rocksdb/file/random_access_file_reader.cc
akankshamahajan c77b50a4fd Add AsyncIO support for tuning readahead_size by block cache lookup (#11936)
Summary:
Add support for tuning of readahead_size by block cache lookup for async_io.

**Design/ Implementation** -

**BlockBasedTableIterator.cc** -

`BlockCacheLookupForReadAheadSize` callback API lookups in the block cache and tries to reduce the start
and end offset passed. This function looks into the block cache for the blocks between `start_offset`
and `end_offset` and add all the handles in the queue.

It then iterates from the end in the handles to find first miss block and update the end offset to that block.
It also iterates from the start and find first miss block and update the start offset to that block.

```
_read_curr_block_ argument : True if this call was due to miss in the cache and caller wants to read that block
                             synchronously.
                             False if current call is to prefetch additional data in extra buffers
                            (due to ReadAsync call in FilePrefetchBuffer)
```
In case there is no data to be read in that callback (because of upper_bound or all blocks are in cache),
it updates start and end offset to be equal and that `FilePrefetchBuffer` interprets that as 0 length to be read.

**FilePrefetchBuffer.cc** -

FilePrefetchBuffer calls the callback - `ReadAheadSizeTuning` and pass the start and end offset to that
callback to get updated start and end offset to read based on cache hits/misses.

1. In case of Read calls (when offset passed to FilePrefetchBuffer is on cache miss and that data needs to be read), _read_curr_block_ is passed true.
2. In case of ReadAsync calls, when buffer is all consumed and can go for additional prefetching,  the start offset passed is the initial end offset of prev buffer (without any updated offset based on cache hit/miss).

Foreg. if following are the data blocks with cache hit/miss and start offset
and Read API found miss on DB1 and based on readahead_size (50)  it passes end offset to be 50.
 [DB1 - miss- 0 ] [DB2 - hit -10] [DB3 - miss -20] [DB4 - miss-30] [DB5 - hit-40]
 [DB6 - hit-50] [DB7 - miss-60] [DB8 - miss - 70] [DB9 - hit - 80] [DB6 - hit 90]

- For Read call - updated start offset remains 0 but end offset updates to DB4, as DB5 is in cache.
- Read calls saves initial end offset 50 as that was meant to be prefetched.
- Now for next ReadAsync call - the start offset will be 50 (previous buffer initial end offset) and based on readahead_size, end offset will be 100
- On callback, because of cache hits - callback will update the start offset to 60 and end offset to 80 to read only 2 data blocks (DB7 and DB8).
- And for that ReadAsync call - initial end offset will be set to 100 which will again used by next ReadAsync call as start offset.
-  `initial_end_offset_` in `BufferInfo` is used to save the initial end offset of that buffer.

- If let's say DB5 and DB6 overlaps in 2 buffers (because of alignment), `prev_buf_end_offset` is passed to make sure already prefetched data is not prefetched again in second buffer.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11936

Test Plan:
- Ran crash_test several times.
-  New unit tests added.

Reviewed By: anand1976

Differential Revision: D50906217

Pulled By: akankshamahajan15

fbshipit-source-id: 0d75d3c98274e98aa34901b201b8fb05232139cf
2023-12-06 13:48:15 -08:00

640 lines
24 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "file/random_access_file_reader.h"
#include <algorithm>
#include <mutex>
#include "file/file_util.h"
#include "monitoring/histogram.h"
#include "monitoring/iostats_context_imp.h"
#include "port/port.h"
#include "table/format.h"
#include "test_util/sync_point.h"
#include "util/random.h"
#include "util/rate_limiter_impl.h"
namespace ROCKSDB_NAMESPACE {
inline Histograms GetFileReadHistograms(Statistics* stats,
Env::IOActivity io_activity) {
switch (io_activity) {
case Env::IOActivity::kFlush:
return Histograms::FILE_READ_FLUSH_MICROS;
case Env::IOActivity::kCompaction:
return Histograms::FILE_READ_COMPACTION_MICROS;
case Env::IOActivity::kDBOpen:
return Histograms::FILE_READ_DB_OPEN_MICROS;
default:
break;
}
if (stats && stats->get_stats_level() > StatsLevel::kExceptDetailedTimers) {
switch (io_activity) {
case Env::IOActivity::kGet:
return Histograms::FILE_READ_GET_MICROS;
case Env::IOActivity::kMultiGet:
return Histograms::FILE_READ_MULTIGET_MICROS;
case Env::IOActivity::kDBIterator:
return Histograms::FILE_READ_DB_ITERATOR_MICROS;
case Env::IOActivity::kVerifyDBChecksum:
return Histograms::FILE_READ_VERIFY_DB_CHECKSUM_MICROS;
case Env::IOActivity::kVerifyFileChecksums:
return Histograms::FILE_READ_VERIFY_FILE_CHECKSUMS_MICROS;
default:
break;
}
}
return Histograms::HISTOGRAM_ENUM_MAX;
}
inline void RecordIOStats(Statistics* stats, Temperature file_temperature,
bool is_last_level, size_t size) {
IOSTATS_ADD(bytes_read, size);
// record for last/non-last level
if (is_last_level) {
RecordTick(stats, LAST_LEVEL_READ_BYTES, size);
RecordTick(stats, LAST_LEVEL_READ_COUNT, 1);
} else {
RecordTick(stats, NON_LAST_LEVEL_READ_BYTES, size);
RecordTick(stats, NON_LAST_LEVEL_READ_COUNT, 1);
}
// record for temperature file
if (file_temperature != Temperature::kUnknown) {
switch (file_temperature) {
case Temperature::kHot:
IOSTATS_ADD(file_io_stats_by_temperature.hot_file_bytes_read, size);
IOSTATS_ADD(file_io_stats_by_temperature.hot_file_read_count, 1);
RecordTick(stats, HOT_FILE_READ_BYTES, size);
RecordTick(stats, HOT_FILE_READ_COUNT, 1);
break;
case Temperature::kWarm:
IOSTATS_ADD(file_io_stats_by_temperature.warm_file_bytes_read, size);
IOSTATS_ADD(file_io_stats_by_temperature.warm_file_read_count, 1);
RecordTick(stats, WARM_FILE_READ_BYTES, size);
RecordTick(stats, WARM_FILE_READ_COUNT, 1);
break;
case Temperature::kCold:
IOSTATS_ADD(file_io_stats_by_temperature.cold_file_bytes_read, size);
IOSTATS_ADD(file_io_stats_by_temperature.cold_file_read_count, 1);
RecordTick(stats, COLD_FILE_READ_BYTES, size);
RecordTick(stats, COLD_FILE_READ_COUNT, 1);
break;
default:
break;
}
}
}
IOStatus RandomAccessFileReader::Create(
const std::shared_ptr<FileSystem>& fs, const std::string& fname,
const FileOptions& file_opts,
std::unique_ptr<RandomAccessFileReader>* reader, IODebugContext* dbg) {
std::unique_ptr<FSRandomAccessFile> file;
IOStatus io_s = fs->NewRandomAccessFile(fname, file_opts, &file, dbg);
if (io_s.ok()) {
reader->reset(new RandomAccessFileReader(std::move(file), fname));
}
return io_s;
}
IOStatus RandomAccessFileReader::Read(const IOOptions& opts, uint64_t offset,
size_t n, Slice* result, char* scratch,
AlignedBuf* aligned_buf) const {
(void)aligned_buf;
const Env::IOPriority rate_limiter_priority = opts.rate_limiter_priority;
TEST_SYNC_POINT_CALLBACK("RandomAccessFileReader::Read", nullptr);
// To be paranoid: modify scratch a little bit, so in case underlying
// FileSystem doesn't fill the buffer but return success and `scratch` returns
// contains a previous block, returned value will not pass checksum.
if (n > 0 && scratch != nullptr) {
// This byte might not change anything for direct I/O case, but it's OK.
scratch[0]++;
}
IOStatus io_s;
uint64_t elapsed = 0;
size_t alignment = file_->GetRequiredBufferAlignment();
bool is_aligned = false;
if (scratch != nullptr) {
// Check if offset, length and buffer are aligned.
is_aligned = (offset & (alignment - 1)) == 0 &&
(n & (alignment - 1)) == 0 &&
(uintptr_t(scratch) & (alignment - 1)) == 0;
}
{
StopWatch sw(clock_, stats_, hist_type_,
GetFileReadHistograms(stats_, opts.io_activity),
(stats_ != nullptr) ? &elapsed : nullptr, true /*overwrite*/,
true /*delay_enabled*/);
auto prev_perf_level = GetPerfLevel();
IOSTATS_TIMER_GUARD(read_nanos);
if (use_direct_io() && is_aligned == false) {
size_t aligned_offset =
TruncateToPageBoundary(alignment, static_cast<size_t>(offset));
size_t offset_advance = static_cast<size_t>(offset) - aligned_offset;
size_t read_size =
Roundup(static_cast<size_t>(offset + n), alignment) - aligned_offset;
AlignedBuffer buf;
buf.Alignment(alignment);
buf.AllocateNewBuffer(read_size);
while (buf.CurrentSize() < read_size) {
size_t allowed;
if (rate_limiter_priority != Env::IO_TOTAL &&
rate_limiter_ != nullptr) {
allowed = rate_limiter_->RequestToken(
buf.Capacity() - buf.CurrentSize(), buf.Alignment(),
rate_limiter_priority, stats_, RateLimiter::OpType::kRead);
} else {
assert(buf.CurrentSize() == 0);
allowed = read_size;
}
Slice tmp;
FileOperationInfo::StartTimePoint start_ts;
uint64_t orig_offset = 0;
if (ShouldNotifyListeners()) {
start_ts = FileOperationInfo::StartNow();
orig_offset = aligned_offset + buf.CurrentSize();
}
{
IOSTATS_CPU_TIMER_GUARD(cpu_read_nanos, clock_);
// Only user reads are expected to specify a timeout. And user reads
// are not subjected to rate_limiter and should go through only
// one iteration of this loop, so we don't need to check and adjust
// the opts.timeout before calling file_->Read
assert(!opts.timeout.count() || allowed == read_size);
io_s = file_->Read(aligned_offset + buf.CurrentSize(), allowed, opts,
&tmp, buf.Destination(), nullptr);
}
if (ShouldNotifyListeners()) {
auto finish_ts = FileOperationInfo::FinishNow();
NotifyOnFileReadFinish(orig_offset, tmp.size(), start_ts, finish_ts,
io_s);
if (!io_s.ok()) {
NotifyOnIOError(io_s, FileOperationType::kRead, file_name(),
tmp.size(), orig_offset);
}
}
buf.Size(buf.CurrentSize() + tmp.size());
if (!io_s.ok() || tmp.size() < allowed) {
break;
}
}
size_t res_len = 0;
if (io_s.ok() && offset_advance < buf.CurrentSize()) {
res_len = std::min(buf.CurrentSize() - offset_advance, n);
if (aligned_buf == nullptr) {
buf.Read(scratch, offset_advance, res_len);
} else {
scratch = buf.BufferStart() + offset_advance;
aligned_buf->reset(buf.Release());
}
}
*result = Slice(scratch, res_len);
} else {
size_t pos = 0;
const char* res_scratch = nullptr;
while (pos < n) {
size_t allowed;
if (rate_limiter_priority != Env::IO_TOTAL &&
rate_limiter_ != nullptr) {
if (rate_limiter_->IsRateLimited(RateLimiter::OpType::kRead)) {
sw.DelayStart();
}
allowed = rate_limiter_->RequestToken(
n - pos, (use_direct_io() ? alignment : 0), rate_limiter_priority,
stats_, RateLimiter::OpType::kRead);
if (rate_limiter_->IsRateLimited(RateLimiter::OpType::kRead)) {
sw.DelayStop();
}
} else {
allowed = n;
}
Slice tmp_result;
FileOperationInfo::StartTimePoint start_ts;
if (ShouldNotifyListeners()) {
start_ts = FileOperationInfo::StartNow();
}
{
IOSTATS_CPU_TIMER_GUARD(cpu_read_nanos, clock_);
// Only user reads are expected to specify a timeout. And user reads
// are not subjected to rate_limiter and should go through only
// one iteration of this loop, so we don't need to check and adjust
// the opts.timeout before calling file_->Read
assert(!opts.timeout.count() || allowed == n);
io_s = file_->Read(offset + pos, allowed, opts, &tmp_result,
scratch + pos, nullptr);
}
if (ShouldNotifyListeners()) {
auto finish_ts = FileOperationInfo::FinishNow();
NotifyOnFileReadFinish(offset + pos, tmp_result.size(), start_ts,
finish_ts, io_s);
if (!io_s.ok()) {
NotifyOnIOError(io_s, FileOperationType::kRead, file_name(),
tmp_result.size(), offset + pos);
}
}
if (res_scratch == nullptr) {
// we can't simply use `scratch` because reads of mmap'd files return
// data in a different buffer.
res_scratch = tmp_result.data();
} else {
// make sure chunks are inserted contiguously into `res_scratch`.
assert(tmp_result.data() == res_scratch + pos);
}
pos += tmp_result.size();
if (!io_s.ok() || tmp_result.size() < allowed) {
break;
}
}
*result = Slice(res_scratch, io_s.ok() ? pos : 0);
}
RecordIOStats(stats_, file_temperature_, is_last_level_, result->size());
SetPerfLevel(prev_perf_level);
}
if (stats_ != nullptr && file_read_hist_ != nullptr) {
file_read_hist_->Add(elapsed);
}
#ifndef NDEBUG
auto pair = std::make_pair(&file_name_, &io_s);
if (offset == 0) {
TEST_SYNC_POINT_CALLBACK("RandomAccessFileReader::Read::BeforeReturn",
&pair);
}
TEST_SYNC_POINT_CALLBACK("RandomAccessFileReader::Read::AnyOffset", &pair);
#endif
return io_s;
}
size_t End(const FSReadRequest& r) {
return static_cast<size_t>(r.offset) + r.len;
}
FSReadRequest Align(const FSReadRequest& r, size_t alignment) {
FSReadRequest req;
req.offset = static_cast<uint64_t>(
TruncateToPageBoundary(alignment, static_cast<size_t>(r.offset)));
req.len = Roundup(End(r), alignment) - req.offset;
req.scratch = nullptr;
return req;
}
bool TryMerge(FSReadRequest* dest, const FSReadRequest& src) {
size_t dest_offset = static_cast<size_t>(dest->offset);
size_t src_offset = static_cast<size_t>(src.offset);
size_t dest_end = End(*dest);
size_t src_end = End(src);
if (std::max(dest_offset, src_offset) > std::min(dest_end, src_end)) {
return false;
}
dest->offset = static_cast<uint64_t>(std::min(dest_offset, src_offset));
dest->len = std::max(dest_end, src_end) - dest->offset;
return true;
}
IOStatus RandomAccessFileReader::MultiRead(const IOOptions& opts,
FSReadRequest* read_reqs,
size_t num_reqs,
AlignedBuf* aligned_buf) const {
(void)aligned_buf; // suppress warning of unused variable in LITE mode
assert(num_reqs > 0);
#ifndef NDEBUG
for (size_t i = 0; i < num_reqs - 1; ++i) {
assert(read_reqs[i].offset <= read_reqs[i + 1].offset);
}
#endif // !NDEBUG
const Env::IOPriority rate_limiter_priority = opts.rate_limiter_priority;
// To be paranoid modify scratch a little bit, so in case underlying
// FileSystem doesn't fill the buffer but return success and `scratch` returns
// contains a previous block, returned value will not pass checksum.
// This byte might not change anything for direct I/O case, but it's OK.
for (size_t i = 0; i < num_reqs; i++) {
FSReadRequest& r = read_reqs[i];
if (r.len > 0 && r.scratch != nullptr) {
r.scratch[0]++;
}
}
IOStatus io_s;
uint64_t elapsed = 0;
{
StopWatch sw(clock_, stats_, hist_type_,
GetFileReadHistograms(stats_, opts.io_activity),
(stats_ != nullptr) ? &elapsed : nullptr, true /*overwrite*/,
true /*delay_enabled*/);
auto prev_perf_level = GetPerfLevel();
IOSTATS_TIMER_GUARD(read_nanos);
FSReadRequest* fs_reqs = read_reqs;
size_t num_fs_reqs = num_reqs;
std::vector<FSReadRequest> aligned_reqs;
if (use_direct_io()) {
// num_reqs is the max possible size,
// this can reduce std::vecector's internal resize operations.
aligned_reqs.reserve(num_reqs);
// Align and merge the read requests.
size_t alignment = file_->GetRequiredBufferAlignment();
for (size_t i = 0; i < num_reqs; i++) {
FSReadRequest r = Align(read_reqs[i], alignment);
if (i == 0) {
// head
aligned_reqs.push_back(std::move(r));
} else if (!TryMerge(&aligned_reqs.back(), r)) {
// head + n
aligned_reqs.push_back(std::move(r));
} else {
// unused
r.status.PermitUncheckedError();
}
}
TEST_SYNC_POINT_CALLBACK("RandomAccessFileReader::MultiRead:AlignedReqs",
&aligned_reqs);
// Allocate aligned buffer and let scratch buffers point to it.
size_t total_len = 0;
for (const auto& r : aligned_reqs) {
total_len += r.len;
}
AlignedBuffer buf;
buf.Alignment(alignment);
buf.AllocateNewBuffer(total_len);
char* scratch = buf.BufferStart();
for (auto& r : aligned_reqs) {
r.scratch = scratch;
scratch += r.len;
}
aligned_buf->reset(buf.Release());
fs_reqs = aligned_reqs.data();
num_fs_reqs = aligned_reqs.size();
}
FileOperationInfo::StartTimePoint start_ts;
if (ShouldNotifyListeners()) {
start_ts = FileOperationInfo::StartNow();
}
{
IOSTATS_CPU_TIMER_GUARD(cpu_read_nanos, clock_);
if (rate_limiter_priority != Env::IO_TOTAL && rate_limiter_ != nullptr) {
// TODO: ideally we should call `RateLimiter::RequestToken()` for
// allowed bytes to multi-read and then consume those bytes by
// satisfying as many requests in `MultiRead()` as possible, instead of
// what we do here, which can cause burst when the
// `total_multi_read_size` is big.
size_t total_multi_read_size = 0;
assert(fs_reqs != nullptr);
for (size_t i = 0; i < num_fs_reqs; ++i) {
FSReadRequest& req = fs_reqs[i];
total_multi_read_size += req.len;
}
size_t remaining_bytes = total_multi_read_size;
size_t request_bytes = 0;
while (remaining_bytes > 0) {
request_bytes = std::min(
static_cast<size_t>(rate_limiter_->GetSingleBurstBytes()),
remaining_bytes);
rate_limiter_->Request(request_bytes, rate_limiter_priority,
nullptr /* stats */,
RateLimiter::OpType::kRead);
remaining_bytes -= request_bytes;
}
}
io_s = file_->MultiRead(fs_reqs, num_fs_reqs, opts, nullptr);
RecordInHistogram(stats_, MULTIGET_IO_BATCH_SIZE, num_fs_reqs);
}
if (use_direct_io()) {
// Populate results in the unaligned read requests.
size_t aligned_i = 0;
for (size_t i = 0; i < num_reqs; i++) {
auto& r = read_reqs[i];
if (static_cast<size_t>(r.offset) > End(aligned_reqs[aligned_i])) {
aligned_i++;
}
const auto& fs_r = fs_reqs[aligned_i];
r.status = fs_r.status;
if (r.status.ok()) {
uint64_t offset = r.offset - fs_r.offset;
if (fs_r.result.size() <= offset) {
// No byte in the read range is returned.
r.result = Slice();
} else {
size_t len = std::min(
r.len, static_cast<size_t>(fs_r.result.size() - offset));
r.result = Slice(fs_r.scratch + offset, len);
}
} else {
r.result = Slice();
}
}
}
for (size_t i = 0; i < num_reqs; ++i) {
if (ShouldNotifyListeners()) {
auto finish_ts = FileOperationInfo::FinishNow();
NotifyOnFileReadFinish(read_reqs[i].offset, read_reqs[i].result.size(),
start_ts, finish_ts, read_reqs[i].status);
}
if (!read_reqs[i].status.ok()) {
NotifyOnIOError(read_reqs[i].status, FileOperationType::kRead,
file_name(), read_reqs[i].result.size(),
read_reqs[i].offset);
}
RecordIOStats(stats_, file_temperature_, is_last_level_,
read_reqs[i].result.size());
}
SetPerfLevel(prev_perf_level);
}
if (stats_ != nullptr && file_read_hist_ != nullptr) {
file_read_hist_->Add(elapsed);
}
return io_s;
}
IOStatus RandomAccessFileReader::PrepareIOOptions(const ReadOptions& ro,
IOOptions& opts) const {
if (clock_ != nullptr) {
return PrepareIOFromReadOptions(ro, clock_, opts);
} else {
return PrepareIOFromReadOptions(ro, SystemClock::Default().get(), opts);
}
}
IOStatus RandomAccessFileReader::ReadAsync(
FSReadRequest& req, const IOOptions& opts,
std::function<void(const FSReadRequest&, void*)> cb, void* cb_arg,
void** io_handle, IOHandleDeleter* del_fn, AlignedBuf* aligned_buf) {
IOStatus s;
// Create a callback and populate info.
auto read_async_callback =
std::bind(&RandomAccessFileReader::ReadAsyncCallback, this,
std::placeholders::_1, std::placeholders::_2);
ReadAsyncInfo* read_async_info = new ReadAsyncInfo(
cb, cb_arg, (clock_ != nullptr ? clock_->NowMicros() : 0));
if (ShouldNotifyListeners()) {
read_async_info->fs_start_ts_ = FileOperationInfo::StartNow();
}
size_t alignment = file_->GetRequiredBufferAlignment();
bool is_aligned = (req.offset & (alignment - 1)) == 0 &&
(req.len & (alignment - 1)) == 0 &&
(uintptr_t(req.scratch) & (alignment - 1)) == 0;
read_async_info->is_aligned_ = is_aligned;
uint64_t elapsed = 0;
if (use_direct_io() && is_aligned == false) {
FSReadRequest aligned_req = Align(req, alignment);
aligned_req.status.PermitUncheckedError();
// Allocate aligned buffer.
read_async_info->buf_.Alignment(alignment);
read_async_info->buf_.AllocateNewBuffer(aligned_req.len);
// Set rem fields in aligned FSReadRequest.
aligned_req.scratch = read_async_info->buf_.BufferStart();
// Set user provided fields to populate back in callback.
read_async_info->user_scratch_ = req.scratch;
read_async_info->user_aligned_buf_ = aligned_buf;
read_async_info->user_len_ = req.len;
read_async_info->user_offset_ = req.offset;
read_async_info->user_result_ = req.result;
assert(read_async_info->buf_.CurrentSize() == 0);
StopWatch sw(clock_, stats_, hist_type_,
GetFileReadHistograms(stats_, opts.io_activity),
(stats_ != nullptr) ? &elapsed : nullptr, true /*overwrite*/,
true /*delay_enabled*/);
s = file_->ReadAsync(aligned_req, opts, read_async_callback,
read_async_info, io_handle, del_fn, nullptr /*dbg*/);
} else {
StopWatch sw(clock_, stats_, hist_type_,
GetFileReadHistograms(stats_, opts.io_activity),
(stats_ != nullptr) ? &elapsed : nullptr, true /*overwrite*/,
true /*delay_enabled*/);
s = file_->ReadAsync(req, opts, read_async_callback, read_async_info,
io_handle, del_fn, nullptr /*dbg*/);
}
RecordTick(stats_, READ_ASYNC_MICROS, elapsed);
// Suppress false positive clang analyzer warnings.
// Memory is not released if file_->ReadAsync returns !s.ok(), because
// ReadAsyncCallback is never called in that case. If ReadAsyncCallback is
// called then ReadAsync should always return IOStatus::OK().
#ifndef __clang_analyzer__
if (!s.ok()) {
delete read_async_info;
}
#endif // __clang_analyzer__
return s;
}
void RandomAccessFileReader::ReadAsyncCallback(const FSReadRequest& req,
void* cb_arg) {
ReadAsyncInfo* read_async_info = static_cast<ReadAsyncInfo*>(cb_arg);
assert(read_async_info);
assert(read_async_info->cb_);
if (use_direct_io() && read_async_info->is_aligned_ == false) {
// Create FSReadRequest with user provided fields.
FSReadRequest user_req;
user_req.scratch = read_async_info->user_scratch_;
user_req.offset = read_async_info->user_offset_;
user_req.len = read_async_info->user_len_;
// Update results in user_req.
user_req.result = req.result;
user_req.status = req.status;
read_async_info->buf_.Size(read_async_info->buf_.CurrentSize() +
req.result.size());
size_t offset_advance_len = static_cast<size_t>(
/*offset_passed_by_user=*/read_async_info->user_offset_ -
/*aligned_offset=*/req.offset);
size_t res_len = 0;
if (req.status.ok() &&
offset_advance_len < read_async_info->buf_.CurrentSize()) {
res_len =
std::min(read_async_info->buf_.CurrentSize() - offset_advance_len,
read_async_info->user_len_);
if (read_async_info->user_aligned_buf_ == nullptr) {
// Copy the data into user's scratch.
// Clang analyzer assumes that it will take use_direct_io() == false in
// ReadAsync and use_direct_io() == true in Callback which cannot be true.
#ifndef __clang_analyzer__
read_async_info->buf_.Read(user_req.scratch, offset_advance_len,
res_len);
#endif // __clang_analyzer__
} else {
// Set aligned_buf provided by user without additional copy.
user_req.scratch =
read_async_info->buf_.BufferStart() + offset_advance_len;
read_async_info->user_aligned_buf_->reset(
read_async_info->buf_.Release());
}
user_req.result = Slice(user_req.scratch, res_len);
} else {
// Either req.status is not ok or data was not read.
user_req.result = Slice();
}
read_async_info->cb_(user_req, read_async_info->cb_arg_);
} else {
read_async_info->cb_(req, read_async_info->cb_arg_);
}
// Update stats and notify listeners.
if (stats_ != nullptr && file_read_hist_ != nullptr) {
// elapsed doesn't take into account delay and overwrite as StopWatch does
// in Read.
uint64_t elapsed = clock_->NowMicros() - read_async_info->start_time_;
file_read_hist_->Add(elapsed);
}
if (req.status.ok()) {
RecordInHistogram(stats_, ASYNC_READ_BYTES, req.result.size());
} else if (!req.status.IsAborted()) {
RecordTick(stats_, ASYNC_READ_ERROR_COUNT, 1);
}
if (ShouldNotifyListeners()) {
auto finish_ts = FileOperationInfo::FinishNow();
NotifyOnFileReadFinish(req.offset, req.result.size(),
read_async_info->fs_start_ts_, finish_ts,
req.status);
}
if (!req.status.ok()) {
NotifyOnIOError(req.status, FileOperationType::kRead, file_name(),
req.result.size(), req.offset);
}
RecordIOStats(stats_, file_temperature_, is_last_level_, req.result.size());
delete read_async_info;
}
} // namespace ROCKSDB_NAMESPACE