state.append(", ");
state.append(iter->value().ToString());
state.append(")");
count++;
put_count++;
break;
case kTypeDeletion:
state.append("Delete(");
state.append(ikey.user_key.ToString());
state.append(")");
count++;
delete_count++;
break;
case kTypeSingleDeletion:
state.append("SingleDelete(");
state.append(ikey.user_key.ToString());
state.append(")");
count++;
single_delete_count++;
break;
case kTypeRangeDeletion:
state.append("DeleteRange(");
state.append(ikey.user_key.ToString());
state.append(", ");
state.append(iter->value().ToString());
state.append(")");
count++;
delete_range_count++;
break;
case kTypeMerge:
state.append("Merge(");
state.append(ikey.user_key.ToString());
state.append(", ");
state.append(iter->value().ToString());
state.append(")");
count++;
merge_count++;
break;
default:
assert(false);
break;
}
state.append("@");
state.append(std::to_string(ikey.sequence));
}
EXPECT_OK(iter->status());
}
if (s.ok()) {
EXPECT_EQ(b->HasPut(), put_count > 0);
EXPECT_EQ(b->HasDelete(), delete_count > 0);
EXPECT_EQ(b->HasSingleDelete(), single_delete_count > 0);
EXPECT_EQ(b->HasDeleteRange(), delete_range_count > 0);
EXPECT_EQ(b->HasMerge(), merge_count > 0);
if (count != WriteBatchInternal::Count(b)) {
state.append("CountMismatch()");
}
} else {
state.append(s.ToString());
}
delete mem->Unref();
return state;
}
class WriteBatchTest : public testing::Test {};
TEST_F(WriteBatchTest, Empty) {
WriteBatch batch;
ASSERT_EQ("", PrintContents(&batch));
ASSERT_EQ(0u, WriteBatchInternal::Count(&batch));
ASSERT_EQ(0u, batch.Count());
}
TEST_F(WriteBatchTest, Multiple) {
WriteBatch batch;
ASSERT_OK(batch.Put(Slice("foo"), Slice("bar")));
ASSERT_OK(batch.Delete(Slice("box")));
ASSERT_OK(batch.DeleteRange(Slice("bar"), Slice("foo")));
ASSERT_OK(batch.Put(Slice("baz"), Slice("boo")));
WriteBatchInternal::SetSequence(&batch, 100);
ASSERT_EQ(100U, WriteBatchInternal::Sequence(&batch));
ASSERT_EQ(4u, WriteBatchInternal::Count(&batch));
ASSERT_EQ(
"Put(baz, boo)@103"
"Delete(box)@101"
"Put(foo, bar)@100"
"DeleteRange(bar, foo)@102",
PrintContents(&batch));
ASSERT_EQ(4u, batch.Count());
}
TEST_F(WriteBatchTest, Corruption) {
WriteBatch batch;
ASSERT_OK(batch.Put(Slice("foo"), Slice("bar")));
ASSERT_OK(batch.Delete(Slice("box")));
WriteBatchInternal::SetSequence(&batch, 200);
Slice contents = WriteBatchInternal::Contents(&batch);
ASSERT_OK(WriteBatchInternal::SetContents(
&batch, Slice(contents.data(), contents.size() - 1)));
ASSERT_EQ(
"Put(foo, bar)@200"
"Corruption: bad WriteBatch Delete",
PrintContents(&batch));
}
TEST_F(WriteBatchTest, Append) {
WriteBatch b1, b2;
WriteBatchInternal::SetSequence(&b1, 200);
WriteBatchInternal::SetSequence(&b2, 300);
ASSERT_OK(WriteBatchInternal::Append(&b1, &b2));
ASSERT_EQ("", PrintContents(&b1));
ASSERT_EQ(0u, b1.Count());
ASSERT_OK(b2.Put("a", "va"));
ASSERT_OK(WriteBatchInternal::Append(&b1, &b2));
ASSERT_EQ("Put(a, va)@200", PrintContents(&b1));
ASSERT_EQ(1u, b1.Count());
b2.Clear();
ASSERT_OK(b2.Put("b", "vb"));
ASSERT_OK(WriteBatchInternal::Append(&b1, &b2));
ASSERT_EQ(
"Put(a, va)@200"
"Put(b, vb)@201",
PrintContents(&b1));
ASSERT_EQ(2u, b1.Count());
ASSERT_OK(b2.Delete("foo"));
ASSERT_OK(WriteBatchInternal::Append(&b1, &b2));
ASSERT_EQ(
"Put(a, va)@200"
"Put(b, vb)@202"
"Put(b, vb)@201"
"Delete(foo)@203",
PrintContents(&b1));
ASSERT_EQ(4u, b1.Count());
b2.Clear();
ASSERT_OK(b2.Put("c", "cc"));
ASSERT_OK(b2.Put("d", "dd"));
b2.MarkWalTerminationPoint();
ASSERT_OK(b2.Put("e", "ee"));
ASSERT_OK(WriteBatchInternal::Append(&b1, &b2, /*wal only*/ true));
ASSERT_EQ(
"Put(a, va)@200"
"Put(b, vb)@202"
"Put(b, vb)@201"
"Put(c, cc)@204"
"Put(d, dd)@205"
"Delete(foo)@203",
PrintContents(&b1));
ASSERT_EQ(6u, b1.Count());
ASSERT_EQ(
"Put(c, cc)@0"
"Put(d, dd)@1"
"Put(e, ee)@2",
PrintContents(&b2));
ASSERT_EQ(3u, b2.Count());
}
TEST_F(WriteBatchTest, SingleDeletion) {
WriteBatch batch;
WriteBatchInternal::SetSequence(&batch, 100);
ASSERT_EQ("", PrintContents(&batch));
ASSERT_EQ(0u, batch.Count());
ASSERT_OK(batch.Put("a", "va"));
ASSERT_EQ("Put(a, va)@100", PrintContents(&batch));
ASSERT_EQ(1u, batch.Count());
ASSERT_OK(batch.SingleDelete("a"));
ASSERT_EQ(
"SingleDelete(a)@101"
"Put(a, va)@100",
PrintContents(&batch));
ASSERT_EQ(2u, batch.Count());
}
TEST_F(WriteBatchTest, OwnershipTransfer) {
Random rnd(301);
WriteBatch put_batch;
ASSERT_OK(put_batch.Put(rnd.RandomString(16) /* key */,
rnd.RandomString(1024) /* value */));
// (1) Verify `Release()` transfers string data ownership
const char* expected_data = put_batch.Data().data();
std::string batch_str = put_batch.Release();
ASSERT_EQ(expected_data, batch_str.data());
// (2) Verify constructor transfers string data ownership
WriteBatch move_batch(std::move(batch_str));
ASSERT_EQ(expected_data, move_batch.Data().data());
}
namespace {
struct TestHandler : public WriteBatch::Handler {
std::string seen;
Status PutCF(uint32_t column_family_id, const Slice& key,
const Slice& value) override {
if (column_family_id == 0) {
seen += "Put(" + key.ToString() + ", " + value.ToString() + ")";
} else {
seen += "PutCF(" + std::to_string(column_family_id) + ", " +
key.ToString() + ", " + value.ToString() + ")";
}
return Status::OK();
}
Status PutEntityCF(uint32_t column_family_id, const Slice& key,
const Slice& entity) override {
std::ostringstream oss;
Status s = WideColumnsHelper::DumpSliceAsWideColumns(entity, oss, false);
if (!s.ok()) {
return s;
}
if (column_family_id == 0) {
seen += "PutEntity(" + key.ToString() + ", " + oss.str() + ")";
} else {
seen += "PutEntityCF(" + std::to_string(column_family_id) + ", " +
key.ToString() + ", " + oss.str() + ")";
}
return Status::OK();
}
Status DeleteCF(uint32_t column_family_id, const Slice& key) override {
if (column_family_id == 0) {
seen += "Delete(" + key.ToString() + ")";
} else {
seen += "DeleteCF(" + std::to_string(column_family_id) + ", " +
key.ToString() + ")";
}
return Status::OK();
}
Status SingleDeleteCF(uint32_t column_family_id, const Slice& key) override {
if (column_family_id == 0) {
seen += "SingleDelete(" + key.ToString() + ")";
} else {
seen += "SingleDeleteCF(" + std::to_string(column_family_id) + ", " +
key.ToString() + ")";
}
return Status::OK();
}
Status DeleteRangeCF(uint32_t column_family_id, const Slice& begin_key,
const Slice& end_key) override {
if (column_family_id == 0) {
seen += "DeleteRange(" + begin_key.ToString() + ", " +
end_key.ToString() + ")";
} else {
seen += "DeleteRangeCF(" + std::to_string(column_family_id) + ", " +
begin_key.ToString() + ", " + end_key.ToString() + ")";
}
return Status::OK();
}
Status MergeCF(uint32_t column_family_id, const Slice& key,
const Slice& value) override {
if (column_family_id == 0) {
seen += "Merge(" + key.ToString() + ", " + value.ToString() + ")";
} else {
seen += "MergeCF(" + std::to_string(column_family_id) + ", " +
key.ToString() + ", " + value.ToString() + ")";
}
return Status::OK();
}
void LogData(const Slice& blob) override {
seen += "LogData(" + blob.ToString() + ")";
}
Status MarkBeginPrepare(bool unprepare) override {
seen +=
"MarkBeginPrepare(" + std::string(unprepare ? "true" : "false") + ")";
return Status::OK();
}
Status MarkEndPrepare(const Slice& xid) override {
seen += "MarkEndPrepare(" + xid.ToString() + ")";
return Status::OK();
}
Status MarkNoop(bool empty_batch) override {
seen += "MarkNoop(" + std::string(empty_batch ? "true" : "false") + ")";
return Status::OK();
}
Status MarkCommit(const Slice& xid) override {
seen += "MarkCommit(" + xid.ToString() + ")";
return Status::OK();
}
Status MarkCommitWithTimestamp(const Slice& xid, const Slice& ts) override {
seen += "MarkCommitWithTimestamp(" + xid.ToString() + ", " +
ts.ToString(true) + ")";
return Status::OK();
}
Status MarkRollback(const Slice& xid) override {
seen += "MarkRollback(" + xid.ToString() + ")";
return Status::OK();
}
};
} // anonymous namespace
TEST_F(WriteBatchTest, PutNotImplemented) {
WriteBatch batch;
ASSERT_OK(batch.Put(Slice("k1"), Slice("v1")));
ASSERT_EQ(1u, batch.Count());
ASSERT_EQ("Put(k1, v1)@0", PrintContents(&batch));
WriteBatch::Handler handler;
ASSERT_OK(batch.Iterate(&handler));
}
TEST_F(WriteBatchTest, DeleteNotImplemented) {
WriteBatch batch;
ASSERT_OK(batch.Delete(Slice("k2")));
ASSERT_EQ(1u, batch.Count());
ASSERT_EQ("Delete(k2)@0", PrintContents(&batch));
WriteBatch::Handler handler;
ASSERT_OK(batch.Iterate(&handler));
}
TEST_F(WriteBatchTest, SingleDeleteNotImplemented) {
WriteBatch batch;
ASSERT_OK(batch.SingleDelete(Slice("k2")));
ASSERT_EQ(1u, batch.Count());
ASSERT_EQ("SingleDelete(k2)@0", PrintContents(&batch));
WriteBatch::Handler handler;
ASSERT_OK(batch.Iterate(&handler));
}
TEST_F(WriteBatchTest, MergeNotImplemented) {
WriteBatch batch;
ASSERT_OK(batch.Merge(Slice("foo"), Slice("bar")));
ASSERT_EQ(1u, batch.Count());
ASSERT_EQ("Merge(foo, bar)@0", PrintContents(&batch));
WriteBatch::Handler handler;
ASSERT_OK(batch.Iterate(&handler));
}
TEST_F(WriteBatchTest, MergeWithoutOperatorInsertionFailure) {
WriteBatch batch;
ASSERT_OK(batch.Merge(Slice("foo"), Slice("bar")));
ASSERT_EQ(1u, batch.Count());
ASSERT_EQ(
"Invalid argument: Merge requires `ColumnFamilyOptions::merge_operator "
"!= nullptr`",
PrintContents(&batch, false /* merge_operator_supported */));
}
TEST_F(WriteBatchTest, Blob) {
WriteBatch batch;
ASSERT_OK(batch.Put(Slice("k1"), Slice("v1")));
ASSERT_OK(batch.Put(Slice("k2"), Slice("v2")));
ASSERT_OK(batch.Put(Slice("k3"), Slice("v3")));
ASSERT_OK(batch.PutLogData(Slice("blob1")));
ASSERT_OK(batch.Delete(Slice("k2")));
ASSERT_OK(batch.SingleDelete(Slice("k3")));
ASSERT_OK(batch.PutLogData(Slice("blob2")));
ASSERT_OK(batch.Merge(Slice("foo"), Slice("bar")));
ASSERT_EQ(6u, batch.Count());
ASSERT_EQ(
"Merge(foo, bar)@5"
"Put(k1, v1)@0"
"Delete(k2)@3"
"Put(k2, v2)@1"
"SingleDelete(k3)@4"
"Put(k3, v3)@2",
PrintContents(&batch));
TestHandler handler;
ASSERT_OK(batch.Iterate(&handler));
ASSERT_EQ(
"Put(k1, v1)"
"Put(k2, v2)"
"Put(k3, v3)"
"LogData(blob1)"
"Delete(k2)"
"SingleDelete(k3)"
"LogData(blob2)"
"Merge(foo, bar)",
handler.seen);
}
TEST_F(WriteBatchTest, PrepareCommit) {
WriteBatch batch;
ASSERT_OK(WriteBatchInternal::InsertNoop(&batch));
ASSERT_OK(batch.Put(Slice("k1"), Slice("v1")));
ASSERT_OK(batch.Put(Slice("k2"), Slice("v2")));
batch.SetSavePoint();
ASSERT_OK(WriteBatchInternal::MarkEndPrepare(&batch, Slice("xid1")));
Status s = batch.RollbackToSavePoint();
ASSERT_EQ(s, Status::NotFound());
ASSERT_OK(WriteBatchInternal::MarkCommit(&batch, Slice("xid1")));
ASSERT_OK(WriteBatchInternal::MarkRollback(&batch, Slice("xid1")));
ASSERT_EQ(2u, batch.Count());
TestHandler handler;
ASSERT_OK(batch.Iterate(&handler));
ASSERT_EQ(
"MarkBeginPrepare(false)"
"Put(k1, v1)"
"Put(k2, v2)"
"MarkEndPrepare(xid1)"
"MarkCommit(xid1)"
"MarkRollback(xid1)",
handler.seen);
}
// It requires more than 30GB of memory to run the test. With single memory
// allocation of more than 30GB.
// Not all platform can run it. Also it runs a long time. So disable it.
TEST_F(WriteBatchTest, DISABLED_ManyUpdates) {
// Insert key and value of 3GB and push total batch size to 12GB.
static const size_t kKeyValueSize = 4u;
static const uint32_t kNumUpdates = uint32_t{3} << 30;
std::string raw(kKeyValueSize, 'A');
WriteBatch batch(kNumUpdates * (4 + kKeyValueSize * 2) + 1024u);
char c = 'A';
for (uint32_t i = 0; i < kNumUpdates; i++) {
if (c > 'Z') {
c = 'A';
}
raw[0] = c;
raw[raw.length() - 1] = c;
c++;
ASSERT_OK(batch.Put(raw, raw));
}
ASSERT_EQ(kNumUpdates, batch.Count());
struct NoopHandler : public WriteBatch::Handler {
uint32_t num_seen = 0;
char expected_char = 'A';
Status PutCF(uint32_t /*column_family_id*/, const Slice& key,
const Slice& value) override {
EXPECT_EQ(kKeyValueSize, key.size());
EXPECT_EQ(kKeyValueSize, value.size());
EXPECT_EQ(expected_char, key[0]);
EXPECT_EQ(expected_char, value[0]);
EXPECT_EQ(expected_char, key[kKeyValueSize - 1]);
EXPECT_EQ(expected_char, value[kKeyValueSize - 1]);
expected_char++;
if (expected_char > 'Z') {
expected_char = 'A';
}
++num_seen;
return Status::OK();
}
Status DeleteCF(uint32_t /*column_family_id*/,
const Slice& /*key*/) override {
ADD_FAILURE();
return Status::OK();
}
Status SingleDeleteCF(uint32_t /*column_family_id*/,
const Slice& /*key*/) override {
ADD_FAILURE();
return Status::OK();
}
Status MergeCF(uint32_t /*column_family_id*/, const Slice& /*key*/,
const Slice& /*value*/) override {
ADD_FAILURE();
return Status::OK();
}
void LogData(const Slice& /*blob*/) override { ADD_FAILURE(); }
bool Continue() override { return num_seen < kNumUpdates; }
} handler;
ASSERT_OK(batch.Iterate(&handler));
ASSERT_EQ(kNumUpdates, handler.num_seen);
}
// The test requires more than 18GB memory to run it, with single memory
// allocation of more than 12GB. Not all the platform can run it. So disable it.
TEST_F(WriteBatchTest, DISABLED_LargeKeyValue) {
// Insert key and value of 3GB and push total batch size to 12GB.
static const size_t kKeyValueSize = 3221225472u;
std::string raw(kKeyValueSize, 'A');
WriteBatch batch(size_t(12884901888ull + 1024u));
for (char i = 0; i < 2; i++) {
raw[0] = 'A' + i;
raw[raw.length() - 1] = 'A' - i;
ASSERT_OK(batch.Put(raw, raw));
}
ASSERT_EQ(2u, batch.Count());
struct NoopHandler : public WriteBatch::Handler {
int num_seen = 0;
Status PutCF(uint32_t /*column_family_id*/, const Slice& key,
const Slice& value) override {
EXPECT_EQ(kKeyValueSize, key.size());
EXPECT_EQ(kKeyValueSize, value.size());
EXPECT_EQ('A' + num_seen, key[0]);
EXPECT_EQ('A' + num_seen, value[0]);
EXPECT_EQ('A' - num_seen, key[kKeyValueSize - 1]);
EXPECT_EQ('A' - num_seen, value[kKeyValueSize - 1]);
++num_seen;
return Status::OK();
}
Status DeleteCF(uint32_t /*column_family_id*/,
const Slice& /*key*/) override {
ADD_FAILURE();
return Status::OK();
}
Status SingleDeleteCF(uint32_t /*column_family_id*/,
const Slice& /*key*/) override {
ADD_FAILURE();
return Status::OK();
}
Status MergeCF(uint32_t /*column_family_id*/, const Slice& /*key*/,
const Slice& /*value*/) override {
ADD_FAILURE();
return Status::OK();
}
void LogData(const Slice& /*blob*/) override { ADD_FAILURE(); }
bool Continue() override { return num_seen < 2; }
} handler;
ASSERT_OK(batch.Iterate(&handler));
ASSERT_EQ(2, handler.num_seen);
}
TEST_F(WriteBatchTest, Continue) {
WriteBatch batch;
struct Handler : public TestHandler {
int num_seen = 0;
Status PutCF(uint32_t column_family_id, const Slice& key,
const Slice& value) override {
++num_seen;
return TestHandler::PutCF(column_family_id, key, value);
}
Status DeleteCF(uint32_t column_family_id, const Slice& key) override {
++num_seen;
return TestHandler::DeleteCF(column_family_id, key);
}
Status SingleDeleteCF(uint32_t column_family_id,
const Slice& key) override {
++num_seen;
return TestHandler::SingleDeleteCF(column_family_id, key);
}
Status MergeCF(uint32_t column_family_id, const Slice& key,
const Slice& value) override {
++num_seen;
return TestHandler::MergeCF(column_family_id, key, value);
}
void LogData(const Slice& blob) override {
++num_seen;
TestHandler::LogData(blob);
}
bool Continue() override { return num_seen < 5; }
} handler;
ASSERT_OK(batch.Put(Slice("k1"), Slice("v1")));
ASSERT_OK(batch.Put(Slice("k2"), Slice("v2")));
ASSERT_OK(batch.PutLogData(Slice("blob1")));
ASSERT_OK(batch.Delete(Slice("k1")));
ASSERT_OK(batch.SingleDelete(Slice("k2")));
ASSERT_OK(batch.PutLogData(Slice("blob2")));
ASSERT_OK(batch.Merge(Slice("foo"), Slice("bar")));
ASSERT_OK(batch.Iterate(&handler));
ASSERT_EQ(
"Put(k1, v1)"
"Put(k2, v2)"
"LogData(blob1)"
"Delete(k1)"
"SingleDelete(k2)",
handler.seen);
}
TEST_F(WriteBatchTest, PutGatherSlices) {
WriteBatch batch;
ASSERT_OK(batch.Put(Slice("foo"), Slice("bar")));
{
// Try a write where the key is one slice but the value is two
Slice key_slice("baz");
Slice value_slices[2] = {Slice("header"), Slice("payload")};
ASSERT_OK(
batch.Put(SliceParts(&key_slice, 1), SliceParts(value_slices, 2)));
}
{
// One where the key is composite but the value is a single slice
Slice key_slices[3] = {Slice("key"), Slice("part2"), Slice("part3")};
Slice value_slice("value");
ASSERT_OK(
batch.Put(SliceParts(key_slices, 3), SliceParts(&value_slice, 1)));
}
WriteBatchInternal::SetSequence(&batch, 100);
ASSERT_EQ(
"Put(baz, headerpayload)@101"
"Put(foo, bar)@100"
"Put(keypart2part3, value)@102",
PrintContents(&batch));
ASSERT_EQ(3u, batch.Count());
}
namespace {
class ColumnFamilyHandleImplDummy : public ColumnFamilyHandleImpl {
public:
explicit ColumnFamilyHandleImplDummy(int id)
: ColumnFamilyHandleImpl(nullptr, nullptr, nullptr), id_(id) {}
explicit ColumnFamilyHandleImplDummy(int id, const Comparator* ucmp)
: ColumnFamilyHandleImpl(nullptr, nullptr, nullptr),
id_(id),
ucmp_(ucmp) {}
uint32_t GetID() const override { return id_; }
const Comparator* GetComparator() const override { return ucmp_; }
private:
uint32_t id_;
const Comparator* const ucmp_ = BytewiseComparator();
};
} // anonymous namespace
TEST_F(WriteBatchTest, AttributeGroupTest) {
WriteBatch batch;
ColumnFamilyHandleImplDummy zero(0), two(2);
AttributeGroups foo_ags;
WideColumn zero_col_1{"0_c_1_n", "0_c_1_v"};
WideColumn zero_col_2{"0_c_2_n", "0_c_2_v"};
WideColumns zero_col_1_col_2{zero_col_1, zero_col_2};
WideColumn two_col_1{"2_c_1_n", "2_c_1_v"};
WideColumn two_col_2{"2_c_2_n", "2_c_2_v"};
WideColumns two_col_1_col_2{two_col_1, two_col_2};
foo_ags.emplace_back(&zero, zero_col_1_col_2);
foo_ags.emplace_back(&two, two_col_1_col_2);
ASSERT_OK(batch.PutEntity("foo", foo_ags));
TestHandler handler;
ASSERT_OK(batch.Iterate(&handler));
ASSERT_EQ(
"PutEntity(foo, 0_c_1_n:0_c_1_v "
"0_c_2_n:0_c_2_v)"
"PutEntityCF(2, foo, 2_c_1_n:2_c_1_v "
"2_c_2_n:2_c_2_v)",
handler.seen);
}
TEST_F(WriteBatchTest, AttributeGroupSavePointTest) {
WriteBatch batch;
batch.SetSavePoint();
ColumnFamilyHandleImplDummy zero(0), two(2), three(3);
AttributeGroups foo_ags;
WideColumn zero_col_1{"0_c_1_n", "0_c_1_v"};
WideColumn zero_col_2{"0_c_2_n", "0_c_2_v"};
WideColumns zero_col_1_col_2{zero_col_1, zero_col_2};
WideColumn two_col_1{"2_c_1_n", "2_c_1_v"};
WideColumn two_col_2{"2_c_2_n", "2_c_2_v"};
WideColumns two_col_1_col_2{two_col_1, two_col_2};
foo_ags.emplace_back(&zero, zero_col_1_col_2);
foo_ags.emplace_back(&two, two_col_1_col_2);
AttributeGroups bar_ags;
WideColumn three_col_1{"3_c_1_n", "3_c_1_v"};
WideColumn three_col_2{"3_c_2_n", "3_c_2_v"};
WideColumns three_col_1_col_2{three_col_1, three_col_2};
bar_ags.emplace_back(&zero, zero_col_1_col_2);
bar_ags.emplace_back(&three, three_col_1_col_2);
ASSERT_OK(batch.PutEntity("foo", foo_ags));
batch.SetSavePoint();
ASSERT_OK(batch.PutEntity("bar", bar_ags));
TestHandler handler;
ASSERT_OK(batch.Iterate(&handler));
ASSERT_EQ(
"PutEntity(foo, 0_c_1_n:0_c_1_v 0_c_2_n:0_c_2_v)"
"PutEntityCF(2, foo, 2_c_1_n:2_c_1_v 2_c_2_n:2_c_2_v)"
"PutEntity(bar, 0_c_1_n:0_c_1_v 0_c_2_n:0_c_2_v)"
"PutEntityCF(3, bar, 3_c_1_n:3_c_1_v 3_c_2_n:3_c_2_v)",
handler.seen);
ASSERT_OK(batch.RollbackToSavePoint());
handler.seen.clear();
ASSERT_OK(batch.Iterate(&handler));
ASSERT_EQ(
"PutEntity(foo, 0_c_1_n:0_c_1_v 0_c_2_n:0_c_2_v)"
"PutEntityCF(2, foo, 2_c_1_n:2_c_1_v 2_c_2_n:2_c_2_v)",
handler.seen);
}
TEST_F(WriteBatchTest, ColumnFamiliesBatchTest) {
WriteBatch batch;
ColumnFamilyHandleImplDummy zero(0), two(2), three(3), eight(8);
ASSERT_OK(batch.Put(&zero, Slice("foo"), Slice("bar")));
ASSERT_OK(batch.Put(&two, Slice("twofoo"), Slice("bar2")));
ASSERT_OK(batch.Put(&eight, Slice("eightfoo"), Slice("bar8")));
ASSERT_OK(batch.Delete(&eight, Slice("eightfoo")));
ASSERT_OK(batch.SingleDelete(&two, Slice("twofoo")));
ASSERT_OK(batch.DeleteRange(&two, Slice("3foo"), Slice("4foo")));
ASSERT_OK(batch.Merge(&three, Slice("threethree"), Slice("3three")));
ASSERT_OK(batch.Put(&zero, Slice("foo"), Slice("bar")));
ASSERT_OK(batch.Merge(Slice("omom"), Slice("nom")));
// TODO(yuzhangyu): implement this.
ASSERT_TRUE(
batch.TimedPut(&zero, Slice("foo"), Slice("bar"), 0u).IsNotSupported());
TestHandler handler;
ASSERT_OK(batch.Iterate(&handler));
ASSERT_EQ(
"Put(foo, bar)"
"PutCF(2, twofoo, bar2)"
"PutCF(8, eightfoo, bar8)"
"DeleteCF(8, eightfoo)"
"SingleDeleteCF(2, twofoo)"
"DeleteRangeCF(2, 3foo, 4foo)"
"MergeCF(3, threethree, 3three)"
"Put(foo, bar)"
"Merge(omom, nom)",
handler.seen);
}
TEST_F(WriteBatchTest, ColumnFamiliesBatchWithIndexTest) {
WriteBatchWithIndex batch;
ColumnFamilyHandleImplDummy zero(0), two(2), three(3), eight(8);
ASSERT_OK(batch.Put(&zero, Slice("foo"), Slice("bar")));
ASSERT_OK(batch.Put(&two, Slice("twofoo"), Slice("bar2")));
ASSERT_OK(batch.Put(&eight, Slice("eightfoo"), Slice("bar8")));
ASSERT_OK(batch.Delete(&eight, Slice("eightfoo")));
ASSERT_OK(batch.SingleDelete(&two, Slice("twofoo")));
ASSERT_OK(batch.Merge(&three, Slice("threethree"), Slice("3three")));
ASSERT_OK(batch.Put(&zero, Slice("foo"), Slice("bar")));
ASSERT_OK(batch.Merge(Slice("omom"), Slice("nom")));
ASSERT_TRUE(
batch.TimedPut(&zero, Slice("foo"), Slice("bar"), 0u).IsNotSupported());
std::unique_ptr<WBWIIterator> iter;
iter.reset(batch.NewIterator(&eight));
iter->Seek("eightfoo");
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(WriteType::kPutRecord, iter->Entry().type);
ASSERT_EQ("eightfoo", iter->Entry().key.ToString());
ASSERT_EQ("bar8", iter->Entry().value.ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(WriteType::kDeleteRecord, iter->Entry().type);
ASSERT_EQ("eightfoo", iter->Entry().key.ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(!iter->Valid());
iter.reset(batch.NewIterator(&two));
iter->Seek("twofoo");
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(WriteType::kPutRecord, iter->Entry().type);
ASSERT_EQ("twofoo", iter->Entry().key.ToString());
ASSERT_EQ("bar2", iter->Entry().value.ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(WriteType::kSingleDeleteRecord, iter->Entry().type);
ASSERT_EQ("twofoo", iter->Entry().key.ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(!iter->Valid());
iter.reset(batch.NewIterator());
iter->Seek("gggg");
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(WriteType::kMergeRecord, iter->Entry().type);
ASSERT_EQ("omom", iter->Entry().key.ToString());
ASSERT_EQ("nom", iter->Entry().value.ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(!iter->Valid());
iter.reset(batch.NewIterator(&zero));
iter->Seek("foo");
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(WriteType::kPutRecord, iter->Entry().type);
ASSERT_EQ("foo", iter->Entry().key.ToString());
ASSERT_EQ("bar", iter->Entry().value.ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(WriteType::kPutRecord, iter->Entry().type);
ASSERT_EQ("foo", iter->Entry().key.ToString());
ASSERT_EQ("bar", iter->Entry().value.ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(WriteType::kMergeRecord, iter->Entry().type);
ASSERT_EQ("omom", iter->Entry().key.ToString());
ASSERT_EQ("nom", iter->Entry().value.ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(!iter->Valid());
TestHandler handler;
ASSERT_OK(batch.GetWriteBatch()->Iterate(&handler));
ASSERT_EQ(
"Put(foo, bar)"
"PutCF(2, twofoo, bar2)"
"PutCF(8, eightfoo, bar8)"
"DeleteCF(8, eightfoo)"
"SingleDeleteCF(2, twofoo)"
"MergeCF(3, threethree, 3three)"
"Put(foo, bar)"
"Merge(omom, nom)",
handler.seen);
}
TEST_F(WriteBatchTest, SavePointTest) {
Status s;
WriteBatch batch;
batch.SetSavePoint();
ASSERT_OK(batch.Put("A", "a"));
ASSERT_OK(batch.Put("B", "b"));
batch.SetSavePoint();
ASSERT_OK(batch.Put("C", "c"));
ASSERT_OK(batch.Delete("A"));
batch.SetSavePoint();
batch.SetSavePoint();
ASSERT_OK(batch.RollbackToSavePoint());
ASSERT_EQ(
"Delete(A)@3"
"Put(A, a)@0"
"Put(B, b)@1"
"Put(C, c)@2",
PrintContents(&batch));
ASSERT_OK(batch.RollbackToSavePoint());
ASSERT_OK(batch.RollbackToSavePoint());
ASSERT_EQ(
"Put(A, a)@0"
"Put(B, b)@1",
PrintContents(&batch));
ASSERT_OK(batch.Delete("A"));
ASSERT_OK(batch.Put("B", "bb"));
ASSERT_OK(batch.RollbackToSavePoint());
ASSERT_EQ("", PrintContents(&batch));
s = batch.RollbackToSavePoint();
ASSERT_TRUE(s.IsNotFound());
ASSERT_EQ("", PrintContents(&batch));
ASSERT_OK(batch.Put("D", "d"));
ASSERT_OK(batch.Delete("A"));
batch.SetSavePoint();
ASSERT_OK(batch.Put("A", "aaa"));
ASSERT_OK(batch.RollbackToSavePoint());
ASSERT_EQ(
"Delete(A)@1"
"Put(D, d)@0",
PrintContents(&batch));
batch.SetSavePoint();
ASSERT_OK(batch.Put("D", "d"));
ASSERT_OK(batch.Delete("A"));
ASSERT_OK(batch.RollbackToSavePoint());
ASSERT_EQ(
"Delete(A)@1"
"Put(D, d)@0",
PrintContents(&batch));
s = batch.RollbackToSavePoint();
ASSERT_TRUE(s.IsNotFound());
ASSERT_EQ(
"Delete(A)@1"
"Put(D, d)@0",
PrintContents(&batch));
WriteBatch batch2;
s = batch2.RollbackToSavePoint();
ASSERT_TRUE(s.IsNotFound());
ASSERT_EQ("", PrintContents(&batch2));
ASSERT_OK(batch2.Delete("A"));
batch2.SetSavePoint();
s = batch2.RollbackToSavePoint();
ASSERT_OK(s);
ASSERT_EQ("Delete(A)@0", PrintContents(&batch2));
batch2.Clear();
ASSERT_EQ("", PrintContents(&batch2));
batch2.SetSavePoint();
ASSERT_OK(batch2.Delete("B"));
ASSERT_EQ("Delete(B)@0", PrintContents(&batch2));
batch2.SetSavePoint();
s = batch2.RollbackToSavePoint();
ASSERT_OK(s);
ASSERT_EQ("Delete(B)@0", PrintContents(&batch2));
s = batch2.RollbackToSavePoint();
ASSERT_OK(s);
ASSERT_EQ("", PrintContents(&batch2));
s = batch2.RollbackToSavePoint();
ASSERT_TRUE(s.IsNotFound());
ASSERT_EQ("", PrintContents(&batch2));
WriteBatch batch3;
s = batch3.PopSavePoint();
ASSERT_TRUE(s.IsNotFound());
ASSERT_EQ("", PrintContents(&batch3));
batch3.SetSavePoint();
ASSERT_OK(batch3.Delete("A"));
s = batch3.PopSavePoint();
ASSERT_OK(s);
ASSERT_EQ("Delete(A)@0", PrintContents(&batch3));
}
TEST_F(WriteBatchTest, MemoryLimitTest) {
Status s;
// The header size is 12 bytes. The two Puts take 8 bytes which gives total
// of 12 + 8 * 2 = 28 bytes.
WriteBatch batch(0, 28);
ASSERT_OK(batch.Put("a", "...."));
ASSERT_OK(batch.Put("b", "...."));
s = batch.Put("c", "....");
ASSERT_TRUE(s.IsMemoryLimit());
}
namespace {
class TimestampChecker : public WriteBatch::Handler {
public:
explicit TimestampChecker(
std::unordered_map<uint32_t, const Comparator*> cf_to_ucmps, Slice ts)
: cf_to_ucmps_(std::move(cf_to_ucmps)), timestamp_(std::move(ts)) {}
Status PutCF(uint32_t cf, const Slice& key, const Slice& /*value*/) override {
auto cf_iter = cf_to_ucmps_.find(cf);
if (cf_iter == cf_to_ucmps_.end()) {
return Status::Corruption();
}
const Comparator* const ucmp = cf_iter->second;
assert(ucmp);
size_t ts_sz = ucmp->timestamp_size();
if (ts_sz == 0) {
return Status::OK();
}
if (key.size() < ts_sz) {
return Status::Corruption();
}
Slice ts = ExtractTimestampFromUserKey(key, ts_sz);
if (ts.compare(timestamp_) != 0) {
return Status::Corruption();
}
return Status::OK();
}
private:
std::unordered_map<uint32_t, const Comparator*> cf_to_ucmps_;
Slice timestamp_;
};
Status CheckTimestampsInWriteBatch(
WriteBatch& wb, Slice timestamp,
std::unordered_map<uint32_t, const Comparator*> cf_to_ucmps) {
TimestampChecker ts_checker(cf_to_ucmps, timestamp);
return wb.Iterate(&ts_checker);
}
} // anonymous namespace
TEST_F(WriteBatchTest, SanityChecks) {
ColumnFamilyHandleImplDummy cf0(0,
test::BytewiseComparatorWithU64TsWrapper());
ColumnFamilyHandleImplDummy cf4(4);
WriteBatch wb(0, 0, 0, /*default_cf_ts_sz=*/sizeof(uint64_t));
// Sanity checks for the new WriteBatch APIs with extra 'ts' arg.
ASSERT_TRUE(wb.Put(nullptr, "key", "ts", "value").IsInvalidArgument());
ASSERT_TRUE(wb.Delete(nullptr, "key", "ts").IsInvalidArgument());
ASSERT_TRUE(wb.SingleDelete(nullptr, "key", "ts").IsInvalidArgument());
ASSERT_TRUE(wb.Merge(nullptr, "key", "ts", "value").IsInvalidArgument());
ASSERT_TRUE(wb.DeleteRange(nullptr, "begin_key", "end_key", "ts")
.IsInvalidArgument());
ASSERT_TRUE(wb.Put(&cf4, "key", "ts", "value").IsInvalidArgument());
ASSERT_TRUE(wb.Delete(&cf4, "key", "ts").IsInvalidArgument());
ASSERT_TRUE(wb.SingleDelete(&cf4, "key", "ts").IsInvalidArgument());
ASSERT_TRUE(wb.Merge(&cf4, "key", "ts", "value").IsInvalidArgument());
ASSERT_TRUE(
wb.DeleteRange(&cf4, "begin_key", "end_key", "ts").IsInvalidArgument());
constexpr size_t wrong_ts_sz = 1 + sizeof(uint64_t);
std::string ts(wrong_ts_sz, '\0');
ASSERT_TRUE(wb.Put(&cf0, "key", ts, "value").IsInvalidArgument());
ASSERT_TRUE(wb.Delete(&cf0, "key", ts).IsInvalidArgument());
ASSERT_TRUE(wb.SingleDelete(&cf0, "key", ts).IsInvalidArgument());
ASSERT_TRUE(wb.Merge(&cf0, "key", ts, "value").IsInvalidArgument());
ASSERT_TRUE(
wb.DeleteRange(&cf0, "begin_key", "end_key", ts).IsInvalidArgument());
// Sanity checks for the new WriteBatch APIs without extra 'ts' arg.
WriteBatch wb1(0, 0, 0, wrong_ts_sz);
ASSERT_TRUE(wb1.Put(&cf0, "key", "value").IsInvalidArgument());
ASSERT_TRUE(wb1.Delete(&cf0, "key").IsInvalidArgument());
ASSERT_TRUE(wb1.SingleDelete(&cf0, "key").IsInvalidArgument());
ASSERT_TRUE(wb1.Merge(&cf0, "key", "value").IsInvalidArgument());
ASSERT_TRUE(
wb1.DeleteRange(&cf0, "begin_key", "end_key").IsInvalidArgument());
}
TEST_F(WriteBatchTest, UpdateTimestamps) {
// We assume the last eight bytes of each key is reserved for timestamps.
// Therefore, we must make sure each key is longer than eight bytes.
constexpr size_t key_size = 16;
constexpr size_t num_of_keys = 10;
std::vector<std::string> key_strs(num_of_keys, std::string(key_size, '\0'));
ColumnFamilyHandleImplDummy cf0(0);
ColumnFamilyHandleImplDummy cf4(4,
test::BytewiseComparatorWithU64TsWrapper());
ColumnFamilyHandleImplDummy cf5(5,
test::BytewiseComparatorWithU64TsWrapper());
const std::unordered_map<uint32_t, const Comparator*> cf_to_ucmps = {
{0, cf0.GetComparator()},
{4, cf4.GetComparator()},
{5, cf5.GetComparator()}};
static constexpr size_t timestamp_size = sizeof(uint64_t);
{
WriteBatch wb1, wb2, wb3, wb4, wb5, wb6, wb7;
ASSERT_OK(wb1.Put(&cf0, "key", "value"));
ASSERT_FALSE(WriteBatchInternal::HasKeyWithTimestamp(wb1));
ASSERT_OK(wb2.Put(&cf4, "key", "value"));
ASSERT_TRUE(WriteBatchInternal::HasKeyWithTimestamp(wb2));
ASSERT_OK(wb3.Put(&cf4, "key", /*ts=*/std::string(timestamp_size, '\xfe'),
"value"));
ASSERT_TRUE(WriteBatchInternal::HasKeyWithTimestamp(wb3));
ASSERT_OK(wb4.Delete(&cf4, "key",
/*ts=*/std::string(timestamp_size, '\xfe')));
ASSERT_TRUE(WriteBatchInternal::HasKeyWithTimestamp(wb4));
ASSERT_OK(wb5.Delete(&cf4, "key"));
ASSERT_TRUE(WriteBatchInternal::HasKeyWithTimestamp(wb5));
ASSERT_OK(wb6.SingleDelete(&cf4, "key"));
ASSERT_TRUE(WriteBatchInternal::HasKeyWithTimestamp(wb6));
ASSERT_OK(wb7.SingleDelete(&cf4, "key",
/*ts=*/std::string(timestamp_size, '\xfe')));
ASSERT_TRUE(WriteBatchInternal::HasKeyWithTimestamp(wb7));
}
WriteBatch batch;
// Write to the batch. We will assign timestamps later.
for (const auto& key_str : key_strs) {
ASSERT_OK(batch.Put(&cf0, key_str, "value"));
ASSERT_OK(batch.Put(&cf4, key_str, "value"));
ASSERT_OK(batch.Put(&cf5, key_str, "value"));
}
const auto checker1 = [](uint32_t cf) {
if (cf == 4 || cf == 5) {
return timestamp_size;
} else if (cf == 0) {
return static_cast<size_t>(0);
} else {
return std::numeric_limits<size_t>::max();
}
};
ASSERT_OK(
batch.UpdateTimestamps(std::string(timestamp_size, '\xfe'), checker1));
ASSERT_OK(CheckTimestampsInWriteBatch(
batch, std::string(timestamp_size, '\xfe'), cf_to_ucmps));
// We use indexed_cf_to_ucmps, non_indexed_cfs_with_ts and timestamp_size to
// simulate the case in which a transaction enables indexing for some writes
// while disables indexing for other writes. A transaction uses a
// WriteBatchWithIndex object to buffer writes (we consider Write-committed
// policy only). If indexing is enabled, then writes go through
// WriteBatchWithIndex API populating a WBWI internal data structure, i.e. a
// mapping from cf to user comparators. If indexing is disabled, a transaction
// writes directly to the underlying raw WriteBatch. We will need to track the
// comparator information for the column families to which un-indexed writes
// are performed. When calling UpdateTimestamp API of WriteBatch, we need
// indexed_cf_to_ucmps, non_indexed_cfs_with_ts, and timestamp_size to perform
// checking.
std::unordered_map<uint32_t, const Comparator*> indexed_cf_to_ucmps = {
{0, cf0.GetComparator()}, {4, cf4.GetComparator()}};
std::unordered_set<uint32_t> non_indexed_cfs_with_ts = {cf5.GetID()};
const auto checker2 = [&indexed_cf_to_ucmps,
&non_indexed_cfs_with_ts](uint32_t cf) {
if (non_indexed_cfs_with_ts.count(cf) > 0) {
return timestamp_size;
}
auto cf_iter = indexed_cf_to_ucmps.find(cf);
if (cf_iter == indexed_cf_to_ucmps.end()) {
assert(false);
return std::numeric_limits<size_t>::max();
}
const Comparator* const ucmp = cf_iter->second;
assert(ucmp);
return ucmp->timestamp_size();
};
ASSERT_OK(
batch.UpdateTimestamps(std::string(timestamp_size, '\xef'), checker2));
ASSERT_OK(CheckTimestampsInWriteBatch(
batch, std::string(timestamp_size, '\xef'), cf_to_ucmps));
}
TEST_F(WriteBatchTest, CommitWithTimestamp) {
WriteBatch wb;
const std::string txn_name = "xid1";
std::string ts;
constexpr uint64_t commit_ts = 23;
PutFixed64(&ts, commit_ts);
ASSERT_OK(WriteBatchInternal::MarkCommitWithTimestamp(&wb, txn_name, ts));
TestHandler handler;
ASSERT_OK(wb.Iterate(&handler));
ASSERT_EQ("MarkCommitWithTimestamp(" + txn_name + ", " +
Slice(ts).ToString(true) + ")",
handler.seen);
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}