rocksdb/db/db_impl/db_impl_open.cc
Peter Dillinger a1a102ffce Steps toward deprecating implicit prefix seek, related fixes (#13026)
Summary:
With some new use cases onboarding to prefix extractors/seek/filters, one of the risks is existing iterator code, e.g. for maintenance tasks, being unintentionally subject to prefix seek semantics. This is a longstanding known design flaw with prefix seek, and `prefix_same_as_start` and `auto_prefix_mode` were steps in the direction of making that obsolete. However, we can't just immediately set `total_order_seek` to true by default, because that would impact so much code instantly.

Here we add a new DB option, `prefix_seek_opt_in_only` that basically allows users to transition to the future behavior when they are ready. When set to true, all iterators will be treated as if `total_order_seek=true` and then the only ways to get prefix seek semantics are with `prefix_same_as_start` or `auto_prefix_mode`.

Related fixes / changes:
* Make sure that `prefix_same_as_start` and `auto_prefix_mode` are compatible with (or override) `total_order_seek` (depending on your interpretation).
* Fix a bug in which a new iterator after dynamically changing the prefix extractor might mix different prefix semantics between memtable and SSTs. Both should use the latest extractor semantics, which means iterators ignoring memtable prefix filters with an old extractor. And that means passing the latest prefix extractor to new memtable iterators that might use prefix seek. (Without the fix, the test added for this fails in many ways.)

Suggested follow-up:
* Investigate a FIXME where a MergeIteratorBuilder is created in db_impl.cc. No unit test detects a change in value that should impact correctness.
* Make memtable prefix bloom compatible with `auto_prefix_mode`, which might require involving the memtablereps because we don't know at iterator creation time (only seek time) whether an auto_prefix_mode seek will be a prefix seek.
* Add `prefix_same_as_start` testing to db_stress

Pull Request resolved: https://github.com/facebook/rocksdb/pull/13026

Test Plan:
tests updated, added. Add combination of `total_order_seek=true` and `auto_prefix_mode=true` to stress test. Ran `make blackbox_crash_test` for a long while.

Manually ran tests with `prefix_seek_opt_in_only=true` as default, looking for unexpected issues. I inspected most of the results and migrated many tests to be ready for such a change (but not all).

Reviewed By: ltamasi

Differential Revision: D63147378

Pulled By: pdillinger

fbshipit-source-id: 1f4477b730683d43b4be7e933338583702d3c25e
2024-09-20 15:54:19 -07:00

2321 lines
90 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <cinttypes>
#include "db/builder.h"
#include "db/db_impl/db_impl.h"
#include "db/error_handler.h"
#include "db/periodic_task_scheduler.h"
#include "env/composite_env_wrapper.h"
#include "file/filename.h"
#include "file/read_write_util.h"
#include "file/sst_file_manager_impl.h"
#include "file/writable_file_writer.h"
#include "logging/logging.h"
#include "monitoring/persistent_stats_history.h"
#include "monitoring/thread_status_util.h"
#include "options/options_helper.h"
#include "rocksdb/options.h"
#include "rocksdb/table.h"
#include "rocksdb/wal_filter.h"
#include "test_util/sync_point.h"
#include "util/rate_limiter_impl.h"
#include "util/string_util.h"
#include "util/udt_util.h"
namespace ROCKSDB_NAMESPACE {
Options SanitizeOptions(const std::string& dbname, const Options& src,
bool read_only, Status* logger_creation_s) {
auto db_options =
SanitizeOptions(dbname, DBOptions(src), read_only, logger_creation_s);
ImmutableDBOptions immutable_db_options(db_options);
auto cf_options =
SanitizeOptions(immutable_db_options, ColumnFamilyOptions(src));
return Options(db_options, cf_options);
}
DBOptions SanitizeOptions(const std::string& dbname, const DBOptions& src,
bool read_only, Status* logger_creation_s) {
DBOptions result(src);
if (result.env == nullptr) {
result.env = Env::Default();
}
// result.max_open_files means an "infinite" open files.
if (result.max_open_files != -1) {
int max_max_open_files = port::GetMaxOpenFiles();
if (max_max_open_files == -1) {
max_max_open_files = 0x400000;
}
ClipToRange(&result.max_open_files, 20, max_max_open_files);
TEST_SYNC_POINT_CALLBACK("SanitizeOptions::AfterChangeMaxOpenFiles",
&result.max_open_files);
}
if (result.info_log == nullptr && !read_only) {
Status s = CreateLoggerFromOptions(dbname, result, &result.info_log);
if (!s.ok()) {
// No place suitable for logging
result.info_log = nullptr;
if (logger_creation_s) {
*logger_creation_s = s;
}
}
}
if (!result.write_buffer_manager) {
result.write_buffer_manager.reset(
new WriteBufferManager(result.db_write_buffer_size));
}
auto bg_job_limits = DBImpl::GetBGJobLimits(
result.max_background_flushes, result.max_background_compactions,
result.max_background_jobs, true /* parallelize_compactions */);
result.env->IncBackgroundThreadsIfNeeded(bg_job_limits.max_compactions,
Env::Priority::LOW);
result.env->IncBackgroundThreadsIfNeeded(bg_job_limits.max_flushes,
Env::Priority::HIGH);
if (result.rate_limiter.get() != nullptr) {
if (result.bytes_per_sync == 0) {
result.bytes_per_sync = 1024 * 1024;
}
}
if (result.delayed_write_rate == 0) {
if (result.rate_limiter.get() != nullptr) {
result.delayed_write_rate = result.rate_limiter->GetBytesPerSecond();
}
if (result.delayed_write_rate == 0) {
result.delayed_write_rate = 16 * 1024 * 1024;
}
}
if (result.WAL_ttl_seconds > 0 || result.WAL_size_limit_MB > 0) {
result.recycle_log_file_num = false;
}
if (result.recycle_log_file_num &&
(result.wal_recovery_mode ==
WALRecoveryMode::kTolerateCorruptedTailRecords ||
result.wal_recovery_mode == WALRecoveryMode::kAbsoluteConsistency)) {
// - kTolerateCorruptedTailRecords is inconsistent with recycle log file
// feature. WAL recycling expects recovery success upon encountering a
// corrupt record at the point where new data ends and recycled data
// remains at the tail. However, `kTolerateCorruptedTailRecords` must fail
// upon encountering any such corrupt record, as it cannot differentiate
// between this and a real corruption, which would cause committed updates
// to be truncated -- a violation of the recovery guarantee.
// - kPointInTimeRecovery and kAbsoluteConsistency are incompatible with
// recycle log file feature temporarily due to a bug found introducing a
// hole in the recovered data
// (https://github.com/facebook/rocksdb/pull/7252#issuecomment-673766236).
// Besides this bug, we believe the features are fundamentally compatible.
result.recycle_log_file_num = 0;
}
if (result.db_paths.size() == 0) {
result.db_paths.emplace_back(dbname, std::numeric_limits<uint64_t>::max());
} else if (result.wal_dir.empty()) {
// Use dbname as default
result.wal_dir = dbname;
}
if (!result.wal_dir.empty()) {
// If there is a wal_dir already set, check to see if the wal_dir is the
// same as the dbname AND the same as the db_path[0] (which must exist from
// a few lines ago). If the wal_dir matches both of these values, then clear
// the wal_dir value, which will make wal_dir == dbname. Most likely this
// condition was the result of reading an old options file where we forced
// wal_dir to be set (to dbname).
auto npath = NormalizePath(dbname + "/");
if (npath == NormalizePath(result.wal_dir + "/") &&
npath == NormalizePath(result.db_paths[0].path + "/")) {
result.wal_dir.clear();
}
}
if (!result.wal_dir.empty() && result.wal_dir.back() == '/') {
result.wal_dir = result.wal_dir.substr(0, result.wal_dir.size() - 1);
}
// Force flush on DB open if 2PC is enabled, since with 2PC we have no
// guarantee that consecutive log files have consecutive sequence id, which
// make recovery complicated.
if (result.allow_2pc) {
result.avoid_flush_during_recovery = false;
}
ImmutableDBOptions immutable_db_options(result);
if (!immutable_db_options.IsWalDirSameAsDBPath()) {
// Either the WAL dir and db_paths[0]/db_name are not the same, or we
// cannot tell for sure. In either case, assume they're different and
// explicitly cleanup the trash log files (bypass DeleteScheduler)
// Do this first so even if we end up calling
// DeleteScheduler::CleanupDirectory on the same dir later, it will be
// safe
std::vector<std::string> filenames;
IOOptions io_opts;
io_opts.do_not_recurse = true;
auto wal_dir = immutable_db_options.GetWalDir();
Status s = immutable_db_options.fs->GetChildren(
wal_dir, io_opts, &filenames, /*IODebugContext*=*/nullptr);
s.PermitUncheckedError(); //**TODO: What to do on error?
for (std::string& filename : filenames) {
if (filename.find(".log.trash", filename.length() -
std::string(".log.trash").length()) !=
std::string::npos) {
std::string trash_file = wal_dir + "/" + filename;
result.env->DeleteFile(trash_file).PermitUncheckedError();
}
}
}
// Create a default SstFileManager for purposes of tracking compaction size
// and facilitating recovery from out of space errors.
if (result.sst_file_manager.get() == nullptr) {
std::shared_ptr<SstFileManager> sst_file_manager(
NewSstFileManager(result.env, result.info_log));
result.sst_file_manager = sst_file_manager;
}
// Supported wal compression types
if (!StreamingCompressionTypeSupported(result.wal_compression)) {
result.wal_compression = kNoCompression;
ROCKS_LOG_WARN(result.info_log,
"wal_compression is disabled since only zstd is supported");
}
if (!result.paranoid_checks) {
result.skip_checking_sst_file_sizes_on_db_open = true;
ROCKS_LOG_INFO(result.info_log,
"file size check will be skipped during open.");
}
return result;
}
namespace {
Status ValidateOptionsByTable(
const DBOptions& db_opts,
const std::vector<ColumnFamilyDescriptor>& column_families) {
Status s;
for (auto& cf : column_families) {
s = ValidateOptions(db_opts, cf.options);
if (!s.ok()) {
return s;
}
}
return Status::OK();
}
} // namespace
Status DBImpl::ValidateOptions(
const DBOptions& db_options,
const std::vector<ColumnFamilyDescriptor>& column_families) {
Status s;
for (auto& cfd : column_families) {
s = ColumnFamilyData::ValidateOptions(db_options, cfd.options);
if (!s.ok()) {
return s;
}
}
s = ValidateOptions(db_options);
return s;
}
Status DBImpl::ValidateOptions(const DBOptions& db_options) {
if (db_options.db_paths.size() > 4) {
return Status::NotSupported(
"More than four DB paths are not supported yet. ");
}
if (db_options.allow_mmap_reads && db_options.use_direct_reads) {
// Protect against assert in PosixMMapReadableFile constructor
return Status::NotSupported(
"If memory mapped reads (allow_mmap_reads) are enabled "
"then direct I/O reads (use_direct_reads) must be disabled. ");
}
if (db_options.allow_mmap_writes &&
db_options.use_direct_io_for_flush_and_compaction) {
return Status::NotSupported(
"If memory mapped writes (allow_mmap_writes) are enabled "
"then direct I/O writes (use_direct_io_for_flush_and_compaction) must "
"be disabled. ");
}
if (db_options.keep_log_file_num == 0) {
return Status::InvalidArgument("keep_log_file_num must be greater than 0");
}
if (db_options.unordered_write &&
!db_options.allow_concurrent_memtable_write) {
return Status::InvalidArgument(
"unordered_write is incompatible with "
"!allow_concurrent_memtable_write");
}
if (db_options.unordered_write && db_options.enable_pipelined_write) {
return Status::InvalidArgument(
"unordered_write is incompatible with enable_pipelined_write");
}
if (db_options.atomic_flush && db_options.enable_pipelined_write) {
return Status::InvalidArgument(
"atomic_flush is incompatible with enable_pipelined_write");
}
if (db_options.use_direct_io_for_flush_and_compaction &&
0 == db_options.writable_file_max_buffer_size) {
return Status::InvalidArgument(
"writes in direct IO require writable_file_max_buffer_size > 0");
}
if (db_options.daily_offpeak_time_utc != "") {
int start_time, end_time;
if (!TryParseTimeRangeString(db_options.daily_offpeak_time_utc, start_time,
end_time)) {
return Status::InvalidArgument(
"daily_offpeak_time_utc should be set in the format HH:mm-HH:mm "
"(e.g. 04:30-07:30)");
} else if (start_time == end_time) {
return Status::InvalidArgument(
"start_time and end_time cannot be the same");
}
}
if (!db_options.write_dbid_to_manifest && !db_options.write_identity_file) {
return Status::InvalidArgument(
"write_dbid_to_manifest and write_identity_file cannot both be false");
}
return Status::OK();
}
Status DBImpl::NewDB(std::vector<std::string>* new_filenames) {
VersionEdit new_db_edit;
const WriteOptions write_options(Env::IOActivity::kDBOpen);
Status s = SetupDBId(write_options, /*read_only=*/false, /*is_new_db=*/true,
&new_db_edit);
if (!s.ok()) {
return s;
}
new_db_edit.SetLogNumber(0);
new_db_edit.SetNextFile(2);
new_db_edit.SetLastSequence(0);
ROCKS_LOG_INFO(immutable_db_options_.info_log, "Creating manifest 1 \n");
const std::string manifest = DescriptorFileName(dbname_, 1);
{
if (fs_->FileExists(manifest, IOOptions(), nullptr).ok()) {
fs_->DeleteFile(manifest, IOOptions(), nullptr).PermitUncheckedError();
}
std::unique_ptr<FSWritableFile> file;
FileOptions file_options = fs_->OptimizeForManifestWrite(file_options_);
// DB option takes precedence when not kUnknown
if (immutable_db_options_.metadata_write_temperature !=
Temperature::kUnknown) {
file_options.temperature =
immutable_db_options_.metadata_write_temperature;
}
s = NewWritableFile(fs_.get(), manifest, &file, file_options);
if (!s.ok()) {
return s;
}
FileTypeSet tmp_set = immutable_db_options_.checksum_handoff_file_types;
file->SetPreallocationBlockSize(
immutable_db_options_.manifest_preallocation_size);
std::unique_ptr<WritableFileWriter> file_writer(new WritableFileWriter(
std::move(file), manifest, file_options, immutable_db_options_.clock,
io_tracer_, nullptr /* stats */,
Histograms::HISTOGRAM_ENUM_MAX /* hist_type */,
immutable_db_options_.listeners, nullptr,
tmp_set.Contains(FileType::kDescriptorFile),
tmp_set.Contains(FileType::kDescriptorFile)));
log::Writer log(std::move(file_writer), 0, false);
std::string record;
new_db_edit.EncodeTo(&record);
s = log.AddRecord(write_options, record);
if (s.ok()) {
s = SyncManifest(&immutable_db_options_, write_options, log.file());
}
}
if (s.ok()) {
// Make "CURRENT" file that points to the new manifest file.
s = SetCurrentFile(write_options, fs_.get(), dbname_, 1,
immutable_db_options_.metadata_write_temperature,
directories_.GetDbDir());
if (new_filenames) {
new_filenames->emplace_back(
manifest.substr(manifest.find_last_of("/\\") + 1));
}
} else {
fs_->DeleteFile(manifest, IOOptions(), nullptr).PermitUncheckedError();
}
return s;
}
IOStatus DBImpl::CreateAndNewDirectory(
FileSystem* fs, const std::string& dirname,
std::unique_ptr<FSDirectory>* directory) {
// We call CreateDirIfMissing() as the directory may already exist (if we
// are reopening a DB), when this happens we don't want creating the
// directory to cause an error. However, we need to check if creating the
// directory fails or else we may get an obscure message about the lock
// file not existing. One real-world example of this occurring is if
// env->CreateDirIfMissing() doesn't create intermediate directories, e.g.
// when dbname_ is "dir/db" but when "dir" doesn't exist.
IOStatus io_s = fs->CreateDirIfMissing(dirname, IOOptions(), nullptr);
if (!io_s.ok()) {
return io_s;
}
return fs->NewDirectory(dirname, IOOptions(), directory, nullptr);
}
IOStatus Directories::SetDirectories(FileSystem* fs, const std::string& dbname,
const std::string& wal_dir,
const std::vector<DbPath>& data_paths) {
IOStatus io_s = DBImpl::CreateAndNewDirectory(fs, dbname, &db_dir_);
if (!io_s.ok()) {
return io_s;
}
if (!wal_dir.empty() && dbname != wal_dir) {
io_s = DBImpl::CreateAndNewDirectory(fs, wal_dir, &wal_dir_);
if (!io_s.ok()) {
return io_s;
}
}
data_dirs_.clear();
for (auto& p : data_paths) {
const std::string db_path = p.path;
if (db_path == dbname) {
data_dirs_.emplace_back(nullptr);
} else {
std::unique_ptr<FSDirectory> path_directory;
io_s = DBImpl::CreateAndNewDirectory(fs, db_path, &path_directory);
if (!io_s.ok()) {
return io_s;
}
data_dirs_.emplace_back(path_directory.release());
}
}
assert(data_dirs_.size() == data_paths.size());
return IOStatus::OK();
}
Status DBImpl::Recover(
const std::vector<ColumnFamilyDescriptor>& column_families, bool read_only,
bool error_if_wal_file_exists, bool error_if_data_exists_in_wals,
bool is_retry, uint64_t* recovered_seq, RecoveryContext* recovery_ctx,
bool* can_retry) {
mutex_.AssertHeld();
const WriteOptions write_options(Env::IOActivity::kDBOpen);
bool tmp_is_new_db = false;
bool& is_new_db = recovery_ctx ? recovery_ctx->is_new_db_ : tmp_is_new_db;
assert(db_lock_ == nullptr);
std::vector<std::string> files_in_dbname;
if (!read_only) {
Status s = directories_.SetDirectories(fs_.get(), dbname_,
immutable_db_options_.wal_dir,
immutable_db_options_.db_paths);
if (!s.ok()) {
return s;
}
s = env_->LockFile(LockFileName(dbname_), &db_lock_);
if (!s.ok()) {
return s;
}
std::string current_fname = CurrentFileName(dbname_);
// Path to any MANIFEST file in the db dir. It does not matter which one.
// Since best-efforts recovery ignores CURRENT file, existence of a
// MANIFEST indicates the recovery to recover existing db. If no MANIFEST
// can be found, a new db will be created.
std::string manifest_path;
if (!immutable_db_options_.best_efforts_recovery) {
s = env_->FileExists(current_fname);
} else {
s = Status::NotFound();
IOOptions io_opts;
io_opts.do_not_recurse = true;
Status io_s = immutable_db_options_.fs->GetChildren(
dbname_, io_opts, &files_in_dbname, /*IODebugContext*=*/nullptr);
if (!io_s.ok()) {
s = io_s;
files_in_dbname.clear();
}
for (const std::string& file : files_in_dbname) {
uint64_t number = 0;
FileType type = kWalFile; // initialize
if (ParseFileName(file, &number, &type) && type == kDescriptorFile) {
uint64_t bytes;
s = env_->GetFileSize(DescriptorFileName(dbname_, number), &bytes);
if (s.ok() && bytes != 0) {
// Found non-empty MANIFEST (descriptor log), thus best-efforts
// recovery does not have to treat the db as empty.
manifest_path = dbname_ + "/" + file;
break;
}
}
}
}
if (s.IsNotFound()) {
if (immutable_db_options_.create_if_missing) {
s = NewDB(&files_in_dbname);
is_new_db = true;
if (!s.ok()) {
return s;
}
} else {
return Status::InvalidArgument(
current_fname, "does not exist (create_if_missing is false)");
}
} else if (s.ok()) {
if (immutable_db_options_.error_if_exists) {
return Status::InvalidArgument(dbname_,
"exists (error_if_exists is true)");
}
} else {
// Unexpected error reading file
assert(s.IsIOError());
return s;
}
// Verify compatibility of file_options_ and filesystem
{
std::unique_ptr<FSRandomAccessFile> idfile;
FileOptions customized_fs(file_options_);
customized_fs.use_direct_reads |=
immutable_db_options_.use_direct_io_for_flush_and_compaction;
const std::string& fname =
manifest_path.empty() ? current_fname : manifest_path;
s = fs_->NewRandomAccessFile(fname, customized_fs, &idfile, nullptr);
if (!s.ok()) {
std::string error_str = s.ToString();
// Check if unsupported Direct I/O is the root cause
customized_fs.use_direct_reads = false;
s = fs_->NewRandomAccessFile(fname, customized_fs, &idfile, nullptr);
if (s.ok()) {
return Status::InvalidArgument(
"Direct I/O is not supported by the specified DB.");
} else {
return Status::InvalidArgument(
"Found options incompatible with filesystem", error_str.c_str());
}
}
}
} else if (immutable_db_options_.best_efforts_recovery) {
assert(files_in_dbname.empty());
IOOptions io_opts;
io_opts.do_not_recurse = true;
Status s = immutable_db_options_.fs->GetChildren(
dbname_, io_opts, &files_in_dbname, /*IODebugContext*=*/nullptr);
if (s.IsNotFound()) {
return Status::InvalidArgument(dbname_,
"does not exist (open for read only)");
} else if (s.IsIOError()) {
return s;
}
assert(s.ok());
}
assert(is_new_db || db_id_.empty());
Status s;
bool missing_table_file = false;
if (!immutable_db_options_.best_efforts_recovery) {
// Status of reading the descriptor file
Status desc_status;
s = versions_->Recover(column_families, read_only, &db_id_,
/*no_error_if_files_missing=*/false, is_retry,
&desc_status);
desc_status.PermitUncheckedError();
if (is_retry) {
RecordTick(stats_, FILE_READ_CORRUPTION_RETRY_COUNT);
if (desc_status.ok()) {
RecordTick(stats_, FILE_READ_CORRUPTION_RETRY_SUCCESS_COUNT);
}
}
if (can_retry) {
// If we're opening for the first time and the failure is likely due to
// a corrupt MANIFEST file (could result in either the log::Reader
// detecting a corrupt record, or SST files not found error due to
// discarding badly formed tail records)
if (!is_retry &&
(desc_status.IsCorruption() || s.IsNotFound() || s.IsCorruption()) &&
CheckFSFeatureSupport(fs_.get(),
FSSupportedOps::kVerifyAndReconstructRead)) {
*can_retry = true;
ROCKS_LOG_ERROR(
immutable_db_options_.info_log,
"Possible corruption detected while replaying MANIFEST %s, %s. "
"Will be retried.",
desc_status.ToString().c_str(), s.ToString().c_str());
} else {
*can_retry = false;
}
}
} else {
assert(!files_in_dbname.empty());
s = versions_->TryRecover(column_families, read_only, files_in_dbname,
&db_id_, &missing_table_file);
if (s.ok()) {
// TryRecover may delete previous column_family_set_.
column_family_memtables_.reset(
new ColumnFamilyMemTablesImpl(versions_->GetColumnFamilySet()));
}
}
if (!s.ok()) {
return s;
}
if (s.ok() && !read_only) {
for (auto cfd : *versions_->GetColumnFamilySet()) {
// Try to trivially move files down the LSM tree to start from bottommost
// level when level_compaction_dynamic_level_bytes is enabled. This should
// only be useful when user is migrating to turning on this option.
// If a user is migrating from Level Compaction with a smaller level
// multiplier or from Universal Compaction, there may be too many
// non-empty levels and the trivial moves here are not sufficed for
// migration. Additional compactions are needed to drain unnecessary
// levels.
//
// Note that this step moves files down LSM without consulting
// SSTPartitioner. Further compactions are still needed if
// the user wants to partition SST files.
// Note that files moved in this step may not respect the compression
// option in target level.
if (cfd->ioptions()->compaction_style ==
CompactionStyle::kCompactionStyleLevel &&
cfd->ioptions()->level_compaction_dynamic_level_bytes &&
!cfd->GetLatestMutableCFOptions()->disable_auto_compactions) {
int to_level = cfd->ioptions()->num_levels - 1;
// last level is reserved
// allow_ingest_behind does not support Level Compaction,
// and per_key_placement can have infinite compaction loop for Level
// Compaction. Adjust to_level here just to be safe.
if (cfd->ioptions()->allow_ingest_behind ||
cfd->ioptions()->preclude_last_level_data_seconds > 0) {
to_level -= 1;
}
// Whether this column family has a level trivially moved
bool moved = false;
// Fill the LSM starting from to_level and going up one level at a time.
// Some loop invariants (when last level is not reserved):
// - levels in (from_level, to_level] are empty, and
// - levels in (to_level, last_level] are non-empty.
for (int from_level = to_level; from_level >= 0; --from_level) {
const std::vector<FileMetaData*>& level_files =
cfd->current()->storage_info()->LevelFiles(from_level);
if (level_files.empty() || from_level == 0) {
continue;
}
assert(from_level <= to_level);
// Trivial move files from `from_level` to `to_level`
if (from_level < to_level) {
if (!moved) {
// lsm_state will look like "[1,2,3,4,5,6,0]" for an LSM with
// 7 levels
std::string lsm_state = "[";
for (int i = 0; i < cfd->ioptions()->num_levels; ++i) {
lsm_state += std::to_string(
cfd->current()->storage_info()->NumLevelFiles(i));
if (i < cfd->ioptions()->num_levels - 1) {
lsm_state += ",";
}
}
lsm_state += "]";
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"[%s] Trivially move files down the LSM when open "
"with level_compaction_dynamic_level_bytes=true,"
" lsm_state: %s (Files are moved only if DB "
"Recovery is successful).",
cfd->GetName().c_str(), lsm_state.c_str());
moved = true;
}
ROCKS_LOG_WARN(
immutable_db_options_.info_log,
"[%s] Moving %zu files from from_level-%d to from_level-%d",
cfd->GetName().c_str(), level_files.size(), from_level,
to_level);
VersionEdit edit;
edit.SetColumnFamily(cfd->GetID());
for (const FileMetaData* f : level_files) {
edit.DeleteFile(from_level, f->fd.GetNumber());
edit.AddFile(to_level, f->fd.GetNumber(), f->fd.GetPathId(),
f->fd.GetFileSize(), f->smallest, f->largest,
f->fd.smallest_seqno, f->fd.largest_seqno,
f->marked_for_compaction,
f->temperature, // this can be different from
// `last_level_temperature`
f->oldest_blob_file_number, f->oldest_ancester_time,
f->file_creation_time, f->epoch_number,
f->file_checksum, f->file_checksum_func_name,
f->unique_id, f->compensated_range_deletion_size,
f->tail_size, f->user_defined_timestamps_persisted);
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"[%s] Moving #%" PRIu64
" from from_level-%d to from_level-%d %" PRIu64
" bytes\n",
cfd->GetName().c_str(), f->fd.GetNumber(),
from_level, to_level, f->fd.GetFileSize());
}
recovery_ctx->UpdateVersionEdits(cfd, edit);
}
--to_level;
}
}
}
}
if (is_new_db) {
// Already set up DB ID in NewDB
} else if (immutable_db_options_.write_dbid_to_manifest && recovery_ctx) {
VersionEdit edit;
s = SetupDBId(write_options, read_only, is_new_db, &edit);
recovery_ctx->UpdateVersionEdits(
versions_->GetColumnFamilySet()->GetDefault(), edit);
} else {
s = SetupDBId(write_options, read_only, is_new_db, nullptr);
}
assert(!s.ok() || !db_id_.empty());
ROCKS_LOG_INFO(immutable_db_options_.info_log, "DB ID: %s\n", db_id_.c_str());
if (s.ok() && !read_only) {
s = MaybeUpdateNextFileNumber(recovery_ctx);
}
if (immutable_db_options_.paranoid_checks && s.ok()) {
s = CheckConsistency();
}
if (s.ok() && !read_only) {
// TODO: share file descriptors (FSDirectory) with SetDirectories above
std::map<std::string, std::shared_ptr<FSDirectory>> created_dirs;
for (auto cfd : *versions_->GetColumnFamilySet()) {
s = cfd->AddDirectories(&created_dirs);
if (!s.ok()) {
return s;
}
}
}
std::vector<std::string> files_in_wal_dir;
if (s.ok()) {
// Initial max_total_in_memory_state_ before recovery wals. Log recovery
// may check this value to decide whether to flush.
max_total_in_memory_state_ = 0;
for (auto cfd : *versions_->GetColumnFamilySet()) {
auto* mutable_cf_options = cfd->GetLatestMutableCFOptions();
max_total_in_memory_state_ += mutable_cf_options->write_buffer_size *
mutable_cf_options->max_write_buffer_number;
}
SequenceNumber next_sequence(kMaxSequenceNumber);
default_cf_handle_ = new ColumnFamilyHandleImpl(
versions_->GetColumnFamilySet()->GetDefault(), this, &mutex_);
default_cf_internal_stats_ = default_cf_handle_->cfd()->internal_stats();
// Recover from all newer log files than the ones named in the
// descriptor (new log files may have been added by the previous
// incarnation without registering them in the descriptor).
//
// Note that prev_log_number() is no longer used, but we pay
// attention to it in case we are recovering a database
// produced by an older version of rocksdb.
auto wal_dir = immutable_db_options_.GetWalDir();
if (!immutable_db_options_.best_efforts_recovery) {
IOOptions io_opts;
io_opts.do_not_recurse = true;
s = immutable_db_options_.fs->GetChildren(
wal_dir, io_opts, &files_in_wal_dir, /*IODebugContext*=*/nullptr);
}
if (s.IsNotFound()) {
return Status::InvalidArgument("wal_dir not found", wal_dir);
} else if (!s.ok()) {
return s;
}
std::unordered_map<uint64_t, std::string> wal_files;
for (const auto& file : files_in_wal_dir) {
uint64_t number;
FileType type;
if (ParseFileName(file, &number, &type) && type == kWalFile) {
if (is_new_db) {
return Status::Corruption(
"While creating a new Db, wal_dir contains "
"existing log file: ",
file);
} else {
wal_files[number] = LogFileName(wal_dir, number);
}
}
}
if (immutable_db_options_.track_and_verify_wals_in_manifest) {
if (!immutable_db_options_.best_efforts_recovery) {
// Verify WALs in MANIFEST.
s = versions_->GetWalSet().CheckWals(env_, wal_files);
} // else since best effort recovery does not recover from WALs, no need
// to check WALs.
} else if (!versions_->GetWalSet().GetWals().empty()) {
// Tracking is disabled, clear previously tracked WALs from MANIFEST,
// otherwise, in the future, if WAL tracking is enabled again,
// since the WALs deleted when WAL tracking is disabled are not persisted
// into MANIFEST, WAL check may fail.
VersionEdit edit;
WalNumber max_wal_number =
versions_->GetWalSet().GetWals().rbegin()->first;
edit.DeleteWalsBefore(max_wal_number + 1);
assert(recovery_ctx != nullptr);
assert(versions_->GetColumnFamilySet() != nullptr);
recovery_ctx->UpdateVersionEdits(
versions_->GetColumnFamilySet()->GetDefault(), edit);
}
if (!s.ok()) {
return s;
}
if (!wal_files.empty()) {
if (error_if_wal_file_exists) {
return Status::Corruption(
"The db was opened in readonly mode with error_if_wal_file_exists"
"flag but a WAL file already exists");
} else if (error_if_data_exists_in_wals) {
for (auto& wal_file : wal_files) {
uint64_t bytes;
s = env_->GetFileSize(wal_file.second, &bytes);
if (s.ok()) {
if (bytes > 0) {
return Status::Corruption(
"error_if_data_exists_in_wals is set but there are data "
" in WAL files.");
}
}
}
}
}
if (!wal_files.empty()) {
// Recover in the order in which the wals were generated
std::vector<uint64_t> wals;
wals.reserve(wal_files.size());
for (const auto& wal_file : wal_files) {
wals.push_back(wal_file.first);
}
std::sort(wals.begin(), wals.end());
bool corrupted_wal_found = false;
s = RecoverLogFiles(wals, &next_sequence, read_only, is_retry,
&corrupted_wal_found, recovery_ctx);
if (corrupted_wal_found && recovered_seq != nullptr) {
*recovered_seq = next_sequence;
}
if (!s.ok()) {
// Clear memtables if recovery failed
for (auto cfd : *versions_->GetColumnFamilySet()) {
cfd->CreateNewMemtable(*cfd->GetLatestMutableCFOptions(),
kMaxSequenceNumber);
}
}
}
}
if (read_only) {
// If we are opening as read-only, we need to update options_file_number_
// to reflect the most recent OPTIONS file. It does not matter for regular
// read-write db instance because options_file_number_ will later be
// updated to versions_->NewFileNumber() in RenameTempFileToOptionsFile.
std::vector<std::string> filenames;
if (s.ok()) {
const std::string normalized_dbname = NormalizePath(dbname_);
const std::string normalized_wal_dir =
NormalizePath(immutable_db_options_.GetWalDir());
if (immutable_db_options_.best_efforts_recovery) {
filenames = std::move(files_in_dbname);
} else if (normalized_dbname == normalized_wal_dir) {
filenames = std::move(files_in_wal_dir);
} else {
IOOptions io_opts;
io_opts.do_not_recurse = true;
s = immutable_db_options_.fs->GetChildren(
GetName(), io_opts, &filenames, /*IODebugContext*=*/nullptr);
}
}
if (s.ok()) {
uint64_t number = 0;
uint64_t options_file_number = 0;
FileType type;
for (const auto& fname : filenames) {
if (ParseFileName(fname, &number, &type) && type == kOptionsFile) {
options_file_number = std::max(number, options_file_number);
}
}
versions_->options_file_number_ = options_file_number;
uint64_t options_file_size = 0;
if (options_file_number > 0) {
s = env_->GetFileSize(OptionsFileName(GetName(), options_file_number),
&options_file_size);
}
versions_->options_file_size_ = options_file_size;
}
}
return s;
}
Status DBImpl::PersistentStatsProcessFormatVersion() {
mutex_.AssertHeld();
Status s;
// persist version when stats CF doesn't exist
bool should_persist_format_version = !persistent_stats_cfd_exists_;
mutex_.Unlock();
if (persistent_stats_cfd_exists_) {
// Check persistent stats format version compatibility. Drop and recreate
// persistent stats CF if format version is incompatible
uint64_t format_version_recovered = 0;
Status s_format = DecodePersistentStatsVersionNumber(
this, StatsVersionKeyType::kFormatVersion, &format_version_recovered);
uint64_t compatible_version_recovered = 0;
Status s_compatible = DecodePersistentStatsVersionNumber(
this, StatsVersionKeyType::kCompatibleVersion,
&compatible_version_recovered);
// abort reading from existing stats CF if any of following is true:
// 1. failed to read format version or compatible version from disk
// 2. sst's format version is greater than current format version, meaning
// this sst is encoded with a newer RocksDB release, and current compatible
// version is below the sst's compatible version
if (!s_format.ok() || !s_compatible.ok() ||
(kStatsCFCurrentFormatVersion < format_version_recovered &&
kStatsCFCompatibleFormatVersion < compatible_version_recovered)) {
if (!s_format.ok() || !s_compatible.ok()) {
ROCKS_LOG_WARN(
immutable_db_options_.info_log,
"Recreating persistent stats column family since reading "
"persistent stats version key failed. Format key: %s, compatible "
"key: %s",
s_format.ToString().c_str(), s_compatible.ToString().c_str());
} else {
ROCKS_LOG_WARN(
immutable_db_options_.info_log,
"Recreating persistent stats column family due to corrupted or "
"incompatible format version. Recovered format: %" PRIu64
"; recovered format compatible since: %" PRIu64 "\n",
format_version_recovered, compatible_version_recovered);
}
s = DropColumnFamily(persist_stats_cf_handle_);
if (s.ok()) {
s = DestroyColumnFamilyHandle(persist_stats_cf_handle_);
}
ColumnFamilyHandle* handle = nullptr;
if (s.ok()) {
ColumnFamilyOptions cfo;
OptimizeForPersistentStats(&cfo);
s = CreateColumnFamilyImpl(ReadOptions(Env::IOActivity::kDBOpen),
WriteOptions(Env::IOActivity::kDBOpen), cfo,
kPersistentStatsColumnFamilyName, &handle);
}
if (s.ok()) {
persist_stats_cf_handle_ = static_cast<ColumnFamilyHandleImpl*>(handle);
// should also persist version here because old stats CF is discarded
should_persist_format_version = true;
}
}
}
if (should_persist_format_version) {
// Persistent stats CF being created for the first time, need to write
// format version key
WriteBatch batch;
if (s.ok()) {
s = batch.Put(persist_stats_cf_handle_, kFormatVersionKeyString,
std::to_string(kStatsCFCurrentFormatVersion));
}
if (s.ok()) {
s = batch.Put(persist_stats_cf_handle_, kCompatibleVersionKeyString,
std::to_string(kStatsCFCompatibleFormatVersion));
}
if (s.ok()) {
// TODO: plumb Env::IOActivity, Env::IOPriority
WriteOptions wo;
wo.low_pri = true;
wo.no_slowdown = true;
wo.sync = false;
s = Write(wo, &batch);
}
}
mutex_.Lock();
return s;
}
Status DBImpl::InitPersistStatsColumnFamily() {
mutex_.AssertHeld();
assert(!persist_stats_cf_handle_);
ColumnFamilyData* persistent_stats_cfd =
versions_->GetColumnFamilySet()->GetColumnFamily(
kPersistentStatsColumnFamilyName);
persistent_stats_cfd_exists_ = persistent_stats_cfd != nullptr;
Status s;
if (persistent_stats_cfd != nullptr) {
// We are recovering from a DB which already contains persistent stats CF,
// the CF is already created in VersionSet::ApplyOneVersionEdit, but
// column family handle was not. Need to explicitly create handle here.
persist_stats_cf_handle_ =
new ColumnFamilyHandleImpl(persistent_stats_cfd, this, &mutex_);
} else {
mutex_.Unlock();
ColumnFamilyHandle* handle = nullptr;
ColumnFamilyOptions cfo;
OptimizeForPersistentStats(&cfo);
s = CreateColumnFamilyImpl(ReadOptions(Env::IOActivity::kDBOpen),
WriteOptions(Env::IOActivity::kDBOpen), cfo,
kPersistentStatsColumnFamilyName, &handle);
persist_stats_cf_handle_ = static_cast<ColumnFamilyHandleImpl*>(handle);
mutex_.Lock();
}
return s;
}
Status DBImpl::LogAndApplyForRecovery(const RecoveryContext& recovery_ctx) {
mutex_.AssertHeld();
assert(versions_->descriptor_log_ == nullptr);
const ReadOptions read_options(Env::IOActivity::kDBOpen);
const WriteOptions write_options(Env::IOActivity::kDBOpen);
Status s = versions_->LogAndApply(recovery_ctx.cfds_,
recovery_ctx.mutable_cf_opts_, read_options,
write_options, recovery_ctx.edit_lists_,
&mutex_, directories_.GetDbDir());
return s;
}
void DBImpl::InvokeWalFilterIfNeededOnColumnFamilyToWalNumberMap() {
if (immutable_db_options_.wal_filter == nullptr) {
return;
}
assert(immutable_db_options_.wal_filter != nullptr);
WalFilter& wal_filter = *(immutable_db_options_.wal_filter);
std::map<std::string, uint32_t> cf_name_id_map;
std::map<uint32_t, uint64_t> cf_lognumber_map;
assert(versions_);
assert(versions_->GetColumnFamilySet());
for (auto cfd : *versions_->GetColumnFamilySet()) {
assert(cfd);
cf_name_id_map.insert(std::make_pair(cfd->GetName(), cfd->GetID()));
cf_lognumber_map.insert(std::make_pair(cfd->GetID(), cfd->GetLogNumber()));
}
wal_filter.ColumnFamilyLogNumberMap(cf_lognumber_map, cf_name_id_map);
}
bool DBImpl::InvokeWalFilterIfNeededOnWalRecord(uint64_t wal_number,
const std::string& wal_fname,
log::Reader::Reporter& reporter,
Status& status,
bool& stop_replay,
WriteBatch& batch) {
if (immutable_db_options_.wal_filter == nullptr) {
return true;
}
assert(immutable_db_options_.wal_filter != nullptr);
WalFilter& wal_filter = *(immutable_db_options_.wal_filter);
WriteBatch new_batch;
bool batch_changed = false;
bool process_current_record = true;
WalFilter::WalProcessingOption wal_processing_option =
wal_filter.LogRecordFound(wal_number, wal_fname, batch, &new_batch,
&batch_changed);
switch (wal_processing_option) {
case WalFilter::WalProcessingOption::kContinueProcessing:
// do nothing, proceeed normally
break;
case WalFilter::WalProcessingOption::kIgnoreCurrentRecord:
// skip current record
process_current_record = false;
break;
case WalFilter::WalProcessingOption::kStopReplay:
// skip current record and stop replay
process_current_record = false;
stop_replay = true;
break;
case WalFilter::WalProcessingOption::kCorruptedRecord: {
status = Status::Corruption("Corruption reported by Wal Filter ",
wal_filter.Name());
MaybeIgnoreError(&status);
if (!status.ok()) {
process_current_record = false;
reporter.Corruption(batch.GetDataSize(), status);
}
break;
}
default: {
// logical error which should not happen. If RocksDB throws, we would
// just do `throw std::logic_error`.
assert(false);
status = Status::NotSupported(
"Unknown WalProcessingOption returned by Wal Filter ",
wal_filter.Name());
MaybeIgnoreError(&status);
if (!status.ok()) {
// Ignore the error with current record processing.
stop_replay = true;
}
break;
}
}
if (!process_current_record) {
return false;
}
if (batch_changed) {
// Make sure that the count in the new batch is
// within the orignal count.
int new_count = WriteBatchInternal::Count(&new_batch);
int original_count = WriteBatchInternal::Count(&batch);
if (new_count > original_count) {
ROCKS_LOG_FATAL(
immutable_db_options_.info_log,
"Recovering log #%" PRIu64
" mode %d log filter %s returned "
"more records (%d) than original (%d) which is not allowed. "
"Aborting recovery.",
wal_number, static_cast<int>(immutable_db_options_.wal_recovery_mode),
wal_filter.Name(), new_count, original_count);
status = Status::NotSupported(
"More than original # of records "
"returned by Wal Filter ",
wal_filter.Name());
return false;
}
// Set the same sequence number in the new_batch
// as the original batch.
WriteBatchInternal::SetSequence(&new_batch,
WriteBatchInternal::Sequence(&batch));
batch = new_batch;
}
return true;
}
// REQUIRES: wal_numbers are sorted in ascending order
Status DBImpl::RecoverLogFiles(const std::vector<uint64_t>& wal_numbers,
SequenceNumber* next_sequence, bool read_only,
bool is_retry, bool* corrupted_wal_found,
RecoveryContext* recovery_ctx) {
struct LogReporter : public log::Reader::Reporter {
Env* env;
Logger* info_log;
const char* fname;
Status* status; // nullptr if immutable_db_options_.paranoid_checks==false
bool* old_log_record;
void Corruption(size_t bytes, const Status& s) override {
ROCKS_LOG_WARN(info_log, "%s%s: dropping %d bytes; %s",
(status == nullptr ? "(ignoring error) " : ""), fname,
static_cast<int>(bytes), s.ToString().c_str());
if (status != nullptr && status->ok()) {
*status = s;
}
}
void OldLogRecord(size_t bytes) override {
if (old_log_record != nullptr) {
*old_log_record = true;
}
ROCKS_LOG_WARN(info_log, "%s: dropping %d bytes; possibly recycled",
fname, static_cast<int>(bytes));
}
};
mutex_.AssertHeld();
Status status;
bool old_log_record = false;
std::unordered_map<int, VersionEdit> version_edits;
// no need to refcount because iteration is under mutex
for (auto cfd : *versions_->GetColumnFamilySet()) {
VersionEdit edit;
edit.SetColumnFamily(cfd->GetID());
version_edits.insert({cfd->GetID(), edit});
}
int job_id = next_job_id_.fetch_add(1);
{
auto stream = event_logger_.Log();
stream << "job" << job_id << "event"
<< "recovery_started";
stream << "wal_files";
stream.StartArray();
for (auto wal_number : wal_numbers) {
stream << wal_number;
}
stream.EndArray();
}
// No-op for immutable_db_options_.wal_filter == nullptr.
InvokeWalFilterIfNeededOnColumnFamilyToWalNumberMap();
bool stop_replay_by_wal_filter = false;
bool stop_replay_for_corruption = false;
bool flushed = false;
uint64_t corrupted_wal_number = kMaxSequenceNumber;
uint64_t min_wal_number = MinLogNumberToKeep();
if (!allow_2pc()) {
// In non-2pc mode, we skip WALs that do not back unflushed data.
min_wal_number =
std::max(min_wal_number, versions_->MinLogNumberWithUnflushedData());
}
for (auto wal_number : wal_numbers) {
if (wal_number < min_wal_number) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Skipping log #%" PRIu64
" since it is older than min log to keep #%" PRIu64,
wal_number, min_wal_number);
continue;
}
// The previous incarnation may not have written any MANIFEST
// records after allocating this log number. So we manually
// update the file number allocation counter in VersionSet.
versions_->MarkFileNumberUsed(wal_number);
// Open the log file
std::string fname =
LogFileName(immutable_db_options_.GetWalDir(), wal_number);
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Recovering log #%" PRIu64 " mode %d", wal_number,
static_cast<int>(immutable_db_options_.wal_recovery_mode));
auto logFileDropped = [this, &fname]() {
uint64_t bytes;
if (env_->GetFileSize(fname, &bytes).ok()) {
auto info_log = immutable_db_options_.info_log.get();
ROCKS_LOG_WARN(info_log, "%s: dropping %d bytes", fname.c_str(),
static_cast<int>(bytes));
}
};
if (stop_replay_by_wal_filter) {
logFileDropped();
continue;
}
std::unique_ptr<SequentialFileReader> file_reader;
{
std::unique_ptr<FSSequentialFile> file;
status = fs_->NewSequentialFile(
fname, fs_->OptimizeForLogRead(file_options_), &file, nullptr);
if (!status.ok()) {
MaybeIgnoreError(&status);
if (!status.ok()) {
return status;
} else {
// Fail with one log file, but that's ok.
// Try next one.
continue;
}
}
file_reader.reset(new SequentialFileReader(
std::move(file), fname, immutable_db_options_.log_readahead_size,
io_tracer_, /*listeners=*/{}, /*rate_limiter=*/nullptr, is_retry));
}
// Create the log reader.
LogReporter reporter;
reporter.env = env_;
reporter.info_log = immutable_db_options_.info_log.get();
reporter.fname = fname.c_str();
reporter.old_log_record = &old_log_record;
if (!immutable_db_options_.paranoid_checks ||
immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kSkipAnyCorruptedRecords) {
reporter.status = nullptr;
} else {
reporter.status = &status;
}
// We intentially make log::Reader do checksumming even if
// paranoid_checks==false so that corruptions cause entire commits
// to be skipped instead of propagating bad information (like overly
// large sequence numbers).
log::Reader reader(immutable_db_options_.info_log, std::move(file_reader),
&reporter, true /*checksum*/, wal_number);
// Determine if we should tolerate incomplete records at the tail end of the
// Read all the records and add to a memtable
std::string scratch;
Slice record;
const UnorderedMap<uint32_t, size_t>& running_ts_sz =
versions_->GetRunningColumnFamiliesTimestampSize();
TEST_SYNC_POINT_CALLBACK("DBImpl::RecoverLogFiles:BeforeReadWal",
/*arg=*/nullptr);
uint64_t record_checksum;
while (!stop_replay_by_wal_filter &&
reader.ReadRecord(&record, &scratch,
immutable_db_options_.wal_recovery_mode,
&record_checksum) &&
status.ok()) {
if (record.size() < WriteBatchInternal::kHeader) {
reporter.Corruption(record.size(),
Status::Corruption("log record too small"));
continue;
}
// We create a new batch and initialize with a valid prot_info_ to store
// the data checksums
WriteBatch batch;
std::unique_ptr<WriteBatch> new_batch;
status = WriteBatchInternal::SetContents(&batch, record);
if (!status.ok()) {
return status;
}
const UnorderedMap<uint32_t, size_t>& record_ts_sz =
reader.GetRecordedTimestampSize();
status = HandleWriteBatchTimestampSizeDifference(
&batch, running_ts_sz, record_ts_sz,
TimestampSizeConsistencyMode::kReconcileInconsistency, &new_batch);
if (!status.ok()) {
return status;
}
bool batch_updated = new_batch != nullptr;
WriteBatch* batch_to_use = batch_updated ? new_batch.get() : &batch;
TEST_SYNC_POINT_CALLBACK(
"DBImpl::RecoverLogFiles:BeforeUpdateProtectionInfo:batch",
batch_to_use);
TEST_SYNC_POINT_CALLBACK(
"DBImpl::RecoverLogFiles:BeforeUpdateProtectionInfo:checksum",
&record_checksum);
status = WriteBatchInternal::UpdateProtectionInfo(
batch_to_use, 8 /* bytes_per_key */,
batch_updated ? nullptr : &record_checksum);
if (!status.ok()) {
return status;
}
SequenceNumber sequence = WriteBatchInternal::Sequence(batch_to_use);
if (sequence > kMaxSequenceNumber) {
reporter.Corruption(
record.size(),
Status::Corruption("sequence " + std::to_string(sequence) +
" is too large"));
continue;
}
if (immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kPointInTimeRecovery) {
// In point-in-time recovery mode, if sequence id of log files are
// consecutive, we continue recovery despite corruption. This could
// happen when we open and write to a corrupted DB, where sequence id
// will start from the last sequence id we recovered.
if (sequence == *next_sequence) {
stop_replay_for_corruption = false;
}
if (stop_replay_for_corruption) {
logFileDropped();
break;
}
}
// For the default case of wal_filter == nullptr, always performs no-op
// and returns true.
if (!InvokeWalFilterIfNeededOnWalRecord(wal_number, fname, reporter,
status, stop_replay_by_wal_filter,
*batch_to_use)) {
continue;
}
// If column family was not found, it might mean that the WAL write
// batch references to the column family that was dropped after the
// insert. We don't want to fail the whole write batch in that case --
// we just ignore the update.
// That's why we set ignore missing column families to true
bool has_valid_writes = false;
status = WriteBatchInternal::InsertInto(
batch_to_use, column_family_memtables_.get(), &flush_scheduler_,
&trim_history_scheduler_, true, wal_number, this,
false /* concurrent_memtable_writes */, next_sequence,
&has_valid_writes, seq_per_batch_, batch_per_txn_);
MaybeIgnoreError(&status);
if (!status.ok()) {
// We are treating this as a failure while reading since we read valid
// blocks that do not form coherent data
reporter.Corruption(record.size(), status);
continue;
}
if (has_valid_writes && !read_only) {
// we can do this because this is called before client has access to the
// DB and there is only a single thread operating on DB
ColumnFamilyData* cfd;
while ((cfd = flush_scheduler_.TakeNextColumnFamily()) != nullptr) {
cfd->UnrefAndTryDelete();
// If this asserts, it means that InsertInto failed in
// filtering updates to already-flushed column families
assert(cfd->GetLogNumber() <= wal_number);
auto iter = version_edits.find(cfd->GetID());
assert(iter != version_edits.end());
VersionEdit* edit = &iter->second;
status = WriteLevel0TableForRecovery(job_id, cfd, cfd->mem(), edit);
if (!status.ok()) {
// Reflect errors immediately so that conditions like full
// file-systems cause the DB::Open() to fail.
return status;
}
flushed = true;
cfd->CreateNewMemtable(*cfd->GetLatestMutableCFOptions(),
*next_sequence - 1);
}
}
}
if (!status.ok() || old_log_record) {
if (status.IsNotSupported()) {
// We should not treat NotSupported as corruption. It is rather a clear
// sign that we are processing a WAL that is produced by an incompatible
// version of the code.
return status;
}
if (immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kSkipAnyCorruptedRecords) {
// We should ignore all errors unconditionally
status = Status::OK();
} else if (immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kPointInTimeRecovery) {
if (status.IsIOError()) {
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"IOError during point-in-time reading log #%" PRIu64
" seq #%" PRIu64
". %s. This likely mean loss of synced WAL, "
"thus recovery fails.",
wal_number, *next_sequence,
status.ToString().c_str());
return status;
}
// We should ignore the error but not continue replaying
status = Status::OK();
old_log_record = false;
stop_replay_for_corruption = true;
corrupted_wal_number = wal_number;
if (corrupted_wal_found != nullptr) {
*corrupted_wal_found = true;
}
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Point in time recovered to log #%" PRIu64
" seq #%" PRIu64,
wal_number, *next_sequence);
} else {
assert(immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kTolerateCorruptedTailRecords ||
immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kAbsoluteConsistency);
return status;
}
}
flush_scheduler_.Clear();
trim_history_scheduler_.Clear();
auto last_sequence = *next_sequence - 1;
if ((*next_sequence != kMaxSequenceNumber) &&
(versions_->LastSequence() <= last_sequence)) {
versions_->SetLastAllocatedSequence(last_sequence);
versions_->SetLastPublishedSequence(last_sequence);
versions_->SetLastSequence(last_sequence);
}
}
// Compare the corrupted log number to all columnfamily's current log number.
// Abort Open() if any column family's log number is greater than
// the corrupted log number, which means CF contains data beyond the point of
// corruption. This could during PIT recovery when the WAL is corrupted and
// some (but not all) CFs are flushed
// Exclude the PIT case where no log is dropped after the corruption point.
// This is to cover the case for empty wals after corrupted log, in which we
// don't reset stop_replay_for_corruption.
if (stop_replay_for_corruption == true &&
(immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kPointInTimeRecovery ||
immutable_db_options_.wal_recovery_mode ==
WALRecoveryMode::kTolerateCorruptedTailRecords)) {
for (auto cfd : *versions_->GetColumnFamilySet()) {
// One special case cause cfd->GetLogNumber() > corrupted_wal_number but
// the CF is still consistent: If a new column family is created during
// the flush and the WAL sync fails at the same time, the new CF points to
// the new WAL but the old WAL is curropted. Since the new CF is empty, it
// is still consistent. We add the check of CF sst file size to avoid the
// false positive alert.
// Note that, the check of (cfd->GetLiveSstFilesSize() > 0) may leads to
// the ignorance of a very rare inconsistency case caused in data
// canclation. One CF is empty due to KV deletion. But those operations
// are in the WAL. If the WAL is corrupted, the status of this CF might
// not be consistent with others. However, the consistency check will be
// bypassed due to empty CF.
// TODO: a better and complete implementation is needed to ensure strict
// consistency check in WAL recovery including hanlding the tailing
// issues.
if (cfd->GetLogNumber() > corrupted_wal_number &&
cfd->GetLiveSstFilesSize() > 0) {
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"Column family inconsistency: SST file contains data"
" beyond the point of corruption.");
return Status::Corruption("SST file is ahead of WALs in CF " +
cfd->GetName());
}
}
}
// True if there's any data in the WALs; if not, we can skip re-processing
// them later
bool data_seen = false;
if (!read_only) {
// no need to refcount since client still doesn't have access
// to the DB and can not drop column families while we iterate
const WalNumber max_wal_number = wal_numbers.back();
for (auto cfd : *versions_->GetColumnFamilySet()) {
auto iter = version_edits.find(cfd->GetID());
assert(iter != version_edits.end());
VersionEdit* edit = &iter->second;
if (cfd->GetLogNumber() > max_wal_number) {
// Column family cfd has already flushed the data
// from all wals. Memtable has to be empty because
// we filter the updates based on wal_number
// (in WriteBatch::InsertInto)
assert(cfd->mem()->GetFirstSequenceNumber() == 0);
assert(edit->NumEntries() == 0);
continue;
}
TEST_SYNC_POINT_CALLBACK(
"DBImpl::RecoverLogFiles:BeforeFlushFinalMemtable", /*arg=*/nullptr);
// flush the final memtable (if non-empty)
if (cfd->mem()->GetFirstSequenceNumber() != 0) {
// If flush happened in the middle of recovery (e.g. due to memtable
// being full), we flush at the end. Otherwise we'll need to record
// where we were on last flush, which make the logic complicated.
if (flushed || !immutable_db_options_.avoid_flush_during_recovery) {
status = WriteLevel0TableForRecovery(job_id, cfd, cfd->mem(), edit);
if (!status.ok()) {
// Recovery failed
break;
}
flushed = true;
cfd->CreateNewMemtable(*cfd->GetLatestMutableCFOptions(),
versions_->LastSequence());
}
data_seen = true;
}
// Update the log number info in the version edit corresponding to this
// column family. Note that the version edits will be written to MANIFEST
// together later.
// writing wal_number in the manifest means that any log file
// with number strongly less than (wal_number + 1) is already
// recovered and should be ignored on next reincarnation.
// Since we already recovered max_wal_number, we want all wals
// with numbers `<= max_wal_number` (includes this one) to be ignored
if (flushed || cfd->mem()->GetFirstSequenceNumber() == 0) {
edit->SetLogNumber(max_wal_number + 1);
}
}
if (status.ok()) {
// we must mark the next log number as used, even though it's
// not actually used. that is because VersionSet assumes
// VersionSet::next_file_number_ always to be strictly greater than any
// log number
versions_->MarkFileNumberUsed(max_wal_number + 1);
assert(recovery_ctx != nullptr);
for (auto* cfd : *versions_->GetColumnFamilySet()) {
auto iter = version_edits.find(cfd->GetID());
assert(iter != version_edits.end());
recovery_ctx->UpdateVersionEdits(cfd, iter->second);
}
if (flushed || !data_seen) {
VersionEdit wal_deletion;
if (immutable_db_options_.track_and_verify_wals_in_manifest) {
wal_deletion.DeleteWalsBefore(max_wal_number + 1);
}
if (!allow_2pc()) {
// In non-2pc mode, flushing the memtables of the column families
// means we can advance min_log_number_to_keep.
wal_deletion.SetMinLogNumberToKeep(max_wal_number + 1);
}
assert(versions_->GetColumnFamilySet() != nullptr);
recovery_ctx->UpdateVersionEdits(
versions_->GetColumnFamilySet()->GetDefault(), wal_deletion);
}
}
}
if (status.ok()) {
if (data_seen && !flushed) {
status = RestoreAliveLogFiles(wal_numbers);
} else if (!wal_numbers.empty()) { // If there's no data in the WAL, or we
// flushed all the data, still
// truncate the log file. If the process goes into a crash loop before
// the file is deleted, the preallocated space will never get freed.
const bool truncate = !read_only;
GetLogSizeAndMaybeTruncate(wal_numbers.back(), truncate, nullptr)
.PermitUncheckedError();
}
}
event_logger_.Log() << "job" << job_id << "event"
<< "recovery_finished";
return status;
}
Status DBImpl::GetLogSizeAndMaybeTruncate(uint64_t wal_number, bool truncate,
LogFileNumberSize* log_ptr) {
LogFileNumberSize log(wal_number);
std::string fname =
LogFileName(immutable_db_options_.GetWalDir(), wal_number);
Status s;
// This gets the appear size of the wals, not including preallocated space.
s = env_->GetFileSize(fname, &log.size);
TEST_SYNC_POINT_CALLBACK("DBImpl::GetLogSizeAndMaybeTruncate:0", /*arg=*/&s);
if (s.ok() && truncate) {
std::unique_ptr<FSWritableFile> last_log;
Status truncate_status = fs_->ReopenWritableFile(
fname,
fs_->OptimizeForLogWrite(
file_options_,
BuildDBOptions(immutable_db_options_, mutable_db_options_)),
&last_log, nullptr);
if (truncate_status.ok()) {
truncate_status = last_log->Truncate(log.size, IOOptions(), nullptr);
}
if (truncate_status.ok()) {
truncate_status = last_log->Close(IOOptions(), nullptr);
}
// Not a critical error if fail to truncate.
if (!truncate_status.ok() && !truncate_status.IsNotSupported()) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"Failed to truncate log #%" PRIu64 ": %s", wal_number,
truncate_status.ToString().c_str());
}
}
if (log_ptr) {
*log_ptr = log;
}
return s;
}
Status DBImpl::RestoreAliveLogFiles(const std::vector<uint64_t>& wal_numbers) {
if (wal_numbers.empty()) {
return Status::OK();
}
Status s;
mutex_.AssertHeld();
assert(immutable_db_options_.avoid_flush_during_recovery);
// Mark these as alive so they'll be considered for deletion later by
// FindObsoleteFiles()
total_log_size_ = 0;
log_empty_ = false;
uint64_t min_wal_with_unflushed_data =
versions_->MinLogNumberWithUnflushedData();
for (auto wal_number : wal_numbers) {
if (!allow_2pc() && wal_number < min_wal_with_unflushed_data) {
// In non-2pc mode, the WAL files not backing unflushed data are not
// alive, thus should not be added to the alive_log_files_.
continue;
}
// We preallocate space for wals, but then after a crash and restart, those
// preallocated space are not needed anymore. It is likely only the last
// log has such preallocated space, so we only truncate for the last log.
LogFileNumberSize log;
s = GetLogSizeAndMaybeTruncate(
wal_number, /*truncate=*/(wal_number == wal_numbers.back()), &log);
if (!s.ok()) {
break;
}
total_log_size_ += log.size;
alive_log_files_.push_back(log);
}
return s;
}
Status DBImpl::WriteLevel0TableForRecovery(int job_id, ColumnFamilyData* cfd,
MemTable* mem, VersionEdit* edit) {
mutex_.AssertHeld();
assert(cfd);
assert(cfd->imm());
// The immutable memtable list must be empty.
assert(std::numeric_limits<uint64_t>::max() ==
cfd->imm()->GetEarliestMemTableID());
const uint64_t start_micros = immutable_db_options_.clock->NowMicros();
FileMetaData meta;
std::vector<BlobFileAddition> blob_file_additions;
std::unique_ptr<std::list<uint64_t>::iterator> pending_outputs_inserted_elem(
new std::list<uint64_t>::iterator(
CaptureCurrentFileNumberInPendingOutputs()));
meta.fd = FileDescriptor(versions_->NewFileNumber(), 0, 0);
ReadOptions ro;
ro.total_order_seek = true;
ro.io_activity = Env::IOActivity::kDBOpen;
Arena arena;
Status s;
TableProperties table_properties;
{
ScopedArenaPtr<InternalIterator> iter(
mem->NewIterator(ro, /*seqno_to_time_mapping=*/nullptr, &arena,
/*prefix_extractor=*/nullptr));
ROCKS_LOG_DEBUG(immutable_db_options_.info_log,
"[%s] [WriteLevel0TableForRecovery]"
" Level-0 table #%" PRIu64 ": started",
cfd->GetName().c_str(), meta.fd.GetNumber());
// Get the latest mutable cf options while the mutex is still locked
const MutableCFOptions mutable_cf_options =
*cfd->GetLatestMutableCFOptions();
bool paranoid_file_checks =
cfd->GetLatestMutableCFOptions()->paranoid_file_checks;
int64_t _current_time = 0;
immutable_db_options_.clock->GetCurrentTime(&_current_time)
.PermitUncheckedError(); // ignore error
const uint64_t current_time = static_cast<uint64_t>(_current_time);
meta.oldest_ancester_time = current_time;
meta.epoch_number = cfd->NewEpochNumber();
{
auto write_hint =
cfd->current()->storage_info()->CalculateSSTWriteHint(/*level=*/0);
mutex_.Unlock();
SequenceNumber earliest_write_conflict_snapshot;
std::vector<SequenceNumber> snapshot_seqs =
snapshots_.GetAll(&earliest_write_conflict_snapshot);
SequenceNumber earliest_snapshot =
(snapshot_seqs.empty() ? kMaxSequenceNumber : snapshot_seqs.at(0));
auto snapshot_checker = snapshot_checker_.get();
if (use_custom_gc_ && snapshot_checker == nullptr) {
snapshot_checker = DisableGCSnapshotChecker::Instance();
}
std::vector<std::unique_ptr<FragmentedRangeTombstoneIterator>>
range_del_iters;
auto range_del_iter =
// This is called during recovery, where a live memtable is flushed
// directly. In this case, no fragmented tombstone list is cached in
// this memtable yet.
mem->NewRangeTombstoneIterator(ro, kMaxSequenceNumber,
false /* immutable_memtable */);
if (range_del_iter != nullptr) {
range_del_iters.emplace_back(range_del_iter);
}
IOStatus io_s;
const ReadOptions read_option(Env::IOActivity::kDBOpen);
const WriteOptions write_option(Env::IO_HIGH, Env::IOActivity::kDBOpen);
TableBuilderOptions tboptions(
*cfd->ioptions(), mutable_cf_options, read_option, write_option,
cfd->internal_comparator(), cfd->internal_tbl_prop_coll_factories(),
GetCompressionFlush(*cfd->ioptions(), mutable_cf_options),
mutable_cf_options.compression_opts, cfd->GetID(), cfd->GetName(),
0 /* level */, false /* is_bottommost */,
TableFileCreationReason::kRecovery, 0 /* oldest_key_time */,
0 /* file_creation_time */, db_id_, db_session_id_,
0 /* target_file_size */, meta.fd.GetNumber(), kMaxSequenceNumber);
Version* version = cfd->current();
version->Ref();
uint64_t num_input_entries = 0;
s = BuildTable(dbname_, versions_.get(), immutable_db_options_, tboptions,
file_options_for_compaction_, cfd->table_cache(),
iter.get(), std::move(range_del_iters), &meta,
&blob_file_additions, snapshot_seqs, earliest_snapshot,
earliest_write_conflict_snapshot, kMaxSequenceNumber,
snapshot_checker, paranoid_file_checks,
cfd->internal_stats(), &io_s, io_tracer_,
BlobFileCreationReason::kRecovery,
nullptr /* seqno_to_time_mapping */, &event_logger_,
job_id, nullptr /* table_properties */, write_hint,
nullptr /*full_history_ts_low*/, &blob_callback_, version,
&num_input_entries);
version->Unref();
LogFlush(immutable_db_options_.info_log);
ROCKS_LOG_DEBUG(immutable_db_options_.info_log,
"[%s] [WriteLevel0TableForRecovery]"
" Level-0 table #%" PRIu64 ": %" PRIu64 " bytes %s",
cfd->GetName().c_str(), meta.fd.GetNumber(),
meta.fd.GetFileSize(), s.ToString().c_str());
mutex_.Lock();
// TODO(AR) is this ok?
if (!io_s.ok() && s.ok()) {
s = io_s;
}
uint64_t total_num_entries = mem->num_entries();
if (s.ok() && total_num_entries != num_input_entries) {
std::string msg = "Expected " + std::to_string(total_num_entries) +
" entries in memtable, but read " +
std::to_string(num_input_entries);
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"[%s] [JOB %d] Level-0 flush during recover: %s",
cfd->GetName().c_str(), job_id, msg.c_str());
if (immutable_db_options_.flush_verify_memtable_count) {
s = Status::Corruption(msg);
}
}
}
}
ReleaseFileNumberFromPendingOutputs(pending_outputs_inserted_elem);
// Note that if file_size is zero, the file has been deleted and
// should not be added to the manifest.
const bool has_output = meta.fd.GetFileSize() > 0;
constexpr int level = 0;
if (s.ok() && has_output) {
edit->AddFile(level, meta.fd.GetNumber(), meta.fd.GetPathId(),
meta.fd.GetFileSize(), meta.smallest, meta.largest,
meta.fd.smallest_seqno, meta.fd.largest_seqno,
meta.marked_for_compaction, meta.temperature,
meta.oldest_blob_file_number, meta.oldest_ancester_time,
meta.file_creation_time, meta.epoch_number,
meta.file_checksum, meta.file_checksum_func_name,
meta.unique_id, meta.compensated_range_deletion_size,
meta.tail_size, meta.user_defined_timestamps_persisted);
for (const auto& blob : blob_file_additions) {
edit->AddBlobFile(blob);
}
// For UDT in memtable only feature, move up the cutoff timestamp whenever
// a flush happens.
const Comparator* ucmp = cfd->user_comparator();
size_t ts_sz = ucmp->timestamp_size();
if (ts_sz > 0 && !cfd->ioptions()->persist_user_defined_timestamps) {
Slice mem_newest_udt = mem->GetNewestUDT();
std::string full_history_ts_low = cfd->GetFullHistoryTsLow();
if (full_history_ts_low.empty() ||
ucmp->CompareTimestamp(mem_newest_udt, full_history_ts_low) >= 0) {
std::string new_full_history_ts_low;
GetFullHistoryTsLowFromU64CutoffTs(&mem_newest_udt,
&new_full_history_ts_low);
edit->SetFullHistoryTsLow(new_full_history_ts_low);
}
}
}
InternalStats::CompactionStats stats(CompactionReason::kFlush, 1);
stats.micros = immutable_db_options_.clock->NowMicros() - start_micros;
if (has_output) {
stats.bytes_written = meta.fd.GetFileSize();
stats.num_output_files = 1;
}
const auto& blobs = edit->GetBlobFileAdditions();
for (const auto& blob : blobs) {
stats.bytes_written_blob += blob.GetTotalBlobBytes();
}
stats.num_output_files_blob = static_cast<int>(blobs.size());
cfd->internal_stats()->AddCompactionStats(level, Env::Priority::USER, stats);
cfd->internal_stats()->AddCFStats(
InternalStats::BYTES_FLUSHED,
stats.bytes_written + stats.bytes_written_blob);
RecordTick(stats_, COMPACT_WRITE_BYTES, meta.fd.GetFileSize());
return s;
}
Status DB::Open(const Options& options, const std::string& dbname, DB** dbptr) {
DBOptions db_options(options);
ColumnFamilyOptions cf_options(options);
std::vector<ColumnFamilyDescriptor> column_families;
column_families.emplace_back(kDefaultColumnFamilyName, cf_options);
if (db_options.persist_stats_to_disk) {
column_families.emplace_back(kPersistentStatsColumnFamilyName, cf_options);
}
std::vector<ColumnFamilyHandle*> handles;
Status s = DB::Open(db_options, dbname, column_families, &handles, dbptr);
if (s.ok()) {
if (db_options.persist_stats_to_disk) {
assert(handles.size() == 2);
} else {
assert(handles.size() == 1);
}
// i can delete the handle since DBImpl is always holding a reference to
// default column family
if (db_options.persist_stats_to_disk && handles[1] != nullptr) {
delete handles[1];
}
delete handles[0];
}
return s;
}
Status DB::Open(const DBOptions& db_options, const std::string& dbname,
const std::vector<ColumnFamilyDescriptor>& column_families,
std::vector<ColumnFamilyHandle*>* handles, DB** dbptr) {
const bool kSeqPerBatch = true;
const bool kBatchPerTxn = true;
ThreadStatusUtil::SetEnableTracking(db_options.enable_thread_tracking);
ThreadStatusUtil::SetThreadOperation(ThreadStatus::OperationType::OP_DBOPEN);
bool can_retry = false;
Status s;
do {
s = DBImpl::Open(db_options, dbname, column_families, handles, dbptr,
!kSeqPerBatch, kBatchPerTxn, can_retry, &can_retry);
} while (!s.ok() && can_retry);
ThreadStatusUtil::ResetThreadStatus();
return s;
}
// TODO: Implement the trimming in flush code path.
// TODO: Perform trimming before inserting into memtable during recovery.
// TODO: Pick files with max_timestamp > trim_ts by each file's timestamp meta
// info, and handle only these files to reduce io.
Status DB::OpenAndTrimHistory(
const DBOptions& db_options, const std::string& dbname,
const std::vector<ColumnFamilyDescriptor>& column_families,
std::vector<ColumnFamilyHandle*>* handles, DB** dbptr,
std::string trim_ts) {
assert(dbptr != nullptr);
assert(handles != nullptr);
auto validate_options = [&db_options] {
if (db_options.avoid_flush_during_recovery) {
return Status::InvalidArgument(
"avoid_flush_during_recovery incompatible with "
"OpenAndTrimHistory");
}
return Status::OK();
};
auto s = validate_options();
if (!s.ok()) {
return s;
}
DB* db = nullptr;
s = DB::Open(db_options, dbname, column_families, handles, &db);
if (!s.ok()) {
return s;
}
assert(db);
CompactRangeOptions options;
options.bottommost_level_compaction =
BottommostLevelCompaction::kForceOptimized;
auto db_impl = static_cast_with_check<DBImpl>(db);
for (auto handle : *handles) {
assert(handle != nullptr);
auto cfh = static_cast_with_check<ColumnFamilyHandleImpl>(handle);
auto cfd = cfh->cfd();
assert(cfd != nullptr);
// Only compact column families with timestamp enabled
if (cfd->user_comparator() != nullptr &&
cfd->user_comparator()->timestamp_size() > 0) {
s = db_impl->CompactRangeInternal(options, handle, nullptr, nullptr,
trim_ts);
if (!s.ok()) {
break;
}
}
}
auto clean_op = [&handles, &db] {
for (auto handle : *handles) {
auto temp_s = db->DestroyColumnFamilyHandle(handle);
assert(temp_s.ok());
}
handles->clear();
delete db;
};
if (!s.ok()) {
clean_op();
return s;
}
*dbptr = db;
return s;
}
IOStatus DBImpl::CreateWAL(const WriteOptions& write_options,
uint64_t log_file_num, uint64_t recycle_log_number,
size_t preallocate_block_size,
log::Writer** new_log) {
IOStatus io_s;
std::unique_ptr<FSWritableFile> lfile;
DBOptions db_options =
BuildDBOptions(immutable_db_options_, mutable_db_options_);
FileOptions opt_file_options =
fs_->OptimizeForLogWrite(file_options_, db_options);
// DB option takes precedence when not kUnknown
if (immutable_db_options_.wal_write_temperature != Temperature::kUnknown) {
opt_file_options.temperature = immutable_db_options_.wal_write_temperature;
}
std::string wal_dir = immutable_db_options_.GetWalDir();
std::string log_fname = LogFileName(wal_dir, log_file_num);
if (recycle_log_number) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"reusing log %" PRIu64 " from recycle list\n",
recycle_log_number);
std::string old_log_fname = LogFileName(wal_dir, recycle_log_number);
TEST_SYNC_POINT("DBImpl::CreateWAL:BeforeReuseWritableFile1");
TEST_SYNC_POINT("DBImpl::CreateWAL:BeforeReuseWritableFile2");
io_s = fs_->ReuseWritableFile(log_fname, old_log_fname, opt_file_options,
&lfile, /*dbg=*/nullptr);
} else {
io_s = NewWritableFile(fs_.get(), log_fname, &lfile, opt_file_options);
}
if (io_s.ok()) {
lfile->SetWriteLifeTimeHint(CalculateWALWriteHint());
lfile->SetPreallocationBlockSize(preallocate_block_size);
const auto& listeners = immutable_db_options_.listeners;
FileTypeSet tmp_set = immutable_db_options_.checksum_handoff_file_types;
std::unique_ptr<WritableFileWriter> file_writer(new WritableFileWriter(
std::move(lfile), log_fname, opt_file_options,
immutable_db_options_.clock, io_tracer_, nullptr /* stats */,
Histograms::HISTOGRAM_ENUM_MAX /* hist_type */, listeners, nullptr,
tmp_set.Contains(FileType::kWalFile),
tmp_set.Contains(FileType::kWalFile)));
*new_log = new log::Writer(std::move(file_writer), log_file_num,
immutable_db_options_.recycle_log_file_num > 0,
immutable_db_options_.manual_wal_flush,
immutable_db_options_.wal_compression);
io_s = (*new_log)->AddCompressionTypeRecord(write_options);
}
return io_s;
}
void DBImpl::TrackExistingDataFiles(
const std::vector<std::string>& existing_data_files) {
TrackOrUntrackFiles(existing_data_files, /*track=*/true);
}
Status DBImpl::Open(const DBOptions& db_options, const std::string& dbname,
const std::vector<ColumnFamilyDescriptor>& column_families,
std::vector<ColumnFamilyHandle*>* handles, DB** dbptr,
const bool seq_per_batch, const bool batch_per_txn,
const bool is_retry, bool* can_retry) {
const WriteOptions write_options(Env::IOActivity::kDBOpen);
const ReadOptions read_options(Env::IOActivity::kDBOpen);
Status s = ValidateOptionsByTable(db_options, column_families);
if (!s.ok()) {
return s;
}
s = ValidateOptions(db_options, column_families);
if (!s.ok()) {
return s;
}
*dbptr = nullptr;
assert(handles);
handles->clear();
size_t max_write_buffer_size = 0;
for (const auto& cf : column_families) {
max_write_buffer_size =
std::max(max_write_buffer_size, cf.options.write_buffer_size);
}
DBImpl* impl = new DBImpl(db_options, dbname, seq_per_batch, batch_per_txn);
if (!impl->immutable_db_options_.info_log) {
s = impl->init_logger_creation_s_;
delete impl;
return s;
} else {
assert(impl->init_logger_creation_s_.ok());
}
s = impl->env_->CreateDirIfMissing(impl->immutable_db_options_.GetWalDir());
if (s.ok()) {
std::vector<std::string> paths;
for (auto& db_path : impl->immutable_db_options_.db_paths) {
paths.emplace_back(db_path.path);
}
for (auto& cf : column_families) {
for (auto& cf_path : cf.options.cf_paths) {
paths.emplace_back(cf_path.path);
}
}
for (const auto& path : paths) {
s = impl->env_->CreateDirIfMissing(path);
if (!s.ok()) {
break;
}
}
// For recovery from NoSpace() error, we can only handle
// the case where the database is stored in a single path
if (paths.size() <= 1) {
impl->error_handler_.EnableAutoRecovery();
}
}
if (s.ok()) {
s = impl->CreateArchivalDirectory();
}
if (!s.ok()) {
delete impl;
return s;
}
impl->wal_in_db_path_ = impl->immutable_db_options_.IsWalDirSameAsDBPath();
RecoveryContext recovery_ctx;
impl->options_mutex_.Lock();
impl->mutex_.Lock();
// Handles create_if_missing, error_if_exists
uint64_t recovered_seq(kMaxSequenceNumber);
s = impl->Recover(column_families, false /* read_only */,
false /* error_if_wal_file_exists */,
false /* error_if_data_exists_in_wals */, is_retry,
&recovered_seq, &recovery_ctx, can_retry);
if (s.ok()) {
uint64_t new_log_number = impl->versions_->NewFileNumber();
log::Writer* new_log = nullptr;
const size_t preallocate_block_size =
impl->GetWalPreallocateBlockSize(max_write_buffer_size);
s = impl->CreateWAL(write_options, new_log_number, 0 /*recycle_log_number*/,
preallocate_block_size, &new_log);
if (s.ok()) {
// Prevent log files created by previous instance from being recycled.
// They might be in alive_log_file_, and might get recycled otherwise.
impl->min_log_number_to_recycle_ = new_log_number;
}
if (s.ok()) {
InstrumentedMutexLock wl(&impl->log_write_mutex_);
impl->logfile_number_ = new_log_number;
assert(new_log != nullptr);
assert(impl->logs_.empty());
impl->logs_.emplace_back(new_log_number, new_log);
}
if (s.ok()) {
impl->alive_log_files_.emplace_back(impl->logfile_number_);
// In WritePrepared there could be gap in sequence numbers. This breaks
// the trick we use in kPointInTimeRecovery which assumes the first seq in
// the log right after the corrupted log is one larger than the last seq
// we read from the wals. To let this trick keep working, we add a dummy
// entry with the expected sequence to the first log right after recovery.
// In non-WritePrepared case also the new log after recovery could be
// empty, and thus missing the consecutive seq hint to distinguish
// middle-log corruption to corrupted-log-remained-after-recovery. This
// case also will be addressed by a dummy write.
if (recovered_seq != kMaxSequenceNumber) {
WriteBatch empty_batch;
WriteBatchInternal::SetSequence(&empty_batch, recovered_seq);
uint64_t log_used, log_size;
log::Writer* log_writer = impl->logs_.back().writer;
LogFileNumberSize& log_file_number_size = impl->alive_log_files_.back();
assert(log_writer->get_log_number() == log_file_number_size.number);
impl->mutex_.AssertHeld();
s = impl->WriteToWAL(empty_batch, write_options, log_writer, &log_used,
&log_size, log_file_number_size);
if (s.ok()) {
// Need to fsync, otherwise it might get lost after a power reset.
s = impl->FlushWAL(write_options, false);
TEST_SYNC_POINT_CALLBACK("DBImpl::Open::BeforeSyncWAL", /*arg=*/&s);
IOOptions opts;
if (s.ok()) {
s = WritableFileWriter::PrepareIOOptions(write_options, opts);
}
if (s.ok()) {
s = log_writer->file()->Sync(opts,
impl->immutable_db_options_.use_fsync);
}
}
}
}
}
if (s.ok()) {
s = impl->LogAndApplyForRecovery(recovery_ctx);
}
if (s.ok() && !impl->immutable_db_options_.write_identity_file) {
// On successful recovery, delete an obsolete IDENTITY file to avoid DB ID
// inconsistency
impl->env_->DeleteFile(IdentityFileName(impl->dbname_))
.PermitUncheckedError();
}
if (s.ok() && impl->immutable_db_options_.persist_stats_to_disk) {
impl->mutex_.AssertHeld();
s = impl->InitPersistStatsColumnFamily();
}
if (s.ok()) {
// set column family handles
for (const auto& cf : column_families) {
auto cfd =
impl->versions_->GetColumnFamilySet()->GetColumnFamily(cf.name);
if (cfd != nullptr) {
handles->push_back(
new ColumnFamilyHandleImpl(cfd, impl, &impl->mutex_));
impl->NewThreadStatusCfInfo(cfd);
} else {
if (db_options.create_missing_column_families) {
// missing column family, create it
ColumnFamilyHandle* handle = nullptr;
impl->mutex_.Unlock();
// NOTE: the work normally done in WrapUpCreateColumnFamilies will
// be done separately below.
s = impl->CreateColumnFamilyImpl(read_options, write_options,
cf.options, cf.name, &handle);
impl->mutex_.Lock();
if (s.ok()) {
handles->push_back(handle);
} else {
break;
}
} else {
s = Status::InvalidArgument("Column family not found", cf.name);
break;
}
}
}
}
if (s.ok()) {
SuperVersionContext sv_context(/* create_superversion */ true);
for (auto cfd : *impl->versions_->GetColumnFamilySet()) {
impl->InstallSuperVersionAndScheduleWork(
cfd, &sv_context, *cfd->GetLatestMutableCFOptions());
}
sv_context.Clean();
}
if (s.ok() && impl->immutable_db_options_.persist_stats_to_disk) {
// try to read format version
s = impl->PersistentStatsProcessFormatVersion();
}
if (s.ok()) {
for (auto cfd : *impl->versions_->GetColumnFamilySet()) {
if (!cfd->mem()->IsSnapshotSupported()) {
impl->is_snapshot_supported_ = false;
}
if (cfd->ioptions()->merge_operator != nullptr &&
!cfd->mem()->IsMergeOperatorSupported()) {
s = Status::InvalidArgument(
"The memtable of column family %s does not support merge operator "
"its options.merge_operator is non-null",
cfd->GetName().c_str());
}
if (!s.ok()) {
break;
}
}
}
TEST_SYNC_POINT("DBImpl::Open:Opened");
Status persist_options_status;
if (s.ok()) {
// Persist RocksDB Options before scheduling the compaction.
// The WriteOptionsFile() will release and lock the mutex internally.
persist_options_status =
impl->WriteOptionsFile(write_options, true /*db_mutex_already_held*/);
*dbptr = impl;
impl->opened_successfully_ = true;
} else {
persist_options_status.PermitUncheckedError();
}
impl->mutex_.Unlock();
auto sfm = static_cast<SstFileManagerImpl*>(
impl->immutable_db_options_.sst_file_manager.get());
if (s.ok() && sfm) {
// Set Statistics ptr for SstFileManager to dump the stats of
// DeleteScheduler.
sfm->SetStatisticsPtr(impl->immutable_db_options_.statistics);
ROCKS_LOG_INFO(impl->immutable_db_options_.info_log,
"SstFileManager instance %p", sfm);
impl->TrackExistingDataFiles(recovery_ctx.existing_data_files_);
// Reserve some disk buffer space. This is a heuristic - when we run out
// of disk space, this ensures that there is at least write_buffer_size
// amount of free space before we resume DB writes. In low disk space
// conditions, we want to avoid a lot of small L0 files due to frequent
// WAL write failures and resultant forced flushes
sfm->ReserveDiskBuffer(max_write_buffer_size,
impl->immutable_db_options_.db_paths[0].path);
}
if (s.ok()) {
// When the DB is stopped, it's possible that there are some .trash files
// that were not deleted yet, when we open the DB we will find these .trash
// files and schedule them to be deleted (or delete immediately if
// SstFileManager was not used).
// Note that we only start doing this and below delete obsolete file after
// `TrackExistingDataFiles` are called, the `max_trash_db_ratio` is
// ineffective otherwise and these files' deletion won't be rate limited
// which can cause discard stall.
for (const auto& path : impl->CollectAllDBPaths()) {
DeleteScheduler::CleanupDirectory(impl->immutable_db_options_.env, sfm,
path)
.PermitUncheckedError();
}
impl->mutex_.Lock();
// This will do a full scan.
impl->DeleteObsoleteFiles();
TEST_SYNC_POINT("DBImpl::Open:AfterDeleteFiles");
impl->MaybeScheduleFlushOrCompaction();
impl->mutex_.Unlock();
}
if (s.ok()) {
ROCKS_LOG_HEADER(impl->immutable_db_options_.info_log, "DB pointer %p",
impl);
LogFlush(impl->immutable_db_options_.info_log);
if (!impl->WALBufferIsEmpty()) {
s = impl->FlushWAL(write_options, false);
if (s.ok()) {
// Sync is needed otherwise WAL buffered data might get lost after a
// power reset.
log::Writer* log_writer = impl->logs_.back().writer;
IOOptions opts;
s = WritableFileWriter::PrepareIOOptions(write_options, opts);
if (s.ok()) {
s = log_writer->file()->Sync(opts,
impl->immutable_db_options_.use_fsync);
}
}
}
if (s.ok() && !persist_options_status.ok()) {
s = Status::IOError(
"DB::Open() failed --- Unable to persist Options file",
persist_options_status.ToString());
}
}
if (!s.ok()) {
ROCKS_LOG_WARN(impl->immutable_db_options_.info_log,
"DB::Open() failed: %s", s.ToString().c_str());
}
if (s.ok()) {
s = impl->StartPeriodicTaskScheduler();
}
if (s.ok()) {
s = impl->RegisterRecordSeqnoTimeWorker(read_options, write_options,
recovery_ctx.is_new_db_);
}
impl->options_mutex_.Unlock();
if (!s.ok()) {
for (auto* h : *handles) {
delete h;
}
handles->clear();
delete impl;
*dbptr = nullptr;
}
return s;
}
} // namespace ROCKSDB_NAMESPACE