rocksdb/db_stress_tool/expected_state.cc
Levi Tamasi 8fc78a3a9e Add helper methods WideColumnsHelper::{Has,Get}DefaultColumn (#11813)
Summary:
Pull Request resolved: https://github.com/facebook/rocksdb/pull/11813

The patch adds a couple of helper methods `WideColumnsHelper::{Has,Get}DefaultColumn` to eliminate some code duplication.

Reviewed By: jaykorean

Differential Revision: D49166682

fbshipit-source-id: f229ca5b94599f7445a0112b10f8317292505c82
2023-09-11 16:32:32 -07:00

778 lines
28 KiB
C++

// Copyright (c) 2021-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include <atomic>
#ifdef GFLAGS
#include "db/wide/wide_column_serialization.h"
#include "db/wide/wide_columns_helper.h"
#include "db_stress_tool/db_stress_common.h"
#include "db_stress_tool/db_stress_shared_state.h"
#include "db_stress_tool/expected_state.h"
#include "rocksdb/trace_reader_writer.h"
#include "rocksdb/trace_record_result.h"
namespace ROCKSDB_NAMESPACE {
ExpectedState::ExpectedState(size_t max_key, size_t num_column_families)
: max_key_(max_key),
num_column_families_(num_column_families),
values_(nullptr) {}
void ExpectedState::ClearColumnFamily(int cf) {
const uint32_t del_mask = ExpectedValue::GetDelMask();
std::fill(&Value(cf, 0 /* key */), &Value(cf + 1, 0 /* key */), del_mask);
}
void ExpectedState::Precommit(int cf, int64_t key, const ExpectedValue& value) {
Value(cf, key).store(value.Read());
// To prevent low-level instruction reordering that results
// in db write happens before setting pending state in expected value
std::atomic_thread_fence(std::memory_order_release);
}
PendingExpectedValue ExpectedState::PreparePut(int cf, int64_t key) {
ExpectedValue expected_value = Load(cf, key);
const ExpectedValue orig_expected_value = expected_value;
expected_value.Put(true /* pending */);
const ExpectedValue pending_expected_value = expected_value;
expected_value.Put(false /* pending */);
const ExpectedValue final_expected_value = expected_value;
Precommit(cf, key, pending_expected_value);
return PendingExpectedValue(&Value(cf, key), orig_expected_value,
final_expected_value);
}
ExpectedValue ExpectedState::Get(int cf, int64_t key) { return Load(cf, key); }
PendingExpectedValue ExpectedState::PrepareDelete(int cf, int64_t key,
bool* prepared) {
ExpectedValue expected_value = Load(cf, key);
const ExpectedValue orig_expected_value = expected_value;
bool res = expected_value.Delete(true /* pending */);
if (prepared) {
*prepared = res;
}
if (!res) {
return PendingExpectedValue(&Value(cf, key), orig_expected_value,
orig_expected_value);
}
const ExpectedValue pending_expected_value = expected_value;
expected_value.Delete(false /* pending */);
const ExpectedValue final_expected_value = expected_value;
Precommit(cf, key, pending_expected_value);
return PendingExpectedValue(&Value(cf, key), orig_expected_value,
final_expected_value);
}
PendingExpectedValue ExpectedState::PrepareSingleDelete(int cf, int64_t key) {
return PrepareDelete(cf, key);
}
std::vector<PendingExpectedValue> ExpectedState::PrepareDeleteRange(
int cf, int64_t begin_key, int64_t end_key) {
std::vector<PendingExpectedValue> pending_expected_values;
for (int64_t key = begin_key; key < end_key; ++key) {
bool prepared = false;
PendingExpectedValue pending_expected_value =
PrepareDelete(cf, key, &prepared);
if (prepared) {
pending_expected_values.push_back(pending_expected_value);
}
}
return pending_expected_values;
}
bool ExpectedState::Exists(int cf, int64_t key) {
return Load(cf, key).Exists();
}
void ExpectedState::Reset() {
const uint32_t del_mask = ExpectedValue::GetDelMask();
for (size_t i = 0; i < num_column_families_; ++i) {
for (size_t j = 0; j < max_key_; ++j) {
Value(static_cast<int>(i), j).store(del_mask, std::memory_order_relaxed);
}
}
}
void ExpectedState::SyncPut(int cf, int64_t key, uint32_t value_base) {
ExpectedValue expected_value = Load(cf, key);
expected_value.SyncPut(value_base);
Value(cf, key).store(expected_value.Read());
}
void ExpectedState::SyncPendingPut(int cf, int64_t key) {
ExpectedValue expected_value = Load(cf, key);
expected_value.SyncPendingPut();
Value(cf, key).store(expected_value.Read());
}
void ExpectedState::SyncDelete(int cf, int64_t key) {
ExpectedValue expected_value = Load(cf, key);
expected_value.SyncDelete();
Value(cf, key).store(expected_value.Read());
}
void ExpectedState::SyncDeleteRange(int cf, int64_t begin_key,
int64_t end_key) {
for (int64_t key = begin_key; key < end_key; ++key) {
SyncDelete(cf, key);
}
}
FileExpectedState::FileExpectedState(std::string expected_state_file_path,
size_t max_key, size_t num_column_families)
: ExpectedState(max_key, num_column_families),
expected_state_file_path_(expected_state_file_path) {}
Status FileExpectedState::Open(bool create) {
size_t expected_values_size = GetValuesLen();
Env* default_env = Env::Default();
Status status;
if (create) {
std::unique_ptr<WritableFile> wfile;
const EnvOptions soptions;
status = default_env->NewWritableFile(expected_state_file_path_, &wfile,
soptions);
if (status.ok()) {
std::string buf(expected_values_size, '\0');
status = wfile->Append(buf);
}
}
if (status.ok()) {
status = default_env->NewMemoryMappedFileBuffer(
expected_state_file_path_, &expected_state_mmap_buffer_);
}
if (status.ok()) {
assert(expected_state_mmap_buffer_->GetLen() == expected_values_size);
values_ = static_cast<std::atomic<uint32_t>*>(
expected_state_mmap_buffer_->GetBase());
assert(values_ != nullptr);
if (create) {
Reset();
}
} else {
assert(values_ == nullptr);
}
return status;
}
AnonExpectedState::AnonExpectedState(size_t max_key, size_t num_column_families)
: ExpectedState(max_key, num_column_families) {}
#ifndef NDEBUG
Status AnonExpectedState::Open(bool create) {
#else
Status AnonExpectedState::Open(bool /* create */) {
#endif
// AnonExpectedState only supports being freshly created.
assert(create);
values_allocation_.reset(
new std::atomic<uint32_t>[GetValuesLen() /
sizeof(std::atomic<uint32_t>)]);
values_ = &values_allocation_[0];
Reset();
return Status::OK();
}
ExpectedStateManager::ExpectedStateManager(size_t max_key,
size_t num_column_families)
: max_key_(max_key),
num_column_families_(num_column_families),
latest_(nullptr) {}
ExpectedStateManager::~ExpectedStateManager() {}
const std::string FileExpectedStateManager::kLatestBasename = "LATEST";
const std::string FileExpectedStateManager::kStateFilenameSuffix = ".state";
const std::string FileExpectedStateManager::kTraceFilenameSuffix = ".trace";
const std::string FileExpectedStateManager::kTempFilenamePrefix = ".";
const std::string FileExpectedStateManager::kTempFilenameSuffix = ".tmp";
FileExpectedStateManager::FileExpectedStateManager(
size_t max_key, size_t num_column_families,
std::string expected_state_dir_path)
: ExpectedStateManager(max_key, num_column_families),
expected_state_dir_path_(std::move(expected_state_dir_path)) {
assert(!expected_state_dir_path_.empty());
}
Status FileExpectedStateManager::Open() {
// Before doing anything, sync directory state with ours. That is, determine
// `saved_seqno_`, and create any necessary missing files.
std::vector<std::string> expected_state_dir_children;
Status s = Env::Default()->GetChildren(expected_state_dir_path_,
&expected_state_dir_children);
bool found_trace = false;
if (s.ok()) {
for (size_t i = 0; i < expected_state_dir_children.size(); ++i) {
const auto& filename = expected_state_dir_children[i];
if (filename.size() >= kStateFilenameSuffix.size() &&
filename.rfind(kStateFilenameSuffix) ==
filename.size() - kStateFilenameSuffix.size() &&
filename.rfind(kLatestBasename, 0) == std::string::npos) {
SequenceNumber found_seqno = ParseUint64(
filename.substr(0, filename.size() - kStateFilenameSuffix.size()));
if (saved_seqno_ == kMaxSequenceNumber || found_seqno > saved_seqno_) {
saved_seqno_ = found_seqno;
}
}
}
// Check if crash happened after creating state file but before creating
// trace file.
if (saved_seqno_ != kMaxSequenceNumber) {
std::string saved_seqno_trace_path = GetPathForFilename(
std::to_string(saved_seqno_) + kTraceFilenameSuffix);
Status exists_status = Env::Default()->FileExists(saved_seqno_trace_path);
if (exists_status.ok()) {
found_trace = true;
} else if (exists_status.IsNotFound()) {
found_trace = false;
} else {
s = exists_status;
}
}
}
if (s.ok() && saved_seqno_ != kMaxSequenceNumber && !found_trace) {
// Create an empty trace file so later logic does not need to distinguish
// missing vs. empty trace file.
std::unique_ptr<WritableFile> wfile;
const EnvOptions soptions;
std::string saved_seqno_trace_path =
GetPathForFilename(std::to_string(saved_seqno_) + kTraceFilenameSuffix);
s = Env::Default()->NewWritableFile(saved_seqno_trace_path, &wfile,
soptions);
}
if (s.ok()) {
s = Clean();
}
std::string expected_state_file_path =
GetPathForFilename(kLatestBasename + kStateFilenameSuffix);
bool found = false;
if (s.ok()) {
Status exists_status = Env::Default()->FileExists(expected_state_file_path);
if (exists_status.ok()) {
found = true;
} else if (exists_status.IsNotFound()) {
found = false;
} else {
s = exists_status;
}
}
if (!found) {
// Initialize the file in a temp path and then rename it. That way, in case
// this process is killed during setup, `Clean()` will take care of removing
// the incomplete expected values file.
std::string temp_expected_state_file_path =
GetTempPathForFilename(kLatestBasename + kStateFilenameSuffix);
FileExpectedState temp_expected_state(temp_expected_state_file_path,
max_key_, num_column_families_);
if (s.ok()) {
s = temp_expected_state.Open(true /* create */);
}
if (s.ok()) {
s = Env::Default()->RenameFile(temp_expected_state_file_path,
expected_state_file_path);
}
}
if (s.ok()) {
latest_.reset(new FileExpectedState(std::move(expected_state_file_path),
max_key_, num_column_families_));
s = latest_->Open(false /* create */);
}
return s;
}
Status FileExpectedStateManager::SaveAtAndAfter(DB* db) {
SequenceNumber seqno = db->GetLatestSequenceNumber();
std::string state_filename = std::to_string(seqno) + kStateFilenameSuffix;
std::string state_file_temp_path = GetTempPathForFilename(state_filename);
std::string state_file_path = GetPathForFilename(state_filename);
std::string latest_file_path =
GetPathForFilename(kLatestBasename + kStateFilenameSuffix);
std::string trace_filename = std::to_string(seqno) + kTraceFilenameSuffix;
std::string trace_file_path = GetPathForFilename(trace_filename);
// Populate a tempfile and then rename it to atomically create "<seqno>.state"
// with contents from "LATEST.state"
Status s = CopyFile(FileSystem::Default(), latest_file_path,
state_file_temp_path, 0 /* size */, false /* use_fsync */,
nullptr /* io_tracer */, Temperature::kUnknown);
if (s.ok()) {
s = FileSystem::Default()->RenameFile(state_file_temp_path, state_file_path,
IOOptions(), nullptr /* dbg */);
}
SequenceNumber old_saved_seqno = 0;
if (s.ok()) {
old_saved_seqno = saved_seqno_;
saved_seqno_ = seqno;
}
// If there is a crash now, i.e., after "<seqno>.state" was created but before
// "<seqno>.trace" is created, it will be treated as if "<seqno>.trace" were
// present but empty.
// Create "<seqno>.trace" directly. It is initially empty so no need for
// tempfile.
std::unique_ptr<TraceWriter> trace_writer;
if (s.ok()) {
EnvOptions soptions;
// Disable buffering so traces will not get stuck in application buffer.
soptions.writable_file_max_buffer_size = 0;
s = NewFileTraceWriter(Env::Default(), soptions, trace_file_path,
&trace_writer);
}
if (s.ok()) {
TraceOptions trace_opts;
trace_opts.filter |= kTraceFilterGet;
trace_opts.filter |= kTraceFilterMultiGet;
trace_opts.filter |= kTraceFilterIteratorSeek;
trace_opts.filter |= kTraceFilterIteratorSeekForPrev;
trace_opts.preserve_write_order = true;
s = db->StartTrace(trace_opts, std::move(trace_writer));
}
// Delete old state/trace files. Deletion order does not matter since we only
// delete after successfully saving new files, so old files will never be used
// again, even if we crash.
if (s.ok() && old_saved_seqno != kMaxSequenceNumber &&
old_saved_seqno != saved_seqno_) {
s = Env::Default()->DeleteFile(GetPathForFilename(
std::to_string(old_saved_seqno) + kStateFilenameSuffix));
}
if (s.ok() && old_saved_seqno != kMaxSequenceNumber &&
old_saved_seqno != saved_seqno_) {
s = Env::Default()->DeleteFile(GetPathForFilename(
std::to_string(old_saved_seqno) + kTraceFilenameSuffix));
}
return s;
}
bool FileExpectedStateManager::HasHistory() {
return saved_seqno_ != kMaxSequenceNumber;
}
namespace {
// An `ExpectedStateTraceRecordHandler` applies a configurable number of
// write operation trace records to the configured expected state. It is used in
// `FileExpectedStateManager::Restore()` to sync the expected state with the
// DB's post-recovery state.
class ExpectedStateTraceRecordHandler : public TraceRecord::Handler,
public WriteBatch::Handler {
public:
ExpectedStateTraceRecordHandler(uint64_t max_write_ops, ExpectedState* state)
: max_write_ops_(max_write_ops),
state_(state),
buffered_writes_(nullptr) {}
~ExpectedStateTraceRecordHandler() { assert(IsDone()); }
// True if we have already reached the limit on write operations to apply.
bool IsDone() { return num_write_ops_ == max_write_ops_; }
Status Handle(const WriteQueryTraceRecord& record,
std::unique_ptr<TraceRecordResult>* /* result */) override {
if (IsDone()) {
return Status::OK();
}
WriteBatch batch(record.GetWriteBatchRep().ToString());
return batch.Iterate(this);
}
// Ignore reads.
Status Handle(const GetQueryTraceRecord& /* record */,
std::unique_ptr<TraceRecordResult>* /* result */) override {
return Status::OK();
}
// Ignore reads.
Status Handle(const IteratorSeekQueryTraceRecord& /* record */,
std::unique_ptr<TraceRecordResult>* /* result */) override {
return Status::OK();
}
// Ignore reads.
Status Handle(const MultiGetQueryTraceRecord& /* record */,
std::unique_ptr<TraceRecordResult>* /* result */) override {
return Status::OK();
}
// Below are the WriteBatch::Handler overrides. We could use a separate
// object, but it's convenient and works to share state with the
// `TraceRecord::Handler`.
Status PutCF(uint32_t column_family_id, const Slice& key_with_ts,
const Slice& value) override {
Slice key =
StripTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size);
uint64_t key_id;
if (!GetIntVal(key.ToString(), &key_id)) {
return Status::Corruption("unable to parse key", key.ToString());
}
uint32_t value_base = GetValueBase(value);
bool should_buffer_write = !(buffered_writes_ == nullptr);
if (should_buffer_write) {
return WriteBatchInternal::Put(buffered_writes_.get(), column_family_id,
key, value);
}
state_->SyncPut(column_family_id, static_cast<int64_t>(key_id), value_base);
++num_write_ops_;
return Status::OK();
}
Status PutEntityCF(uint32_t column_family_id, const Slice& key_with_ts,
const Slice& entity) override {
Slice key =
StripTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size);
uint64_t key_id = 0;
if (!GetIntVal(key.ToString(), &key_id)) {
return Status::Corruption("Unable to parse key", key.ToString());
}
Slice entity_copy = entity;
WideColumns columns;
if (!WideColumnSerialization::Deserialize(entity_copy, columns).ok()) {
return Status::Corruption("Unable to deserialize entity",
entity.ToString(/* hex */ true));
}
if (!VerifyWideColumns(columns)) {
return Status::Corruption("Wide columns in entity inconsistent",
entity.ToString(/* hex */ true));
}
if (buffered_writes_) {
return WriteBatchInternal::PutEntity(buffered_writes_.get(),
column_family_id, key, columns);
}
const uint32_t value_base =
GetValueBase(WideColumnsHelper::GetDefaultColumn(columns));
state_->SyncPut(column_family_id, static_cast<int64_t>(key_id), value_base);
++num_write_ops_;
return Status::OK();
}
Status DeleteCF(uint32_t column_family_id,
const Slice& key_with_ts) override {
Slice key =
StripTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size);
uint64_t key_id;
if (!GetIntVal(key.ToString(), &key_id)) {
return Status::Corruption("unable to parse key", key.ToString());
}
bool should_buffer_write = !(buffered_writes_ == nullptr);
if (should_buffer_write) {
return WriteBatchInternal::Delete(buffered_writes_.get(),
column_family_id, key);
}
state_->SyncDelete(column_family_id, static_cast<int64_t>(key_id));
++num_write_ops_;
return Status::OK();
}
Status SingleDeleteCF(uint32_t column_family_id,
const Slice& key_with_ts) override {
bool should_buffer_write = !(buffered_writes_ == nullptr);
if (should_buffer_write) {
Slice key =
StripTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size);
Slice ts =
ExtractTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size);
std::array<Slice, 2> key_with_ts_arr{{key, ts}};
return WriteBatchInternal::SingleDelete(
buffered_writes_.get(), column_family_id,
SliceParts(key_with_ts_arr.data(), 2));
}
return DeleteCF(column_family_id, key_with_ts);
}
Status DeleteRangeCF(uint32_t column_family_id,
const Slice& begin_key_with_ts,
const Slice& end_key_with_ts) override {
Slice begin_key =
StripTimestampFromUserKey(begin_key_with_ts, FLAGS_user_timestamp_size);
Slice end_key =
StripTimestampFromUserKey(end_key_with_ts, FLAGS_user_timestamp_size);
uint64_t begin_key_id, end_key_id;
if (!GetIntVal(begin_key.ToString(), &begin_key_id)) {
return Status::Corruption("unable to parse begin key",
begin_key.ToString());
}
if (!GetIntVal(end_key.ToString(), &end_key_id)) {
return Status::Corruption("unable to parse end key", end_key.ToString());
}
bool should_buffer_write = !(buffered_writes_ == nullptr);
if (should_buffer_write) {
return WriteBatchInternal::DeleteRange(
buffered_writes_.get(), column_family_id, begin_key, end_key);
}
state_->SyncDeleteRange(column_family_id,
static_cast<int64_t>(begin_key_id),
static_cast<int64_t>(end_key_id));
++num_write_ops_;
return Status::OK();
}
Status MergeCF(uint32_t column_family_id, const Slice& key_with_ts,
const Slice& value) override {
Slice key =
StripTimestampFromUserKey(key_with_ts, FLAGS_user_timestamp_size);
bool should_buffer_write = !(buffered_writes_ == nullptr);
if (should_buffer_write) {
return WriteBatchInternal::Merge(buffered_writes_.get(), column_family_id,
key, value);
}
return PutCF(column_family_id, key, value);
}
Status MarkBeginPrepare(bool = false) override {
assert(!buffered_writes_);
buffered_writes_.reset(new WriteBatch());
return Status::OK();
}
Status MarkEndPrepare(const Slice& xid) override {
assert(buffered_writes_);
std::string xid_str = xid.ToString();
assert(xid_to_buffered_writes_.find(xid_str) ==
xid_to_buffered_writes_.end());
xid_to_buffered_writes_[xid_str].swap(buffered_writes_);
buffered_writes_.reset();
return Status::OK();
}
Status MarkCommit(const Slice& xid) override {
std::string xid_str = xid.ToString();
assert(xid_to_buffered_writes_.find(xid_str) !=
xid_to_buffered_writes_.end());
assert(xid_to_buffered_writes_.at(xid_str));
Status s = xid_to_buffered_writes_.at(xid_str)->Iterate(this);
xid_to_buffered_writes_.erase(xid_str);
return s;
}
Status MarkRollback(const Slice& xid) override {
std::string xid_str = xid.ToString();
assert(xid_to_buffered_writes_.find(xid_str) !=
xid_to_buffered_writes_.end());
assert(xid_to_buffered_writes_.at(xid_str));
xid_to_buffered_writes_.erase(xid_str);
return Status::OK();
}
private:
uint64_t num_write_ops_ = 0;
uint64_t max_write_ops_;
ExpectedState* state_;
std::unordered_map<std::string, std::unique_ptr<WriteBatch>>
xid_to_buffered_writes_;
std::unique_ptr<WriteBatch> buffered_writes_;
};
} // anonymous namespace
Status FileExpectedStateManager::Restore(DB* db) {
assert(HasHistory());
SequenceNumber seqno = db->GetLatestSequenceNumber();
if (seqno < saved_seqno_) {
return Status::Corruption("DB is older than any restorable expected state");
}
std::string state_filename =
std::to_string(saved_seqno_) + kStateFilenameSuffix;
std::string state_file_path = GetPathForFilename(state_filename);
std::string latest_file_temp_path =
GetTempPathForFilename(kLatestBasename + kStateFilenameSuffix);
std::string latest_file_path =
GetPathForFilename(kLatestBasename + kStateFilenameSuffix);
std::string trace_filename =
std::to_string(saved_seqno_) + kTraceFilenameSuffix;
std::string trace_file_path = GetPathForFilename(trace_filename);
std::unique_ptr<TraceReader> trace_reader;
Status s = NewFileTraceReader(Env::Default(), EnvOptions(), trace_file_path,
&trace_reader);
if (s.ok()) {
// We are going to replay on top of "`seqno`.state" to create a new
// "LATEST.state". Start off by creating a tempfile so we can later make the
// new "LATEST.state" appear atomically using `RenameFile()`.
s = CopyFile(FileSystem::Default(), state_file_path, latest_file_temp_path,
0 /* size */, false /* use_fsync */, nullptr /* io_tracer */,
Temperature::kUnknown);
}
{
std::unique_ptr<Replayer> replayer;
std::unique_ptr<ExpectedState> state;
std::unique_ptr<ExpectedStateTraceRecordHandler> handler;
if (s.ok()) {
state.reset(new FileExpectedState(latest_file_temp_path, max_key_,
num_column_families_));
s = state->Open(false /* create */);
}
if (s.ok()) {
handler.reset(new ExpectedStateTraceRecordHandler(seqno - saved_seqno_,
state.get()));
// TODO(ajkr): An API limitation requires we provide `handles` although
// they will be unused since we only use the replayer for reading records.
// Just give a default CFH for now to satisfy the requirement.
s = db->NewDefaultReplayer({db->DefaultColumnFamily()} /* handles */,
std::move(trace_reader), &replayer);
}
if (s.ok()) {
s = replayer->Prepare();
}
for (;;) {
std::unique_ptr<TraceRecord> record;
s = replayer->Next(&record);
if (!s.ok()) {
break;
}
std::unique_ptr<TraceRecordResult> res;
record->Accept(handler.get(), &res);
}
if (s.IsCorruption() && handler->IsDone()) {
// There could be a corruption reading the tail record of the trace due to
// `db_stress` crashing while writing it. It shouldn't matter as long as
// we already found all the write ops we need to catch up the expected
// state.
s = Status::OK();
}
if (s.IsIncomplete()) {
// OK because `Status::Incomplete` is expected upon finishing all the
// trace records.
s = Status::OK();
}
}
if (s.ok()) {
s = FileSystem::Default()->RenameFile(latest_file_temp_path,
latest_file_path, IOOptions(),
nullptr /* dbg */);
}
if (s.ok()) {
latest_.reset(new FileExpectedState(latest_file_path, max_key_,
num_column_families_));
s = latest_->Open(false /* create */);
}
// Delete old state/trace files. We must delete the state file first.
// Otherwise, a crash-recovery immediately after deleting the trace file could
// lead to `Restore()` unable to replay to `seqno`.
if (s.ok()) {
s = Env::Default()->DeleteFile(state_file_path);
}
if (s.ok()) {
saved_seqno_ = kMaxSequenceNumber;
s = Env::Default()->DeleteFile(trace_file_path);
}
return s;
}
Status FileExpectedStateManager::Clean() {
std::vector<std::string> expected_state_dir_children;
Status s = Env::Default()->GetChildren(expected_state_dir_path_,
&expected_state_dir_children);
// An incomplete `Open()` or incomplete `SaveAtAndAfter()` could have left
// behind invalid temporary files. An incomplete `SaveAtAndAfter()` could have
// also left behind stale state/trace files. An incomplete `Restore()` could
// have left behind stale trace files.
for (size_t i = 0; s.ok() && i < expected_state_dir_children.size(); ++i) {
const auto& filename = expected_state_dir_children[i];
if (filename.rfind(kTempFilenamePrefix, 0 /* pos */) == 0 &&
filename.size() >= kTempFilenameSuffix.size() &&
filename.rfind(kTempFilenameSuffix) ==
filename.size() - kTempFilenameSuffix.size()) {
// Delete all temp files.
s = Env::Default()->DeleteFile(GetPathForFilename(filename));
} else if (filename.size() >= kStateFilenameSuffix.size() &&
filename.rfind(kStateFilenameSuffix) ==
filename.size() - kStateFilenameSuffix.size() &&
filename.rfind(kLatestBasename, 0) == std::string::npos &&
ParseUint64(filename.substr(
0, filename.size() - kStateFilenameSuffix.size())) <
saved_seqno_) {
assert(saved_seqno_ != kMaxSequenceNumber);
// Delete stale state files.
s = Env::Default()->DeleteFile(GetPathForFilename(filename));
} else if (filename.size() >= kTraceFilenameSuffix.size() &&
filename.rfind(kTraceFilenameSuffix) ==
filename.size() - kTraceFilenameSuffix.size() &&
ParseUint64(filename.substr(
0, filename.size() - kTraceFilenameSuffix.size())) <
saved_seqno_) {
// Delete stale trace files.
s = Env::Default()->DeleteFile(GetPathForFilename(filename));
}
}
return s;
}
std::string FileExpectedStateManager::GetTempPathForFilename(
const std::string& filename) {
assert(!expected_state_dir_path_.empty());
std::string expected_state_dir_path_slash =
expected_state_dir_path_.back() == '/' ? expected_state_dir_path_
: expected_state_dir_path_ + "/";
return expected_state_dir_path_slash + kTempFilenamePrefix + filename +
kTempFilenameSuffix;
}
std::string FileExpectedStateManager::GetPathForFilename(
const std::string& filename) {
assert(!expected_state_dir_path_.empty());
std::string expected_state_dir_path_slash =
expected_state_dir_path_.back() == '/' ? expected_state_dir_path_
: expected_state_dir_path_ + "/";
return expected_state_dir_path_slash + filename;
}
AnonExpectedStateManager::AnonExpectedStateManager(size_t max_key,
size_t num_column_families)
: ExpectedStateManager(max_key, num_column_families) {}
Status AnonExpectedStateManager::Open() {
latest_.reset(new AnonExpectedState(max_key_, num_column_families_));
return latest_->Open(true /* create */);
}
} // namespace ROCKSDB_NAMESPACE
#endif // GFLAGS