rocksdb/util/coding_test.cc

290 lines
8.2 KiB
C++

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "util/coding.h"
#include "util/testharness.h"
namespace leveldb {
class Coding { };
TEST(Coding, Fixed32) {
std::string s;
for (uint32_t v = 0; v < 100000; v++) {
PutFixed32(&s, v);
}
const char* p = s.data();
for (uint32_t v = 0; v < 100000; v++) {
uint32_t actual = DecodeFixed32(p);
ASSERT_EQ(v, actual);
p += sizeof(uint32_t);
}
}
TEST(Coding, Fixed64) {
std::string s;
for (int power = 0; power <= 63; power++) {
uint64_t v = static_cast<uint64_t>(1) << power;
PutFixed64(&s, v - 1);
PutFixed64(&s, v + 0);
PutFixed64(&s, v + 1);
}
const char* p = s.data();
for (int power = 0; power <= 63; power++) {
uint64_t v = static_cast<uint64_t>(1) << power;
uint64_t actual;
actual = DecodeFixed64(p);
ASSERT_EQ(v-1, actual);
p += sizeof(uint64_t);
actual = DecodeFixed64(p);
ASSERT_EQ(v+0, actual);
p += sizeof(uint64_t);
actual = DecodeFixed64(p);
ASSERT_EQ(v+1, actual);
p += sizeof(uint64_t);
}
}
// Test that encoding routines generate little-endian encodings
TEST(Coding, EncodingOutput) {
std::string dst;
PutFixed32(&dst, 0x04030201);
ASSERT_EQ(4U, dst.size());
ASSERT_EQ(0x01, static_cast<int>(dst[0]));
ASSERT_EQ(0x02, static_cast<int>(dst[1]));
ASSERT_EQ(0x03, static_cast<int>(dst[2]));
ASSERT_EQ(0x04, static_cast<int>(dst[3]));
dst.clear();
PutFixed64(&dst, 0x0807060504030201ull);
ASSERT_EQ(8U, dst.size());
ASSERT_EQ(0x01, static_cast<int>(dst[0]));
ASSERT_EQ(0x02, static_cast<int>(dst[1]));
ASSERT_EQ(0x03, static_cast<int>(dst[2]));
ASSERT_EQ(0x04, static_cast<int>(dst[3]));
ASSERT_EQ(0x05, static_cast<int>(dst[4]));
ASSERT_EQ(0x06, static_cast<int>(dst[5]));
ASSERT_EQ(0x07, static_cast<int>(dst[6]));
ASSERT_EQ(0x08, static_cast<int>(dst[7]));
}
TEST(Coding, Varint32) {
std::string s;
for (uint32_t i = 0; i < (32 * 32); i++) {
uint32_t v = (i / 32) << (i % 32);
PutVarint32(&s, v);
}
const char* p = s.data();
const char* limit = p + s.size();
for (uint32_t i = 0; i < (32 * 32); i++) {
uint32_t expected = (i / 32) << (i % 32);
uint32_t actual;
const char* start = p;
p = GetVarint32Ptr(p, limit, &actual);
ASSERT_TRUE(p != NULL);
ASSERT_EQ(expected, actual);
ASSERT_EQ(VarintLength(actual), p - start);
}
ASSERT_EQ(p, s.data() + s.size());
}
TEST(Coding, Varint64) {
// Construct the list of values to check
std::vector<uint64_t> values;
// Some special values
values.push_back(0);
values.push_back(100);
values.push_back(~static_cast<uint64_t>(0));
values.push_back(~static_cast<uint64_t>(0) - 1);
for (uint32_t k = 0; k < 64; k++) {
// Test values near powers of two
const uint64_t power = 1ull << k;
values.push_back(power);
values.push_back(power-1);
values.push_back(power+1);
};
std::string s;
for (unsigned int i = 0; i < values.size(); i++) {
PutVarint64(&s, values[i]);
}
const char* p = s.data();
const char* limit = p + s.size();
for (unsigned int i = 0; i < values.size(); i++) {
ASSERT_TRUE(p < limit);
uint64_t actual;
const char* start = p;
p = GetVarint64Ptr(p, limit, &actual);
ASSERT_TRUE(p != NULL);
ASSERT_EQ(values[i], actual);
ASSERT_EQ(VarintLength(actual), p - start);
}
ASSERT_EQ(p, limit);
}
TEST(Coding, Varint32Overflow) {
uint32_t result;
std::string input("\x81\x82\x83\x84\x85\x11");
ASSERT_TRUE(GetVarint32Ptr(input.data(), input.data() + input.size(), &result)
== NULL);
}
TEST(Coding, Varint32Truncation) {
uint32_t large_value = (1u << 31) + 100;
std::string s;
PutVarint32(&s, large_value);
uint32_t result;
for (unsigned int len = 0; len < s.size() - 1; len++) {
ASSERT_TRUE(GetVarint32Ptr(s.data(), s.data() + len, &result) == NULL);
}
ASSERT_TRUE(GetVarint32Ptr(s.data(), s.data() + s.size(), &result) != NULL);
ASSERT_EQ(large_value, result);
}
TEST(Coding, Varint64Overflow) {
uint64_t result;
std::string input("\x81\x82\x83\x84\x85\x81\x82\x83\x84\x85\x11");
ASSERT_TRUE(GetVarint64Ptr(input.data(), input.data() + input.size(), &result)
== NULL);
}
TEST(Coding, Varint64Truncation) {
uint64_t large_value = (1ull << 63) + 100ull;
std::string s;
PutVarint64(&s, large_value);
uint64_t result;
for (unsigned int len = 0; len < s.size() - 1; len++) {
ASSERT_TRUE(GetVarint64Ptr(s.data(), s.data() + len, &result) == NULL);
}
ASSERT_TRUE(GetVarint64Ptr(s.data(), s.data() + s.size(), &result) != NULL);
ASSERT_EQ(large_value, result);
}
TEST(Coding, Strings) {
std::string s;
PutLengthPrefixedSlice(&s, Slice(""));
PutLengthPrefixedSlice(&s, Slice("foo"));
PutLengthPrefixedSlice(&s, Slice("bar"));
PutLengthPrefixedSlice(&s, Slice(std::string(200, 'x')));
Slice input(s);
Slice v;
ASSERT_TRUE(GetLengthPrefixedSlice(&input, &v));
ASSERT_EQ("", v.ToString());
ASSERT_TRUE(GetLengthPrefixedSlice(&input, &v));
ASSERT_EQ("foo", v.ToString());
ASSERT_TRUE(GetLengthPrefixedSlice(&input, &v));
ASSERT_EQ("bar", v.ToString());
ASSERT_TRUE(GetLengthPrefixedSlice(&input, &v));
ASSERT_EQ(std::string(200, 'x'), v.ToString());
ASSERT_EQ("", input.ToString());
}
TEST(Coding, BitStream) {
const int kNumBytes = 10;
char bytes[kNumBytes+1];
for (int i = 0; i < kNumBytes + 1; ++i) {
bytes[i] = '\0';
}
// Simple byte aligned test.
for (int i = 0; i < kNumBytes; ++i) {
BitStreamPutInt(bytes, kNumBytes, i*8, 8, 255-i);
ASSERT_EQ((unsigned char)bytes[i], (unsigned char)(255-i));
}
for (int i = 0; i < kNumBytes; ++i) {
ASSERT_EQ(BitStreamGetInt(bytes, kNumBytes, i*8, 8), (uint32_t)(255-i));
}
ASSERT_EQ(bytes[kNumBytes], '\0');
// Write and read back at strange offsets
for (int i = 0; i < kNumBytes + 1; ++i) {
bytes[i] = '\0';
}
for (int i = 0; i < kNumBytes; ++i) {
BitStreamPutInt(bytes, kNumBytes, i*5+1, 4, (i * 7) % (1 << 4));
}
for (int i = 0; i < kNumBytes; ++i) {
ASSERT_EQ(BitStreamGetInt(bytes, kNumBytes, i*5+1, 4),
(uint32_t)((i * 7) % (1 << 4)));
}
ASSERT_EQ(bytes[kNumBytes], '\0');
// Create 11011011 as a bit pattern
for (int i = 0; i < kNumBytes + 1; ++i) {
bytes[i] = '\0';
}
for (int i = 0; i < kNumBytes; ++i) {
BitStreamPutInt(bytes, kNumBytes, i*8, 2, 3);
BitStreamPutInt(bytes, kNumBytes, i*8+3, 2, 3);
BitStreamPutInt(bytes, kNumBytes, i*8+6, 2, 3);
ASSERT_EQ((unsigned char)bytes[i],
(unsigned char)(3 + (3 << 3) + (3 << 6)));
}
ASSERT_EQ(bytes[kNumBytes], '\0');
// Test large values
for (int i = 0; i < kNumBytes + 1; ++i) {
bytes[i] = '\0';
}
BitStreamPutInt(bytes, kNumBytes, 0, 64, (uint64_t)(-1));
for (int i = 0; i < 64/8; ++i) {
ASSERT_EQ((unsigned char)bytes[i],
(unsigned char)(255));
}
ASSERT_EQ(bytes[64/8], '\0');
}
TEST(Coding, BitStreamConvenienceFuncs) {
std::string bytes(1, '\0');
// Check that independent changes to byte are preserved.
BitStreamPutInt(&bytes, 0, 2, 3);
BitStreamPutInt(&bytes, 3, 2, 3);
BitStreamPutInt(&bytes, 6, 2, 3);
ASSERT_EQ((unsigned char)bytes[0], (unsigned char)(3 + (3 << 3) + (3 << 6)));
ASSERT_EQ(BitStreamGetInt(&bytes, 0, 2), 3u);
ASSERT_EQ(BitStreamGetInt(&bytes, 3, 2), 3u);
ASSERT_EQ(BitStreamGetInt(&bytes, 6, 2), 3u);
Slice slice(bytes);
ASSERT_EQ(BitStreamGetInt(&slice, 0, 2), 3u);
ASSERT_EQ(BitStreamGetInt(&slice, 3, 2), 3u);
ASSERT_EQ(BitStreamGetInt(&slice, 6, 2), 3u);
// Test overlapping crossing over byte boundaries
bytes = std::string(2, '\0');
BitStreamPutInt(&bytes, 6, 4, 15);
ASSERT_EQ((unsigned char)bytes[0], 3 << 6);
ASSERT_EQ((unsigned char)bytes[1], 3);
ASSERT_EQ(BitStreamGetInt(&bytes, 6, 4), 15u);
slice = Slice(bytes);
ASSERT_EQ(BitStreamGetInt(&slice, 6, 4), 15u);
// Test 64-bit number
bytes = std::string(64/8, '\0');
BitStreamPutInt(&bytes, 0, 64, (uint64_t)(-1));
ASSERT_EQ(BitStreamGetInt(&bytes, 0, 64), (uint64_t)(-1));
slice = Slice(bytes);
ASSERT_EQ(BitStreamGetInt(&slice, 0, 64), (uint64_t)(-1));
}
} // namespace leveldb
int main(int argc, char** argv) {
return leveldb::test::RunAllTests();
}