rocksdb/db/compaction/compaction.cc
Changyu Bi e490f2b051 Fix a bug in ReFitLevel() where FileMetaData::being_compacted is not cleared (#13009)
Summary:
in ReFitLevel(), we were not setting being_compacted to false after ReFitLevel() is done. This is not a issue if refit level is successful, since new FileMetaData is created for files at the target level. However, if there's an error during RefitLevel(), e.g., Manifest write failure, we should clear the being_compacted field for these files. Otherwise, these files will not be picked for compaction until db reopen.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/13009

Test Plan:
existing test.
- stress test failure in T200339331 should not happen anymore.

Reviewed By: hx235

Differential Revision: D62597169

Pulled By: cbi42

fbshipit-source-id: 0ba659806da6d6d4b42384fc95268b2d7bad720e
2024-09-12 15:19:14 -07:00

995 lines
35 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/compaction/compaction.h"
#include <cinttypes>
#include <vector>
#include "db/column_family.h"
#include "db/dbformat.h"
#include "logging/logging.h"
#include "rocksdb/compaction_filter.h"
#include "rocksdb/sst_partitioner.h"
#include "test_util/sync_point.h"
#include "util/string_util.h"
namespace ROCKSDB_NAMESPACE {
int sstableKeyCompare(const Comparator* uc, const Slice& a, const Slice& b) {
auto c = uc->CompareWithoutTimestamp(ExtractUserKey(a), ExtractUserKey(b));
if (c != 0) {
return c;
}
auto a_footer = ExtractInternalKeyFooter(a);
auto b_footer = ExtractInternalKeyFooter(b);
if (a_footer == kRangeTombstoneSentinel) {
if (b_footer != kRangeTombstoneSentinel) {
return -1;
}
} else if (b_footer == kRangeTombstoneSentinel) {
return 1;
}
return 0;
}
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey* a,
const InternalKey& b) {
if (a == nullptr) {
return -1;
}
return sstableKeyCompare(user_cmp, *a, b);
}
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a,
const InternalKey* b) {
if (b == nullptr) {
return -1;
}
return sstableKeyCompare(user_cmp, a, *b);
}
uint64_t TotalFileSize(const std::vector<FileMetaData*>& files) {
uint64_t sum = 0;
for (size_t i = 0; i < files.size() && files[i]; i++) {
sum += files[i]->fd.GetFileSize();
}
return sum;
}
// TODO(hx235): consider making this function part of the construction so we
// don't forget to call it
void Compaction::FinalizeInputInfo(Version* _input_version) {
input_version_ = _input_version;
cfd_ = input_version_->cfd();
cfd_->Ref();
input_version_->Ref();
edit_.SetColumnFamily(cfd_->GetID());
}
void Compaction::GetBoundaryKeys(
VersionStorageInfo* vstorage,
const std::vector<CompactionInputFiles>& inputs, Slice* smallest_user_key,
Slice* largest_user_key, int exclude_level) {
bool initialized = false;
const Comparator* ucmp = vstorage->InternalComparator()->user_comparator();
for (size_t i = 0; i < inputs.size(); ++i) {
if (inputs[i].files.empty() || inputs[i].level == exclude_level) {
continue;
}
if (inputs[i].level == 0) {
// we need to consider all files on level 0
for (const auto* f : inputs[i].files) {
const Slice& start_user_key = f->smallest.user_key();
if (!initialized ||
ucmp->Compare(start_user_key, *smallest_user_key) < 0) {
*smallest_user_key = start_user_key;
}
const Slice& end_user_key = f->largest.user_key();
if (!initialized ||
ucmp->Compare(end_user_key, *largest_user_key) > 0) {
*largest_user_key = end_user_key;
}
initialized = true;
}
} else {
// we only need to consider the first and last file
const Slice& start_user_key = inputs[i].files[0]->smallest.user_key();
if (!initialized ||
ucmp->Compare(start_user_key, *smallest_user_key) < 0) {
*smallest_user_key = start_user_key;
}
const Slice& end_user_key = inputs[i].files.back()->largest.user_key();
if (!initialized || ucmp->Compare(end_user_key, *largest_user_key) > 0) {
*largest_user_key = end_user_key;
}
initialized = true;
}
}
}
void Compaction::GetBoundaryInternalKeys(
VersionStorageInfo* vstorage,
const std::vector<CompactionInputFiles>& inputs, InternalKey* smallest_key,
InternalKey* largest_key, int exclude_level) {
bool initialized = false;
const InternalKeyComparator* icmp = vstorage->InternalComparator();
for (size_t i = 0; i < inputs.size(); ++i) {
if (inputs[i].files.empty() || inputs[i].level == exclude_level) {
continue;
}
if (inputs[i].level == 0) {
// we need to consider all files on level 0
for (const auto* f : inputs[i].files) {
if (!initialized || icmp->Compare(f->smallest, *smallest_key) < 0) {
*smallest_key = f->smallest;
}
if (!initialized || icmp->Compare(f->largest, *largest_key) > 0) {
*largest_key = f->largest;
}
initialized = true;
}
} else {
// we only need to consider the first and last file
if (!initialized ||
icmp->Compare(inputs[i].files[0]->smallest, *smallest_key) < 0) {
*smallest_key = inputs[i].files[0]->smallest;
}
if (!initialized ||
icmp->Compare(inputs[i].files.back()->largest, *largest_key) > 0) {
*largest_key = inputs[i].files.back()->largest;
}
initialized = true;
}
}
}
std::vector<CompactionInputFiles> Compaction::PopulateWithAtomicBoundaries(
VersionStorageInfo* vstorage, std::vector<CompactionInputFiles> inputs) {
const Comparator* ucmp = vstorage->InternalComparator()->user_comparator();
for (size_t i = 0; i < inputs.size(); i++) {
if (inputs[i].level == 0 || inputs[i].files.empty()) {
continue;
}
inputs[i].atomic_compaction_unit_boundaries.reserve(inputs[i].files.size());
AtomicCompactionUnitBoundary cur_boundary;
size_t first_atomic_idx = 0;
auto add_unit_boundary = [&](size_t to) {
if (first_atomic_idx == to) {
return;
}
for (size_t k = first_atomic_idx; k < to; k++) {
inputs[i].atomic_compaction_unit_boundaries.push_back(cur_boundary);
}
first_atomic_idx = to;
};
for (size_t j = 0; j < inputs[i].files.size(); j++) {
const auto* f = inputs[i].files[j];
if (j == 0) {
// First file in a level.
cur_boundary.smallest = &f->smallest;
cur_boundary.largest = &f->largest;
} else if (sstableKeyCompare(ucmp, *cur_boundary.largest, f->smallest) ==
0) {
// SSTs overlap but the end key of the previous file was not
// artificially extended by a range tombstone. Extend the current
// boundary.
cur_boundary.largest = &f->largest;
} else {
// Atomic compaction unit has ended.
add_unit_boundary(j);
cur_boundary.smallest = &f->smallest;
cur_boundary.largest = &f->largest;
}
}
add_unit_boundary(inputs[i].files.size());
assert(inputs[i].files.size() ==
inputs[i].atomic_compaction_unit_boundaries.size());
}
return inputs;
}
// helper function to determine if compaction is creating files at the
// bottommost level
bool Compaction::IsBottommostLevel(
int output_level, VersionStorageInfo* vstorage,
const std::vector<CompactionInputFiles>& inputs) {
int output_l0_idx;
if (output_level == 0) {
output_l0_idx = 0;
for (const auto* file : vstorage->LevelFiles(0)) {
if (inputs[0].files.back() == file) {
break;
}
++output_l0_idx;
}
assert(static_cast<size_t>(output_l0_idx) < vstorage->LevelFiles(0).size());
} else {
output_l0_idx = -1;
}
Slice smallest_key, largest_key;
GetBoundaryKeys(vstorage, inputs, &smallest_key, &largest_key);
return !vstorage->RangeMightExistAfterSortedRun(smallest_key, largest_key,
output_level, output_l0_idx);
}
// test function to validate the functionality of IsBottommostLevel()
// function -- determines if compaction with inputs and storage is bottommost
bool Compaction::TEST_IsBottommostLevel(
int output_level, VersionStorageInfo* vstorage,
const std::vector<CompactionInputFiles>& inputs) {
return IsBottommostLevel(output_level, vstorage, inputs);
}
bool Compaction::IsFullCompaction(
VersionStorageInfo* vstorage,
const std::vector<CompactionInputFiles>& inputs) {
size_t num_files_in_compaction = 0;
size_t total_num_files = 0;
for (int l = 0; l < vstorage->num_levels(); l++) {
total_num_files += vstorage->NumLevelFiles(l);
}
for (size_t i = 0; i < inputs.size(); i++) {
num_files_in_compaction += inputs[i].size();
}
return num_files_in_compaction == total_num_files;
}
Status Compaction::InitInputTableProperties() {
if (!input_table_properties_.empty()) {
return Status::OK();
}
Status s;
const ReadOptions read_options(Env::IOActivity::kCompaction);
assert(input_version_);
for (size_t i = 0; i < num_input_levels(); ++i) {
for (const FileMetaData* fmd : *(this->inputs(i))) {
std::shared_ptr<const TableProperties> tp;
std::string file_name =
TableFileName(immutable_options_.cf_paths, fmd->fd.GetNumber(),
fmd->fd.GetPathId());
s = input_version_->GetTableProperties(read_options, &tp, fmd,
&file_name);
if (s.ok()) {
input_table_properties_[file_name] = tp;
} else {
ROCKS_LOG_ERROR(immutable_options_.info_log,
"Unable to load table properties for file %" PRIu64
" --- %s\n",
fmd->fd.GetNumber(), s.ToString().c_str());
input_table_properties_.clear();
return s;
}
}
}
return s;
}
Compaction::Compaction(
VersionStorageInfo* vstorage, const ImmutableOptions& _immutable_options,
const MutableCFOptions& _mutable_cf_options,
const MutableDBOptions& _mutable_db_options,
std::vector<CompactionInputFiles> _inputs, int _output_level,
uint64_t _target_file_size, uint64_t _max_compaction_bytes,
uint32_t _output_path_id, CompressionType _compression,
CompressionOptions _compression_opts, Temperature _output_temperature,
uint32_t _max_subcompactions, std::vector<FileMetaData*> _grandparents,
bool _manual_compaction, const std::string& _trim_ts, double _score,
bool _deletion_compaction, bool l0_files_might_overlap,
CompactionReason _compaction_reason,
BlobGarbageCollectionPolicy _blob_garbage_collection_policy,
double _blob_garbage_collection_age_cutoff)
: input_vstorage_(vstorage),
start_level_(_inputs[0].level),
output_level_(_output_level),
target_output_file_size_(_target_file_size),
max_compaction_bytes_(_max_compaction_bytes),
max_subcompactions_(_max_subcompactions),
immutable_options_(_immutable_options),
mutable_cf_options_(_mutable_cf_options),
input_version_(nullptr),
number_levels_(vstorage->num_levels()),
cfd_(nullptr),
output_path_id_(_output_path_id),
output_compression_(_compression),
output_compression_opts_(_compression_opts),
output_temperature_(_output_temperature),
deletion_compaction_(_deletion_compaction),
l0_files_might_overlap_(l0_files_might_overlap),
inputs_(PopulateWithAtomicBoundaries(vstorage, std::move(_inputs))),
grandparents_(std::move(_grandparents)),
score_(_score),
bottommost_level_(
// For simplicity, we don't support the concept of "bottommost level"
// with
// `CompactionReason::kExternalSstIngestion` and
// `CompactionReason::kRefitLevel`
(_compaction_reason == CompactionReason::kExternalSstIngestion ||
_compaction_reason == CompactionReason::kRefitLevel)
? false
: IsBottommostLevel(output_level_, vstorage, inputs_)),
is_full_compaction_(IsFullCompaction(vstorage, inputs_)),
is_manual_compaction_(_manual_compaction),
trim_ts_(_trim_ts),
is_trivial_move_(false),
compaction_reason_(_compaction_reason),
notify_on_compaction_completion_(false),
enable_blob_garbage_collection_(
_blob_garbage_collection_policy == BlobGarbageCollectionPolicy::kForce
? true
: (_blob_garbage_collection_policy ==
BlobGarbageCollectionPolicy::kDisable
? false
: mutable_cf_options()->enable_blob_garbage_collection)),
blob_garbage_collection_age_cutoff_(
_blob_garbage_collection_age_cutoff < 0 ||
_blob_garbage_collection_age_cutoff > 1
? mutable_cf_options()->blob_garbage_collection_age_cutoff
: _blob_garbage_collection_age_cutoff),
penultimate_level_(
// For simplicity, we don't support the concept of "penultimate level"
// with `CompactionReason::kExternalSstIngestion` and
// `CompactionReason::kRefitLevel`
_compaction_reason == CompactionReason::kExternalSstIngestion ||
_compaction_reason == CompactionReason::kRefitLevel
? Compaction::kInvalidLevel
: EvaluatePenultimateLevel(vstorage, immutable_options_,
start_level_, output_level_)) {
MarkFilesBeingCompacted(true);
if (is_manual_compaction_) {
compaction_reason_ = CompactionReason::kManualCompaction;
}
if (max_subcompactions_ == 0) {
max_subcompactions_ = _mutable_db_options.max_subcompactions;
}
// for the non-bottommost levels, it tries to build files match the target
// file size, but not guaranteed. It could be 2x the size of the target size.
max_output_file_size_ = bottommost_level_ || grandparents_.empty()
? target_output_file_size_
: 2 * target_output_file_size_;
#ifndef NDEBUG
for (size_t i = 1; i < inputs_.size(); ++i) {
assert(inputs_[i].level > inputs_[i - 1].level);
}
#endif
// setup input_levels_
{
input_levels_.resize(num_input_levels());
for (size_t which = 0; which < num_input_levels(); which++) {
DoGenerateLevelFilesBrief(&input_levels_[which], inputs_[which].files,
&arena_);
}
}
GetBoundaryKeys(vstorage, inputs_, &smallest_user_key_, &largest_user_key_);
// Every compaction regardless of any compaction reason may respect the
// existing compact cursor in the output level to split output files
output_split_key_ = nullptr;
if (immutable_options_.compaction_style == kCompactionStyleLevel &&
immutable_options_.compaction_pri == kRoundRobin) {
const InternalKey* cursor =
&input_vstorage_->GetCompactCursors()[output_level_];
if (cursor->size() != 0) {
const Slice& cursor_user_key = ExtractUserKey(cursor->Encode());
auto ucmp = vstorage->InternalComparator()->user_comparator();
// May split output files according to the cursor if it in the user-key
// range
if (ucmp->CompareWithoutTimestamp(cursor_user_key, smallest_user_key_) >
0 &&
ucmp->CompareWithoutTimestamp(cursor_user_key, largest_user_key_) <=
0) {
output_split_key_ = cursor;
}
}
}
PopulatePenultimateLevelOutputRange();
}
void Compaction::PopulatePenultimateLevelOutputRange() {
if (!SupportsPerKeyPlacement()) {
return;
}
// exclude the last level, the range of all input levels is the safe range
// of keys that can be moved up.
int exclude_level = number_levels_ - 1;
penultimate_output_range_type_ = PenultimateOutputRangeType::kNonLastRange;
// For universal compaction, the penultimate_output_range could be extended if
// all penultimate level files are included in the compaction (which includes
// the case that the penultimate level is empty).
if (immutable_options_.compaction_style == kCompactionStyleUniversal) {
exclude_level = kInvalidLevel;
penultimate_output_range_type_ = PenultimateOutputRangeType::kFullRange;
std::set<uint64_t> penultimate_inputs;
for (const auto& input_lvl : inputs_) {
if (input_lvl.level == penultimate_level_) {
for (const auto& file : input_lvl.files) {
penultimate_inputs.emplace(file->fd.GetNumber());
}
}
}
auto penultimate_files = input_vstorage_->LevelFiles(penultimate_level_);
for (const auto& file : penultimate_files) {
if (penultimate_inputs.find(file->fd.GetNumber()) ==
penultimate_inputs.end()) {
exclude_level = number_levels_ - 1;
penultimate_output_range_type_ =
PenultimateOutputRangeType::kNonLastRange;
break;
}
}
}
// FIXME: should make use of `penultimate_output_range_type_`.
// FIXME: when last level's input range does not overlap with
// penultimate level, and penultimate level input is empty,
// this call will not set penultimate_level_smallest_ or
// penultimate_level_largest_. No keys will be compacted up.
GetBoundaryInternalKeys(input_vstorage_, inputs_,
&penultimate_level_smallest_,
&penultimate_level_largest_, exclude_level);
}
Compaction::~Compaction() {
if (input_version_ != nullptr) {
input_version_->Unref();
}
if (cfd_ != nullptr) {
cfd_->UnrefAndTryDelete();
}
}
bool Compaction::SupportsPerKeyPlacement() const {
return penultimate_level_ != kInvalidLevel;
}
int Compaction::GetPenultimateLevel() const { return penultimate_level_; }
// smallest_key and largest_key include timestamps if user-defined timestamp is
// enabled.
bool Compaction::OverlapPenultimateLevelOutputRange(
const Slice& smallest_key, const Slice& largest_key) const {
if (!SupportsPerKeyPlacement()) {
return false;
}
// See FIXME in Compaction::PopulatePenultimateLevelOutputRange().
// We do not compact any key up in this case.
if (penultimate_level_smallest_.size() == 0 ||
penultimate_level_largest_.size() == 0) {
return false;
}
const Comparator* ucmp =
input_vstorage_->InternalComparator()->user_comparator();
return ucmp->CompareWithoutTimestamp(
smallest_key, penultimate_level_largest_.user_key()) <= 0 &&
ucmp->CompareWithoutTimestamp(
largest_key, penultimate_level_smallest_.user_key()) >= 0;
}
// key includes timestamp if user-defined timestamp is enabled.
bool Compaction::WithinPenultimateLevelOutputRange(
const ParsedInternalKey& ikey) const {
if (!SupportsPerKeyPlacement()) {
return false;
}
if (penultimate_level_smallest_.size() == 0 ||
penultimate_level_largest_.size() == 0) {
return false;
}
const InternalKeyComparator* icmp = input_vstorage_->InternalComparator();
// op_type of a key can change during compaction, e.g. Merge -> Put.
return icmp->CompareKeySeq(ikey, penultimate_level_smallest_.Encode()) >= 0 &&
icmp->CompareKeySeq(ikey, penultimate_level_largest_.Encode()) <= 0;
}
bool Compaction::InputCompressionMatchesOutput() const {
int base_level = input_vstorage_->base_level();
bool matches =
(GetCompressionType(input_vstorage_, mutable_cf_options_, start_level_,
base_level) == output_compression_);
if (matches) {
TEST_SYNC_POINT("Compaction::InputCompressionMatchesOutput:Matches");
return true;
}
TEST_SYNC_POINT("Compaction::InputCompressionMatchesOutput:DidntMatch");
return matches;
}
bool Compaction::IsTrivialMove() const {
// Avoid a move if there is lots of overlapping grandparent data.
// Otherwise, the move could create a parent file that will require
// a very expensive merge later on.
// If start_level_== output_level_, the purpose is to force compaction
// filter to be applied to that level, and thus cannot be a trivial move.
// Check if start level have files with overlapping ranges
if (start_level_ == 0 && input_vstorage_->level0_non_overlapping() == false &&
l0_files_might_overlap_) {
// We cannot move files from L0 to L1 if the L0 files in the LSM-tree are
// overlapping, unless we are sure that files picked in L0 don't overlap.
return false;
}
if (is_manual_compaction_ &&
(immutable_options_.compaction_filter != nullptr ||
immutable_options_.compaction_filter_factory != nullptr)) {
// This is a manual compaction and we have a compaction filter that should
// be executed, we cannot do a trivial move
return false;
}
if (start_level_ == output_level_) {
// It doesn't make sense if compaction picker picks files just to trivial
// move to the same level.
return false;
}
if (compaction_reason_ == CompactionReason::kChangeTemperature) {
// Changing temperature usually requires rewriting the file.
return false;
}
// Used in universal compaction, where trivial move can be done if the
// input files are non overlapping
if ((mutable_cf_options_.compaction_options_universal.allow_trivial_move) &&
(output_level_ != 0) &&
(cfd_->ioptions()->compaction_style == kCompactionStyleUniversal)) {
return is_trivial_move_;
}
if (!(start_level_ != output_level_ && num_input_levels() == 1 &&
input(0, 0)->fd.GetPathId() == output_path_id() &&
InputCompressionMatchesOutput())) {
return false;
}
// assert inputs_.size() == 1
if (output_level_ + 1 < number_levels_) {
std::unique_ptr<SstPartitioner> partitioner = CreateSstPartitioner();
for (const auto& file : inputs_.front().files) {
std::vector<FileMetaData*> file_grand_parents;
input_vstorage_->GetOverlappingInputs(output_level_ + 1, &file->smallest,
&file->largest,
&file_grand_parents);
const auto compaction_size =
file->fd.GetFileSize() + TotalFileSize(file_grand_parents);
if (compaction_size > max_compaction_bytes_) {
return false;
}
if (partitioner.get() != nullptr) {
if (!partitioner->CanDoTrivialMove(file->smallest.user_key(),
file->largest.user_key())) {
return false;
}
}
}
}
// PerKeyPlacement compaction should never be trivial move.
if (SupportsPerKeyPlacement()) {
return false;
}
return true;
}
void Compaction::AddInputDeletions(VersionEdit* out_edit) {
for (size_t which = 0; which < num_input_levels(); which++) {
for (size_t i = 0; i < inputs_[which].size(); i++) {
out_edit->DeleteFile(level(which), inputs_[which][i]->fd.GetNumber());
}
}
}
bool Compaction::KeyNotExistsBeyondOutputLevel(
const Slice& user_key, std::vector<size_t>* level_ptrs) const {
assert(input_version_ != nullptr);
assert(level_ptrs != nullptr);
assert(level_ptrs->size() == static_cast<size_t>(number_levels_));
if (bottommost_level_) {
return true;
} else if (output_level_ != 0 &&
cfd_->ioptions()->compaction_style == kCompactionStyleLevel) {
// Maybe use binary search to find right entry instead of linear search?
const Comparator* user_cmp = cfd_->user_comparator();
for (int lvl = output_level_ + 1; lvl < number_levels_; lvl++) {
const std::vector<FileMetaData*>& files =
input_vstorage_->LevelFiles(lvl);
for (; level_ptrs->at(lvl) < files.size(); level_ptrs->at(lvl)++) {
auto* f = files[level_ptrs->at(lvl)];
if (user_cmp->Compare(user_key, f->largest.user_key()) <= 0) {
// We've advanced far enough
// In the presence of user-defined timestamp, we may need to handle
// the case in which f->smallest.user_key() (including ts) has the
// same user key, but the ts part is smaller. If so,
// Compare(user_key, f->smallest.user_key()) returns -1.
// That's why we need CompareWithoutTimestamp().
if (user_cmp->CompareWithoutTimestamp(user_key,
f->smallest.user_key()) >= 0) {
// Key falls in this file's range, so it may
// exist beyond output level
return false;
}
break;
}
}
}
return true;
}
return false;
}
bool Compaction::KeyRangeNotExistsBeyondOutputLevel(
const Slice& begin_key, const Slice& end_key,
std::vector<size_t>* level_ptrs) const {
assert(input_version_ != nullptr);
assert(level_ptrs != nullptr);
assert(level_ptrs->size() == static_cast<size_t>(number_levels_));
assert(cfd_->user_comparator()->CompareWithoutTimestamp(begin_key, end_key) <
0);
if (bottommost_level_) {
return true /* does not overlap */;
} else if (output_level_ != 0 &&
cfd_->ioptions()->compaction_style == kCompactionStyleLevel) {
const Comparator* user_cmp = cfd_->user_comparator();
for (int lvl = output_level_ + 1; lvl < number_levels_; lvl++) {
const std::vector<FileMetaData*>& files =
input_vstorage_->LevelFiles(lvl);
for (; level_ptrs->at(lvl) < files.size(); level_ptrs->at(lvl)++) {
auto* f = files[level_ptrs->at(lvl)];
// Advance until the first file with begin_key <= f->largest.user_key()
if (user_cmp->CompareWithoutTimestamp(begin_key,
f->largest.user_key()) > 0) {
continue;
}
// We know that the previous file prev_f, if exists, has
// prev_f->largest.user_key() < begin_key.
if (user_cmp->CompareWithoutTimestamp(end_key,
f->smallest.user_key()) <= 0) {
// not overlapping with this level
break;
} else {
// We have:
// - begin_key < end_key,
// - begin_key <= f->largest.user_key(), and
// - end_key > f->smallest.user_key()
return false /* overlap */;
}
}
}
return true /* does not overlap */;
}
return false /* overlaps */;
};
// Mark (or clear) each file that is being compacted
void Compaction::MarkFilesBeingCompacted(bool being_compacted) const {
for (size_t i = 0; i < num_input_levels(); i++) {
for (size_t j = 0; j < inputs_[i].size(); j++) {
assert(being_compacted != inputs_[i][j]->being_compacted);
inputs_[i][j]->being_compacted = being_compacted;
}
}
}
// Sample output:
// If compacting 3 L0 files, 2 L3 files and 1 L4 file, and outputting to L5,
// print: "3@0 + 2@3 + 1@4 files to L5"
const char* Compaction::InputLevelSummary(
InputLevelSummaryBuffer* scratch) const {
int len = 0;
bool is_first = true;
for (auto& input_level : inputs_) {
if (input_level.empty()) {
continue;
}
if (!is_first) {
len +=
snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, " + ");
len = std::min(len, static_cast<int>(sizeof(scratch->buffer)));
} else {
is_first = false;
}
len += snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len,
"%" ROCKSDB_PRIszt "@%d", input_level.size(),
input_level.level);
len = std::min(len, static_cast<int>(sizeof(scratch->buffer)));
}
snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len,
" files to L%d", output_level());
return scratch->buffer;
}
uint64_t Compaction::CalculateTotalInputSize() const {
uint64_t size = 0;
for (auto& input_level : inputs_) {
for (auto f : input_level.files) {
size += f->fd.GetFileSize();
}
}
return size;
}
void Compaction::ReleaseCompactionFiles(const Status& status) {
MarkFilesBeingCompacted(false);
cfd_->compaction_picker()->ReleaseCompactionFiles(this, status);
}
void Compaction::ResetNextCompactionIndex() {
assert(input_version_ != nullptr);
input_vstorage_->ResetNextCompactionIndex(start_level_);
}
namespace {
int InputSummary(const std::vector<FileMetaData*>& files, char* output,
int len) {
*output = '\0';
int write = 0;
for (size_t i = 0; i < files.size(); i++) {
int sz = len - write;
int ret;
char sztxt[16];
AppendHumanBytes(files.at(i)->fd.GetFileSize(), sztxt, 16);
ret = snprintf(output + write, sz, "%" PRIu64 "(%s) ",
files.at(i)->fd.GetNumber(), sztxt);
if (ret < 0 || ret >= sz) {
break;
}
write += ret;
}
// if files.size() is non-zero, overwrite the last space
return write - !!files.size();
}
} // namespace
void Compaction::Summary(char* output, int len) {
int write =
snprintf(output, len, "Base version %" PRIu64 " Base level %d, inputs: [",
input_version_->GetVersionNumber(), start_level_);
if (write < 0 || write >= len) {
return;
}
for (size_t level_iter = 0; level_iter < num_input_levels(); ++level_iter) {
if (level_iter > 0) {
write += snprintf(output + write, len - write, "], [");
if (write < 0 || write >= len) {
return;
}
}
write +=
InputSummary(inputs_[level_iter].files, output + write, len - write);
if (write < 0 || write >= len) {
return;
}
}
snprintf(output + write, len - write, "]");
}
uint64_t Compaction::OutputFilePreallocationSize() const {
uint64_t preallocation_size = 0;
for (const auto& level_files : inputs_) {
for (const auto& file : level_files.files) {
preallocation_size += file->fd.GetFileSize();
}
}
if (max_output_file_size_ != std::numeric_limits<uint64_t>::max() &&
(immutable_options_.compaction_style == kCompactionStyleLevel ||
output_level() > 0)) {
preallocation_size = std::min(max_output_file_size_, preallocation_size);
}
// Over-estimate slightly so we don't end up just barely crossing
// the threshold
// No point to preallocate more than 1GB.
return std::min(uint64_t{1073741824},
preallocation_size + (preallocation_size / 10));
}
std::unique_ptr<CompactionFilter> Compaction::CreateCompactionFilter() const {
if (!cfd_->ioptions()->compaction_filter_factory) {
return nullptr;
}
if (!cfd_->ioptions()
->compaction_filter_factory->ShouldFilterTableFileCreation(
TableFileCreationReason::kCompaction)) {
return nullptr;
}
CompactionFilter::Context context;
context.is_full_compaction = is_full_compaction_;
context.is_manual_compaction = is_manual_compaction_;
context.input_start_level = start_level_;
context.column_family_id = cfd_->GetID();
context.reason = TableFileCreationReason::kCompaction;
context.input_table_properties = GetInputTableProperties();
if (context.input_table_properties.empty()) {
ROCKS_LOG_WARN(
immutable_options_.info_log,
"Unable to set `input_table_properties` of `CompactionFilter::Context` "
"for compaction.");
}
return cfd_->ioptions()->compaction_filter_factory->CreateCompactionFilter(
context);
}
std::unique_ptr<SstPartitioner> Compaction::CreateSstPartitioner() const {
if (!immutable_options_.sst_partitioner_factory) {
return nullptr;
}
SstPartitioner::Context context;
context.is_full_compaction = is_full_compaction_;
context.is_manual_compaction = is_manual_compaction_;
context.output_level = output_level_;
context.smallest_user_key = smallest_user_key_;
context.largest_user_key = largest_user_key_;
return immutable_options_.sst_partitioner_factory->CreatePartitioner(context);
}
bool Compaction::IsOutputLevelEmpty() const {
return inputs_.back().level != output_level_ || inputs_.back().empty();
}
bool Compaction::ShouldFormSubcompactions() const {
if (cfd_ == nullptr) {
return false;
}
if (cfd_->ioptions()->table_factory->Name() ==
TableFactory::kPlainTableName()) {
return false;
}
// Round-Robin pri under leveled compaction allows subcompactions by default
// and the number of subcompactions can be larger than max_subcompactions_
if (cfd_->ioptions()->compaction_pri == kRoundRobin &&
cfd_->ioptions()->compaction_style == kCompactionStyleLevel) {
return output_level_ > 0;
}
if (max_subcompactions_ <= 1) {
return false;
}
if (cfd_->ioptions()->compaction_style == kCompactionStyleLevel) {
return (start_level_ == 0 || is_manual_compaction_) && output_level_ > 0;
} else if (cfd_->ioptions()->compaction_style == kCompactionStyleUniversal) {
return number_levels_ > 1 && output_level_ > 0;
} else {
return false;
}
}
bool Compaction::DoesInputReferenceBlobFiles() const {
assert(input_version_);
const VersionStorageInfo* storage_info = input_version_->storage_info();
assert(storage_info);
if (storage_info->GetBlobFiles().empty()) {
return false;
}
for (size_t i = 0; i < inputs_.size(); ++i) {
for (const FileMetaData* meta : inputs_[i].files) {
assert(meta);
if (meta->oldest_blob_file_number != kInvalidBlobFileNumber) {
return true;
}
}
}
return false;
}
uint64_t Compaction::MinInputFileOldestAncesterTime(
const InternalKey* start, const InternalKey* end) const {
uint64_t min_oldest_ancester_time = std::numeric_limits<uint64_t>::max();
const InternalKeyComparator& icmp =
column_family_data()->internal_comparator();
for (const auto& level_files : inputs_) {
for (const auto& file : level_files.files) {
if (start != nullptr && icmp.Compare(file->largest, *start) < 0) {
continue;
}
if (end != nullptr && icmp.Compare(file->smallest, *end) > 0) {
continue;
}
uint64_t oldest_ancester_time = file->TryGetOldestAncesterTime();
if (oldest_ancester_time != 0) {
min_oldest_ancester_time =
std::min(min_oldest_ancester_time, oldest_ancester_time);
}
}
}
return min_oldest_ancester_time;
}
uint64_t Compaction::MinInputFileEpochNumber() const {
uint64_t min_epoch_number = std::numeric_limits<uint64_t>::max();
for (const auto& inputs_per_level : inputs_) {
for (const auto& file : inputs_per_level.files) {
min_epoch_number = std::min(min_epoch_number, file->epoch_number);
}
}
return min_epoch_number;
}
int Compaction::EvaluatePenultimateLevel(
const VersionStorageInfo* vstorage,
const ImmutableOptions& immutable_options, const int start_level,
const int output_level) {
// TODO: currently per_key_placement feature only support level and universal
// compaction
if (immutable_options.compaction_style != kCompactionStyleLevel &&
immutable_options.compaction_style != kCompactionStyleUniversal) {
return kInvalidLevel;
}
if (output_level != immutable_options.num_levels - 1) {
return kInvalidLevel;
}
int penultimate_level = output_level - 1;
assert(penultimate_level < immutable_options.num_levels);
if (penultimate_level <= 0) {
return kInvalidLevel;
}
// If the penultimate level is not within input level -> output level range
// check if the penultimate output level is empty, if it's empty, it could
// also be locked for the penultimate output.
// TODO: ideally, it only needs to check if there's a file within the
// compaction output key range. For simplicity, it just check if there's any
// file on the penultimate level.
if (start_level == immutable_options.num_levels - 1 &&
(immutable_options.compaction_style != kCompactionStyleUniversal ||
!vstorage->LevelFiles(penultimate_level).empty())) {
return kInvalidLevel;
}
bool supports_per_key_placement =
immutable_options.preclude_last_level_data_seconds > 0;
// it could be overridden by unittest
TEST_SYNC_POINT_CALLBACK("Compaction::SupportsPerKeyPlacement:Enabled",
&supports_per_key_placement);
if (!supports_per_key_placement) {
return kInvalidLevel;
}
return penultimate_level;
}
} // namespace ROCKSDB_NAMESPACE