mirror of https://github.com/facebook/rocksdb.git
967 lines
36 KiB
C++
967 lines
36 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include <algorithm>
|
|
#include <cinttypes>
|
|
#include <iostream>
|
|
#include <mutex>
|
|
#include <queue>
|
|
#include <set>
|
|
#include <thread>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
|
|
#include "db/db_impl/db_impl.h"
|
|
#include "db/dbformat.h"
|
|
#include "db/job_context.h"
|
|
#include "db/version_set.h"
|
|
#include "db/write_batch_internal.h"
|
|
#include "env/mock_env.h"
|
|
#include "file/filename.h"
|
|
#include "monitoring/statistics_impl.h"
|
|
#include "monitoring/thread_status_util.h"
|
|
#include "port/stack_trace.h"
|
|
#include "rocksdb/cache.h"
|
|
#include "rocksdb/compaction_filter.h"
|
|
#include "rocksdb/convenience.h"
|
|
#include "rocksdb/db.h"
|
|
#include "rocksdb/env.h"
|
|
#include "rocksdb/experimental.h"
|
|
#include "rocksdb/filter_policy.h"
|
|
#include "rocksdb/options.h"
|
|
#include "rocksdb/perf_context.h"
|
|
#include "rocksdb/slice.h"
|
|
#include "rocksdb/slice_transform.h"
|
|
#include "rocksdb/table.h"
|
|
#include "rocksdb/table_properties.h"
|
|
#include "rocksdb/thread_status.h"
|
|
#include "rocksdb/utilities/checkpoint.h"
|
|
#include "rocksdb/utilities/write_batch_with_index.h"
|
|
#include "table/block_based/block_based_table_factory.h"
|
|
#include "table/mock_table.h"
|
|
#include "table/plain/plain_table_factory.h"
|
|
#include "test_util/sync_point.h"
|
|
#include "test_util/testharness.h"
|
|
#include "test_util/testutil.h"
|
|
#include "util/cast_util.h"
|
|
#include "util/compression.h"
|
|
#include "util/hash.h"
|
|
#include "util/mutexlock.h"
|
|
#include "util/rate_limiter_impl.h"
|
|
#include "util/string_util.h"
|
|
#include "utilities/merge_operators.h"
|
|
|
|
#if !defined(IOS_CROSS_COMPILE)
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
static std::string RandomString(Random* rnd, int len, double ratio) {
|
|
std::string r;
|
|
test::CompressibleString(rnd, ratio, len, &r);
|
|
return r;
|
|
}
|
|
|
|
std::string Key(uint64_t key, int length) {
|
|
const int kBufSize = 1000;
|
|
char buf[kBufSize];
|
|
if (length > kBufSize) {
|
|
length = kBufSize;
|
|
}
|
|
snprintf(buf, kBufSize, "%0*" PRIu64, length, key);
|
|
return std::string(buf);
|
|
}
|
|
|
|
class CompactionJobStatsTest : public testing::Test,
|
|
public testing::WithParamInterface<bool> {
|
|
public:
|
|
std::string dbname_;
|
|
std::string alternative_wal_dir_;
|
|
Env* env_;
|
|
DB* db_;
|
|
std::vector<ColumnFamilyHandle*> handles_;
|
|
uint32_t max_subcompactions_;
|
|
|
|
Options last_options_;
|
|
|
|
CompactionJobStatsTest() : env_(Env::Default()) {
|
|
env_->SetBackgroundThreads(1, Env::LOW);
|
|
env_->SetBackgroundThreads(1, Env::HIGH);
|
|
dbname_ = test::PerThreadDBPath("compaction_job_stats_test");
|
|
alternative_wal_dir_ = dbname_ + "/wal";
|
|
Options options;
|
|
options.create_if_missing = true;
|
|
max_subcompactions_ = GetParam();
|
|
options.max_subcompactions = max_subcompactions_;
|
|
auto delete_options = options;
|
|
delete_options.wal_dir = alternative_wal_dir_;
|
|
EXPECT_OK(DestroyDB(dbname_, delete_options));
|
|
// Destroy it for not alternative WAL dir is used.
|
|
EXPECT_OK(DestroyDB(dbname_, options));
|
|
db_ = nullptr;
|
|
Reopen(options);
|
|
}
|
|
|
|
~CompactionJobStatsTest() override {
|
|
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
|
|
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({});
|
|
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
|
|
Close();
|
|
Options options;
|
|
options.db_paths.emplace_back(dbname_, 0);
|
|
options.db_paths.emplace_back(dbname_ + "_2", 0);
|
|
options.db_paths.emplace_back(dbname_ + "_3", 0);
|
|
options.db_paths.emplace_back(dbname_ + "_4", 0);
|
|
EXPECT_OK(DestroyDB(dbname_, options));
|
|
}
|
|
|
|
// Required if inheriting from testing::WithParamInterface<>
|
|
static void SetUpTestCase() {}
|
|
static void TearDownTestCase() {}
|
|
|
|
DBImpl* dbfull() { return static_cast_with_check<DBImpl>(db_); }
|
|
|
|
void CreateColumnFamilies(const std::vector<std::string>& cfs,
|
|
const Options& options) {
|
|
ColumnFamilyOptions cf_opts(options);
|
|
size_t cfi = handles_.size();
|
|
handles_.resize(cfi + cfs.size());
|
|
for (const auto& cf : cfs) {
|
|
ASSERT_OK(db_->CreateColumnFamily(cf_opts, cf, &handles_[cfi++]));
|
|
}
|
|
}
|
|
|
|
void CreateAndReopenWithCF(const std::vector<std::string>& cfs,
|
|
const Options& options) {
|
|
CreateColumnFamilies(cfs, options);
|
|
std::vector<std::string> cfs_plus_default = cfs;
|
|
cfs_plus_default.insert(cfs_plus_default.begin(), kDefaultColumnFamilyName);
|
|
ReopenWithColumnFamilies(cfs_plus_default, options);
|
|
}
|
|
|
|
void ReopenWithColumnFamilies(const std::vector<std::string>& cfs,
|
|
const std::vector<Options>& options) {
|
|
ASSERT_OK(TryReopenWithColumnFamilies(cfs, options));
|
|
}
|
|
|
|
void ReopenWithColumnFamilies(const std::vector<std::string>& cfs,
|
|
const Options& options) {
|
|
ASSERT_OK(TryReopenWithColumnFamilies(cfs, options));
|
|
}
|
|
|
|
Status TryReopenWithColumnFamilies(const std::vector<std::string>& cfs,
|
|
const std::vector<Options>& options) {
|
|
Close();
|
|
EXPECT_EQ(cfs.size(), options.size());
|
|
std::vector<ColumnFamilyDescriptor> column_families;
|
|
for (size_t i = 0; i < cfs.size(); ++i) {
|
|
column_families.emplace_back(cfs[i], options[i]);
|
|
}
|
|
DBOptions db_opts = DBOptions(options[0]);
|
|
return DB::Open(db_opts, dbname_, column_families, &handles_, &db_);
|
|
}
|
|
|
|
Status TryReopenWithColumnFamilies(const std::vector<std::string>& cfs,
|
|
const Options& options) {
|
|
Close();
|
|
std::vector<Options> v_opts(cfs.size(), options);
|
|
return TryReopenWithColumnFamilies(cfs, v_opts);
|
|
}
|
|
|
|
void Reopen(const Options& options) { ASSERT_OK(TryReopen(options)); }
|
|
|
|
void Close() {
|
|
for (auto h : handles_) {
|
|
delete h;
|
|
}
|
|
handles_.clear();
|
|
delete db_;
|
|
db_ = nullptr;
|
|
}
|
|
|
|
void DestroyAndReopen(const Options& options) {
|
|
// Destroy using last options
|
|
Destroy(last_options_);
|
|
ASSERT_OK(TryReopen(options));
|
|
}
|
|
|
|
void Destroy(const Options& options) {
|
|
Close();
|
|
ASSERT_OK(DestroyDB(dbname_, options));
|
|
}
|
|
|
|
Status ReadOnlyReopen(const Options& options) {
|
|
return DB::OpenForReadOnly(options, dbname_, &db_);
|
|
}
|
|
|
|
Status TryReopen(const Options& options) {
|
|
Close();
|
|
last_options_ = options;
|
|
return DB::Open(options, dbname_, &db_);
|
|
}
|
|
|
|
Status Flush(int cf = 0) {
|
|
if (cf == 0) {
|
|
return db_->Flush(FlushOptions());
|
|
} else {
|
|
return db_->Flush(FlushOptions(), handles_[cf]);
|
|
}
|
|
}
|
|
|
|
Status Put(const Slice& k, const Slice& v, WriteOptions wo = WriteOptions()) {
|
|
return db_->Put(wo, k, v);
|
|
}
|
|
|
|
Status Put(int cf, const Slice& k, const Slice& v,
|
|
WriteOptions wo = WriteOptions()) {
|
|
return db_->Put(wo, handles_[cf], k, v);
|
|
}
|
|
|
|
Status Delete(const std::string& k) { return db_->Delete(WriteOptions(), k); }
|
|
|
|
Status Delete(int cf, const std::string& k) {
|
|
return db_->Delete(WriteOptions(), handles_[cf], k);
|
|
}
|
|
|
|
std::string Get(const std::string& k, const Snapshot* snapshot = nullptr) {
|
|
ReadOptions options;
|
|
options.verify_checksums = true;
|
|
options.snapshot = snapshot;
|
|
std::string result;
|
|
Status s = db_->Get(options, k, &result);
|
|
if (s.IsNotFound()) {
|
|
result = "NOT_FOUND";
|
|
} else if (!s.ok()) {
|
|
result = s.ToString();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::string Get(int cf, const std::string& k,
|
|
const Snapshot* snapshot = nullptr) {
|
|
ReadOptions options;
|
|
options.verify_checksums = true;
|
|
options.snapshot = snapshot;
|
|
std::string result;
|
|
Status s = db_->Get(options, handles_[cf], k, &result);
|
|
if (s.IsNotFound()) {
|
|
result = "NOT_FOUND";
|
|
} else if (!s.ok()) {
|
|
result = s.ToString();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int NumTableFilesAtLevel(int level, int cf = 0) {
|
|
std::string property;
|
|
if (cf == 0) {
|
|
// default cfd
|
|
EXPECT_TRUE(db_->GetProperty(
|
|
"rocksdb.num-files-at-level" + std::to_string(level), &property));
|
|
} else {
|
|
EXPECT_TRUE(db_->GetProperty(
|
|
handles_[cf], "rocksdb.num-files-at-level" + std::to_string(level),
|
|
&property));
|
|
}
|
|
return atoi(property.c_str());
|
|
}
|
|
|
|
// Return spread of files per level
|
|
std::string FilesPerLevel(int cf = 0) {
|
|
int num_levels =
|
|
(cf == 0) ? db_->NumberLevels() : db_->NumberLevels(handles_[1]);
|
|
std::string result;
|
|
size_t last_non_zero_offset = 0;
|
|
for (int level = 0; level < num_levels; level++) {
|
|
int f = NumTableFilesAtLevel(level, cf);
|
|
char buf[100];
|
|
snprintf(buf, sizeof(buf), "%s%d", (level ? "," : ""), f);
|
|
result += buf;
|
|
if (f > 0) {
|
|
last_non_zero_offset = result.size();
|
|
}
|
|
}
|
|
result.resize(last_non_zero_offset);
|
|
return result;
|
|
}
|
|
|
|
Status Size(uint64_t* size, const Slice& start, const Slice& limit,
|
|
int cf = 0) {
|
|
Range r(start, limit);
|
|
if (cf == 0) {
|
|
return db_->GetApproximateSizes(&r, 1, size);
|
|
} else {
|
|
return db_->GetApproximateSizes(handles_[1], &r, 1, size);
|
|
}
|
|
}
|
|
|
|
void Compact(int cf, const Slice& start, const Slice& limit,
|
|
uint32_t target_path_id) {
|
|
CompactRangeOptions compact_options;
|
|
compact_options.target_path_id = target_path_id;
|
|
ASSERT_OK(db_->CompactRange(compact_options, handles_[cf], &start, &limit));
|
|
}
|
|
|
|
void Compact(int cf, const Slice& start, const Slice& limit) {
|
|
ASSERT_OK(
|
|
db_->CompactRange(CompactRangeOptions(), handles_[cf], &start, &limit));
|
|
}
|
|
|
|
void Compact(const Slice& start, const Slice& limit) {
|
|
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &start, &limit));
|
|
}
|
|
|
|
void TEST_Compact(int level, int cf, const Slice& start, const Slice& limit) {
|
|
ASSERT_OK(dbfull()->TEST_CompactRange(level, &start, &limit, handles_[cf],
|
|
true /* disallow trivial move */));
|
|
}
|
|
|
|
// Do n memtable compactions, each of which produces an sstable
|
|
// covering the range [small,large].
|
|
void MakeTables(int n, const std::string& small, const std::string& large,
|
|
int cf = 0) {
|
|
for (int i = 0; i < n; i++) {
|
|
ASSERT_OK(Put(cf, small, "begin"));
|
|
ASSERT_OK(Put(cf, large, "end"));
|
|
ASSERT_OK(Flush(cf));
|
|
}
|
|
}
|
|
|
|
static void SetDeletionCompactionStats(CompactionJobStats* stats,
|
|
uint64_t input_deletions,
|
|
uint64_t expired_deletions,
|
|
uint64_t records_replaced) {
|
|
stats->num_input_deletion_records = input_deletions;
|
|
stats->num_expired_deletion_records = expired_deletions;
|
|
stats->num_records_replaced = records_replaced;
|
|
}
|
|
|
|
void MakeTableWithKeyValues(Random* rnd, uint64_t smallest, uint64_t largest,
|
|
int key_size, int value_size, uint64_t interval,
|
|
double ratio, int cf = 0) {
|
|
for (auto key = smallest; key < largest; key += interval) {
|
|
ASSERT_OK(Put(cf, Slice(Key(key, key_size)),
|
|
Slice(RandomString(rnd, value_size, ratio))));
|
|
}
|
|
ASSERT_OK(Flush(cf));
|
|
}
|
|
|
|
// This function behaves with the implicit understanding that two
|
|
// rounds of keys are inserted into the database, as per the behavior
|
|
// of the DeletionStatsTest.
|
|
void SelectivelyDeleteKeys(uint64_t smallest, uint64_t largest,
|
|
uint64_t interval, int deletion_interval,
|
|
int key_size, uint64_t cutoff_key_num,
|
|
CompactionJobStats* stats, int cf = 0) {
|
|
// interval needs to be >= 2 so that deletion entries can be inserted
|
|
// that are intended to not result in an actual key deletion by using
|
|
// an offset of 1 from another existing key
|
|
ASSERT_GE(interval, 2);
|
|
|
|
uint64_t ctr = 1;
|
|
uint32_t deletions_made = 0;
|
|
uint32_t num_deleted = 0;
|
|
uint32_t num_expired = 0;
|
|
for (auto key = smallest; key <= largest; key += interval, ctr++) {
|
|
if (ctr % deletion_interval == 0) {
|
|
ASSERT_OK(Delete(cf, Key(key, key_size)));
|
|
deletions_made++;
|
|
num_deleted++;
|
|
|
|
if (key > cutoff_key_num) {
|
|
num_expired++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Insert some deletions for keys that don't exist that
|
|
// are both in and out of the key range
|
|
ASSERT_OK(Delete(cf, Key(smallest + 1, key_size)));
|
|
deletions_made++;
|
|
|
|
ASSERT_OK(Delete(cf, Key(smallest - 1, key_size)));
|
|
deletions_made++;
|
|
num_expired++;
|
|
|
|
ASSERT_OK(Delete(cf, Key(smallest - 9, key_size)));
|
|
deletions_made++;
|
|
num_expired++;
|
|
|
|
ASSERT_OK(Flush(cf));
|
|
SetDeletionCompactionStats(stats, deletions_made, num_expired, num_deleted);
|
|
}
|
|
};
|
|
|
|
// An EventListener which helps verify the compaction results in
|
|
// test CompactionJobStatsTest.
|
|
class CompactionJobStatsChecker : public EventListener {
|
|
public:
|
|
CompactionJobStatsChecker()
|
|
: compression_enabled_(false), verify_next_comp_io_stats_(false) {}
|
|
|
|
size_t NumberOfUnverifiedStats() { return expected_stats_.size(); }
|
|
|
|
void set_verify_next_comp_io_stats(bool v) { verify_next_comp_io_stats_ = v; }
|
|
|
|
// Once a compaction completed, this function will verify the returned
|
|
// CompactionJobInfo with the oldest CompactionJobInfo added earlier
|
|
// in "expected_stats_" which has not yet being used for verification.
|
|
void OnCompactionCompleted(DB* /*db*/, const CompactionJobInfo& ci) override {
|
|
if (verify_next_comp_io_stats_) {
|
|
ASSERT_GT(ci.stats.file_write_nanos, 0);
|
|
ASSERT_GT(ci.stats.file_range_sync_nanos, 0);
|
|
ASSERT_GT(ci.stats.file_fsync_nanos, 0);
|
|
ASSERT_GT(ci.stats.file_prepare_write_nanos, 0);
|
|
verify_next_comp_io_stats_ = false;
|
|
}
|
|
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
if (expected_stats_.size()) {
|
|
Verify(ci.stats, expected_stats_.front());
|
|
expected_stats_.pop();
|
|
}
|
|
}
|
|
|
|
// A helper function which verifies whether two CompactionJobStats
|
|
// match. The verification of all compaction stats are done by
|
|
// ASSERT_EQ except for the total input / output bytes, which we
|
|
// use ASSERT_GE and ASSERT_LE with a reasonable bias ---
|
|
// 10% in uncompressed case and 20% when compression is used.
|
|
virtual void Verify(const CompactionJobStats& current_stats,
|
|
const CompactionJobStats& stats) {
|
|
// time
|
|
ASSERT_GT(current_stats.elapsed_micros, 0U);
|
|
|
|
ASSERT_EQ(current_stats.num_input_records, stats.num_input_records);
|
|
ASSERT_EQ(current_stats.num_input_files, stats.num_input_files);
|
|
ASSERT_EQ(current_stats.num_input_files_at_output_level,
|
|
stats.num_input_files_at_output_level);
|
|
|
|
ASSERT_EQ(current_stats.num_output_records, stats.num_output_records);
|
|
ASSERT_EQ(current_stats.num_output_files, stats.num_output_files);
|
|
|
|
ASSERT_EQ(current_stats.is_full_compaction, stats.is_full_compaction);
|
|
ASSERT_EQ(current_stats.is_manual_compaction, stats.is_manual_compaction);
|
|
|
|
// file size
|
|
double kFileSizeBias = compression_enabled_ ? 0.20 : 0.10;
|
|
ASSERT_GE(current_stats.total_input_bytes * (1.00 + kFileSizeBias),
|
|
stats.total_input_bytes);
|
|
ASSERT_LE(current_stats.total_input_bytes,
|
|
stats.total_input_bytes * (1.00 + kFileSizeBias));
|
|
ASSERT_GE(current_stats.total_output_bytes * (1.00 + kFileSizeBias),
|
|
stats.total_output_bytes);
|
|
ASSERT_LE(current_stats.total_output_bytes,
|
|
stats.total_output_bytes * (1.00 + kFileSizeBias));
|
|
ASSERT_EQ(current_stats.total_input_raw_key_bytes,
|
|
stats.total_input_raw_key_bytes);
|
|
ASSERT_EQ(current_stats.total_input_raw_value_bytes,
|
|
stats.total_input_raw_value_bytes);
|
|
|
|
ASSERT_EQ(current_stats.num_records_replaced, stats.num_records_replaced);
|
|
|
|
ASSERT_EQ(current_stats.num_corrupt_keys, stats.num_corrupt_keys);
|
|
|
|
ASSERT_EQ(std::string(current_stats.smallest_output_key_prefix),
|
|
std::string(stats.smallest_output_key_prefix));
|
|
ASSERT_EQ(std::string(current_stats.largest_output_key_prefix),
|
|
std::string(stats.largest_output_key_prefix));
|
|
}
|
|
|
|
// Add an expected compaction stats, which will be used to
|
|
// verify the CompactionJobStats returned by the OnCompactionCompleted()
|
|
// callback.
|
|
void AddExpectedStats(const CompactionJobStats& stats) {
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
expected_stats_.push(stats);
|
|
}
|
|
|
|
void EnableCompression(bool flag) { compression_enabled_ = flag; }
|
|
|
|
bool verify_next_comp_io_stats() const { return verify_next_comp_io_stats_; }
|
|
|
|
private:
|
|
std::mutex mutex_;
|
|
std::queue<CompactionJobStats> expected_stats_;
|
|
bool compression_enabled_;
|
|
bool verify_next_comp_io_stats_;
|
|
};
|
|
|
|
// An EventListener which helps verify the compaction statistics in
|
|
// the test DeletionStatsTest.
|
|
class CompactionJobDeletionStatsChecker : public CompactionJobStatsChecker {
|
|
public:
|
|
// Verifies whether two CompactionJobStats match.
|
|
void Verify(const CompactionJobStats& current_stats,
|
|
const CompactionJobStats& stats) override {
|
|
ASSERT_EQ(current_stats.num_input_deletion_records,
|
|
stats.num_input_deletion_records);
|
|
ASSERT_EQ(current_stats.num_expired_deletion_records,
|
|
stats.num_expired_deletion_records);
|
|
ASSERT_EQ(current_stats.num_records_replaced, stats.num_records_replaced);
|
|
|
|
ASSERT_EQ(current_stats.num_corrupt_keys, stats.num_corrupt_keys);
|
|
}
|
|
};
|
|
|
|
namespace {
|
|
|
|
uint64_t EstimatedFileSize(uint64_t num_records, size_t key_size,
|
|
size_t value_size, double compression_ratio = 1.0,
|
|
size_t block_size = 4096,
|
|
int bloom_bits_per_key = 10) {
|
|
const size_t kPerKeyOverhead = 8;
|
|
const size_t kFooterSize = 512;
|
|
|
|
uint64_t data_size = static_cast<uint64_t>(
|
|
num_records *
|
|
(key_size + value_size * compression_ratio + kPerKeyOverhead));
|
|
|
|
return data_size + kFooterSize +
|
|
num_records * bloom_bits_per_key / 8 // filter block
|
|
+ data_size * (key_size + 8) / block_size; // index block
|
|
}
|
|
|
|
namespace {
|
|
|
|
void CopyPrefix(const Slice& src, size_t prefix_length, std::string* dst) {
|
|
assert(prefix_length > 0);
|
|
size_t length = src.size() > prefix_length ? prefix_length : src.size();
|
|
dst->assign(src.data(), length);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
CompactionJobStats NewManualCompactionJobStats(
|
|
const std::string& smallest_key, const std::string& largest_key,
|
|
size_t num_input_files, size_t num_input_files_at_output_level,
|
|
uint64_t num_input_records, size_t key_size, size_t value_size,
|
|
size_t num_output_files, uint64_t num_output_records,
|
|
double compression_ratio, uint64_t num_records_replaced,
|
|
bool is_full = false, bool is_manual = true) {
|
|
CompactionJobStats stats;
|
|
stats.Reset();
|
|
|
|
stats.num_input_records = num_input_records;
|
|
stats.num_input_files = num_input_files;
|
|
stats.num_input_files_at_output_level = num_input_files_at_output_level;
|
|
|
|
stats.num_output_records = num_output_records;
|
|
stats.num_output_files = num_output_files;
|
|
|
|
stats.total_input_bytes =
|
|
EstimatedFileSize(num_input_records / num_input_files, key_size,
|
|
value_size, compression_ratio) *
|
|
num_input_files;
|
|
stats.total_output_bytes =
|
|
EstimatedFileSize(num_output_records / num_output_files, key_size,
|
|
value_size, compression_ratio) *
|
|
num_output_files;
|
|
stats.total_input_raw_key_bytes = num_input_records * (key_size + 8);
|
|
stats.total_input_raw_value_bytes = num_input_records * value_size;
|
|
|
|
stats.is_full_compaction = is_full;
|
|
stats.is_manual_compaction = is_manual;
|
|
|
|
stats.num_records_replaced = num_records_replaced;
|
|
|
|
CopyPrefix(smallest_key, CompactionJobStats::kMaxPrefixLength,
|
|
&stats.smallest_output_key_prefix);
|
|
CopyPrefix(largest_key, CompactionJobStats::kMaxPrefixLength,
|
|
&stats.largest_output_key_prefix);
|
|
|
|
return stats;
|
|
}
|
|
|
|
CompressionType GetAnyCompression() {
|
|
if (Snappy_Supported()) {
|
|
return kSnappyCompression;
|
|
} else if (Zlib_Supported()) {
|
|
return kZlibCompression;
|
|
} else if (BZip2_Supported()) {
|
|
return kBZip2Compression;
|
|
} else if (LZ4_Supported()) {
|
|
return kLZ4Compression;
|
|
} else if (XPRESS_Supported()) {
|
|
return kXpressCompression;
|
|
}
|
|
|
|
return kNoCompression;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
TEST_P(CompactionJobStatsTest, CompactionJobStatsTest) {
|
|
Random rnd(301);
|
|
const int kBufSize = 100;
|
|
char buf[kBufSize];
|
|
uint64_t key_base = 100000000l;
|
|
// Note: key_base must be multiple of num_keys_per_L0_file
|
|
int num_keys_per_L0_file = 100;
|
|
const int kTestScale = 8;
|
|
const int kKeySize = 10;
|
|
const int kValueSize = 1000;
|
|
const double kCompressionRatio = 0.5;
|
|
double compression_ratio = 1.0;
|
|
uint64_t key_interval = key_base / num_keys_per_L0_file;
|
|
|
|
// Whenever a compaction completes, this listener will try to
|
|
// verify whether the returned CompactionJobStats matches
|
|
// what we expect. The expected CompactionJobStats is added
|
|
// via AddExpectedStats().
|
|
auto* stats_checker = new CompactionJobStatsChecker();
|
|
Options options;
|
|
options.level_compaction_dynamic_level_bytes = false;
|
|
options.listeners.emplace_back(stats_checker);
|
|
options.create_if_missing = true;
|
|
// just enough setting to hold off auto-compaction.
|
|
options.level0_file_num_compaction_trigger = kTestScale + 1;
|
|
options.num_levels = 3;
|
|
options.compression = kNoCompression;
|
|
options.max_subcompactions = max_subcompactions_;
|
|
options.bytes_per_sync = 512 * 1024;
|
|
|
|
options.report_bg_io_stats = true;
|
|
for (int test = 0; test < 2; ++test) {
|
|
DestroyAndReopen(options);
|
|
CreateAndReopenWithCF({"pikachu"}, options);
|
|
|
|
// 1st Phase: generate "num_L0_files" L0 files.
|
|
int num_L0_files = 0;
|
|
for (uint64_t start_key = key_base; start_key <= key_base * kTestScale;
|
|
start_key += key_base) {
|
|
MakeTableWithKeyValues(&rnd, start_key, start_key + key_base - 1,
|
|
kKeySize, kValueSize, key_interval,
|
|
compression_ratio, 1);
|
|
snprintf(buf, kBufSize, "%d", ++num_L0_files);
|
|
ASSERT_EQ(std::string(buf), FilesPerLevel(1));
|
|
}
|
|
ASSERT_EQ(std::to_string(num_L0_files), FilesPerLevel(1));
|
|
|
|
// 2nd Phase: perform L0 -> L1 compaction.
|
|
int L0_compaction_count = 6;
|
|
int count = 1;
|
|
std::string smallest_key;
|
|
std::string largest_key;
|
|
for (uint64_t start_key = key_base;
|
|
start_key <= key_base * L0_compaction_count;
|
|
start_key += key_base, count++) {
|
|
smallest_key = Key(start_key, 10);
|
|
largest_key = Key(start_key + key_base - key_interval, 10);
|
|
stats_checker->AddExpectedStats(NewManualCompactionJobStats(
|
|
smallest_key, largest_key, 1, 0, num_keys_per_L0_file, kKeySize,
|
|
kValueSize, 1, num_keys_per_L0_file, compression_ratio, 0));
|
|
ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U);
|
|
TEST_Compact(0, 1, smallest_key, largest_key);
|
|
snprintf(buf, kBufSize, "%d,%d", num_L0_files - count, count);
|
|
ASSERT_EQ(std::string(buf), FilesPerLevel(1));
|
|
}
|
|
|
|
// compact two files into one in the last L0 -> L1 compaction
|
|
int num_remaining_L0 = num_L0_files - L0_compaction_count;
|
|
smallest_key = Key(key_base * (L0_compaction_count + 1), 10);
|
|
largest_key = Key(key_base * (kTestScale + 1) - key_interval, 10);
|
|
stats_checker->AddExpectedStats(NewManualCompactionJobStats(
|
|
smallest_key, largest_key, num_remaining_L0, 0,
|
|
num_keys_per_L0_file * num_remaining_L0, kKeySize, kValueSize, 1,
|
|
num_keys_per_L0_file * num_remaining_L0, compression_ratio, 0));
|
|
ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U);
|
|
TEST_Compact(0, 1, smallest_key, largest_key);
|
|
|
|
int num_L1_files = num_L0_files - num_remaining_L0 + 1;
|
|
num_L0_files = 0;
|
|
snprintf(buf, kBufSize, "%d,%d", num_L0_files, num_L1_files);
|
|
ASSERT_EQ(std::string(buf), FilesPerLevel(1));
|
|
|
|
// 3rd Phase: generate sparse L0 files (wider key-range, same num of keys)
|
|
int sparseness = 2;
|
|
for (uint64_t start_key = key_base; start_key <= key_base * kTestScale;
|
|
start_key += key_base * sparseness) {
|
|
MakeTableWithKeyValues(
|
|
&rnd, start_key, start_key + key_base * sparseness - 1, kKeySize,
|
|
kValueSize, key_base * sparseness / num_keys_per_L0_file,
|
|
compression_ratio, 1);
|
|
snprintf(buf, kBufSize, "%d,%d", ++num_L0_files, num_L1_files);
|
|
ASSERT_EQ(std::string(buf), FilesPerLevel(1));
|
|
}
|
|
|
|
// 4th Phase: perform L0 -> L1 compaction again, expect higher write amp
|
|
// When subcompactions are enabled, the number of output files increases
|
|
// by 1 because multiple threads are consuming the input and generating
|
|
// output files without coordinating to see if the output could fit into
|
|
// a smaller number of files like it does when it runs sequentially
|
|
int num_output_files = options.max_subcompactions > 1 ? 2 : 1;
|
|
for (uint64_t start_key = key_base; num_L0_files > 1;
|
|
start_key += key_base * sparseness) {
|
|
smallest_key = Key(start_key, 10);
|
|
largest_key = Key(start_key + key_base * sparseness - key_interval, 10);
|
|
stats_checker->AddExpectedStats(NewManualCompactionJobStats(
|
|
smallest_key, largest_key, 3, 2, num_keys_per_L0_file * 3, kKeySize,
|
|
kValueSize, num_output_files,
|
|
num_keys_per_L0_file * 2, // 1/3 of the data will be updated.
|
|
compression_ratio, num_keys_per_L0_file));
|
|
ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U);
|
|
Compact(1, smallest_key, largest_key);
|
|
if (options.max_subcompactions == 1) {
|
|
--num_L1_files;
|
|
}
|
|
snprintf(buf, kBufSize, "%d,%d", --num_L0_files, num_L1_files);
|
|
ASSERT_EQ(std::string(buf), FilesPerLevel(1));
|
|
}
|
|
|
|
// 5th Phase: Do a full compaction, which involves in two sub-compactions.
|
|
// Here we expect to have 1 L0 files and 4 L1 files
|
|
// In the first sub-compaction, we expect L0 compaction.
|
|
smallest_key = Key(key_base, 10);
|
|
largest_key = Key(key_base * (kTestScale + 1) - key_interval, 10);
|
|
stats_checker->AddExpectedStats(NewManualCompactionJobStats(
|
|
Key(key_base * (kTestScale + 1 - sparseness), 10), largest_key, 2, 1,
|
|
num_keys_per_L0_file * 3, kKeySize, kValueSize, 1,
|
|
num_keys_per_L0_file * 2, compression_ratio, num_keys_per_L0_file));
|
|
ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U);
|
|
Compact(1, smallest_key, largest_key);
|
|
|
|
num_L1_files = options.max_subcompactions > 1 ? 7 : 4;
|
|
char L1_buf[4];
|
|
snprintf(L1_buf, sizeof(L1_buf), "0,%d", num_L1_files);
|
|
std::string L1_files(L1_buf);
|
|
ASSERT_EQ(L1_files, FilesPerLevel(1));
|
|
options.compression = GetAnyCompression();
|
|
if (options.compression == kNoCompression) {
|
|
break;
|
|
}
|
|
stats_checker->EnableCompression(true);
|
|
compression_ratio = kCompressionRatio;
|
|
|
|
for (int i = 0; i < 5; i++) {
|
|
ASSERT_OK(Put(1, Slice(Key(key_base + i, 10)),
|
|
Slice(RandomString(&rnd, 512 * 1024, 1))));
|
|
}
|
|
|
|
ASSERT_OK(Flush(1));
|
|
ASSERT_OK(static_cast_with_check<DBImpl>(db_)->TEST_WaitForCompact());
|
|
|
|
stats_checker->set_verify_next_comp_io_stats(true);
|
|
std::atomic<bool> first_prepare_write(true);
|
|
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
|
|
"WritableFileWriter::Append:BeforePrepareWrite", [&](void* /*arg*/) {
|
|
if (first_prepare_write.load()) {
|
|
options.env->SleepForMicroseconds(3);
|
|
first_prepare_write.store(false);
|
|
}
|
|
});
|
|
|
|
std::atomic<bool> first_flush(true);
|
|
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
|
|
"WritableFileWriter::Flush:BeforeAppend", [&](void* /*arg*/) {
|
|
if (first_flush.load()) {
|
|
options.env->SleepForMicroseconds(3);
|
|
first_flush.store(false);
|
|
}
|
|
});
|
|
|
|
std::atomic<bool> first_sync(true);
|
|
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
|
|
"WritableFileWriter::SyncInternal:0", [&](void* /*arg*/) {
|
|
if (first_sync.load()) {
|
|
options.env->SleepForMicroseconds(3);
|
|
first_sync.store(false);
|
|
}
|
|
});
|
|
|
|
std::atomic<bool> first_range_sync(true);
|
|
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
|
|
"WritableFileWriter::RangeSync:0", [&](void* /*arg*/) {
|
|
if (first_range_sync.load()) {
|
|
options.env->SleepForMicroseconds(3);
|
|
first_range_sync.store(false);
|
|
}
|
|
});
|
|
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
Compact(1, smallest_key, largest_key);
|
|
|
|
ASSERT_TRUE(!stats_checker->verify_next_comp_io_stats());
|
|
ASSERT_TRUE(!first_prepare_write.load());
|
|
ASSERT_TRUE(!first_flush.load());
|
|
ASSERT_TRUE(!first_sync.load());
|
|
ASSERT_TRUE(!first_range_sync.load());
|
|
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
|
|
}
|
|
ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 0U);
|
|
}
|
|
|
|
TEST_P(CompactionJobStatsTest, DeletionStatsTest) {
|
|
Random rnd(301);
|
|
uint64_t key_base = 100000l;
|
|
// Note: key_base must be multiple of num_keys_per_L0_file
|
|
int num_keys_per_L0_file = 20;
|
|
const int kTestScale = 8; // make sure this is even
|
|
const int kKeySize = 10;
|
|
const int kValueSize = 100;
|
|
double compression_ratio = 1.0;
|
|
uint64_t key_interval = key_base / num_keys_per_L0_file;
|
|
uint64_t largest_key_num = key_base * (kTestScale + 1) - key_interval;
|
|
uint64_t cutoff_key_num = key_base * (kTestScale / 2 + 1) - key_interval;
|
|
const std::string smallest_key = Key(key_base - 10, kKeySize);
|
|
const std::string largest_key = Key(largest_key_num + 10, kKeySize);
|
|
|
|
// Whenever a compaction completes, this listener will try to
|
|
// verify whether the returned CompactionJobStats matches
|
|
// what we expect.
|
|
auto* stats_checker = new CompactionJobDeletionStatsChecker();
|
|
Options options;
|
|
options.level_compaction_dynamic_level_bytes = false;
|
|
options.listeners.emplace_back(stats_checker);
|
|
options.create_if_missing = true;
|
|
options.level0_file_num_compaction_trigger = kTestScale + 1;
|
|
options.num_levels = 3;
|
|
options.compression = kNoCompression;
|
|
options.max_bytes_for_level_multiplier = 2;
|
|
options.max_subcompactions = max_subcompactions_;
|
|
|
|
DestroyAndReopen(options);
|
|
CreateAndReopenWithCF({"pikachu"}, options);
|
|
|
|
// Stage 1: Generate several L0 files and then send them to L2 by
|
|
// using CompactRangeOptions and CompactRange(). These files will
|
|
// have a strict subset of the keys from the full key-range
|
|
for (uint64_t start_key = key_base; start_key <= key_base * kTestScale / 2;
|
|
start_key += key_base) {
|
|
MakeTableWithKeyValues(&rnd, start_key, start_key + key_base - 1, kKeySize,
|
|
kValueSize, key_interval, compression_ratio, 1);
|
|
}
|
|
|
|
CompactRangeOptions cr_options;
|
|
cr_options.change_level = true;
|
|
cr_options.target_level = 2;
|
|
ASSERT_OK(db_->CompactRange(cr_options, handles_[1], nullptr, nullptr));
|
|
ASSERT_GT(NumTableFilesAtLevel(2, 1), 0);
|
|
|
|
// Stage 2: Generate files including keys from the entire key range
|
|
for (uint64_t start_key = key_base; start_key <= key_base * kTestScale;
|
|
start_key += key_base) {
|
|
MakeTableWithKeyValues(&rnd, start_key, start_key + key_base - 1, kKeySize,
|
|
kValueSize, key_interval, compression_ratio, 1);
|
|
}
|
|
|
|
// Send these L0 files to L1
|
|
TEST_Compact(0, 1, smallest_key, largest_key);
|
|
ASSERT_GT(NumTableFilesAtLevel(1, 1), 0);
|
|
|
|
// Add a new record and flush so now there is a L0 file
|
|
// with a value too (not just deletions from the next step)
|
|
ASSERT_OK(Put(1, Key(key_base - 6, kKeySize), "test"));
|
|
ASSERT_OK(Flush(1));
|
|
|
|
// Stage 3: Generate L0 files with some deletions so now
|
|
// there are files with the same key range in L0, L1, and L2
|
|
int deletion_interval = 3;
|
|
CompactionJobStats first_compaction_stats;
|
|
SelectivelyDeleteKeys(key_base, largest_key_num, key_interval,
|
|
deletion_interval, kKeySize, cutoff_key_num,
|
|
&first_compaction_stats, 1);
|
|
|
|
stats_checker->AddExpectedStats(first_compaction_stats);
|
|
|
|
// Stage 4: Trigger compaction and verify the stats
|
|
TEST_Compact(0, 1, smallest_key, largest_key);
|
|
}
|
|
|
|
namespace {
|
|
int GetUniversalCompactionInputUnits(uint32_t num_flushes) {
|
|
uint32_t compaction_input_units;
|
|
for (compaction_input_units = 1; num_flushes >= compaction_input_units;
|
|
compaction_input_units *= 2) {
|
|
if ((num_flushes & compaction_input_units) != 0) {
|
|
return compaction_input_units > 1 ? compaction_input_units : 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
} // namespace
|
|
|
|
TEST_P(CompactionJobStatsTest, UniversalCompactionTest) {
|
|
Random rnd(301);
|
|
uint64_t key_base = 100000000l;
|
|
// Note: key_base must be multiple of num_keys_per_L0_file
|
|
int num_keys_per_table = 100;
|
|
const uint32_t kTestScale = 6;
|
|
const int kKeySize = 10;
|
|
const int kValueSize = 900;
|
|
double compression_ratio = 1.0;
|
|
uint64_t key_interval = key_base / num_keys_per_table;
|
|
|
|
auto* stats_checker = new CompactionJobStatsChecker();
|
|
Options options;
|
|
options.listeners.emplace_back(stats_checker);
|
|
options.create_if_missing = true;
|
|
options.num_levels = 3;
|
|
options.compression = kNoCompression;
|
|
options.level0_file_num_compaction_trigger = 2;
|
|
options.target_file_size_base = num_keys_per_table * 1000;
|
|
options.compaction_style = kCompactionStyleUniversal;
|
|
options.compaction_options_universal.size_ratio = 1;
|
|
options.compaction_options_universal.max_size_amplification_percent = 1000;
|
|
options.max_subcompactions = max_subcompactions_;
|
|
|
|
DestroyAndReopen(options);
|
|
CreateAndReopenWithCF({"pikachu"}, options);
|
|
|
|
// Generates the expected CompactionJobStats for each compaction
|
|
for (uint32_t num_flushes = 2; num_flushes <= kTestScale; num_flushes++) {
|
|
// Here we treat one newly flushed file as an unit.
|
|
//
|
|
// For example, if a newly flushed file is 100k, and a compaction has
|
|
// 4 input units, then this compaction inputs 400k.
|
|
uint32_t num_input_units = GetUniversalCompactionInputUnits(num_flushes);
|
|
if (num_input_units == 0) {
|
|
continue;
|
|
}
|
|
// A full compaction only happens when the number of flushes equals to
|
|
// the number of compaction input runs.
|
|
bool is_full = num_flushes == num_input_units;
|
|
// The following statement determines the expected smallest key
|
|
// based on whether it is a full compaction.
|
|
uint64_t smallest_key = is_full ? key_base : key_base * (num_flushes - 1);
|
|
|
|
stats_checker->AddExpectedStats(NewManualCompactionJobStats(
|
|
Key(smallest_key, 10),
|
|
Key(smallest_key + key_base * num_input_units - key_interval, 10),
|
|
num_input_units, num_input_units > 2 ? num_input_units / 2 : 0,
|
|
num_keys_per_table * num_input_units, kKeySize, kValueSize,
|
|
num_input_units, num_keys_per_table * num_input_units, 1.0, 0, is_full,
|
|
false));
|
|
ASSERT_OK(dbfull()->TEST_WaitForCompact());
|
|
}
|
|
ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 3U);
|
|
|
|
for (uint64_t start_key = key_base; start_key <= key_base * kTestScale;
|
|
start_key += key_base) {
|
|
MakeTableWithKeyValues(&rnd, start_key, start_key + key_base - 1, kKeySize,
|
|
kValueSize, key_interval, compression_ratio, 1);
|
|
ASSERT_OK(static_cast_with_check<DBImpl>(db_)->TEST_WaitForCompact());
|
|
}
|
|
ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 0U);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CompactionJobStatsTest, CompactionJobStatsTest,
|
|
::testing::Values(1, 4));
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|
|
int main(int argc, char** argv) {
|
|
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
return RUN_ALL_TESTS();
|
|
}
|
|
|
|
|
|
#else
|
|
|
|
int main(int /*argc*/, char** /*argv*/) { return 0; }
|
|
#endif // !defined(IOS_CROSS_COMPILE)
|