mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-29 18:33:58 +00:00
0050a73a4f
Summary: This change standardizes on a new 16-byte cache key format for block cache (incl compressed and secondary) and persistent cache (but not table cache and row cache). The goal is a really fast cache key with practically ideal stability and uniqueness properties without external dependencies (e.g. from FileSystem). A fixed key size of 16 bytes should enable future optimizations to the concurrent hash table for block cache, which is a heavy CPU user / bottleneck, but there appears to be measurable performance improvement even with no changes to LRUCache. This change replaces a lot of disjointed and ugly code handling cache keys with calls to a simple, clean new internal API (cache_key.h). (Preserving the old cache key logic under an option would be very ugly and likely negate the performance gain of the new approach. Complete replacement carries some inherent risk, but I think that's acceptable with sufficient analysis and testing.) The scheme for encoding new cache keys is complicated but explained in cache_key.cc. Also: EndianSwapValue is moved to math.h to be next to other bit operations. (Explains some new include "math.h".) ReverseBits operation added and unit tests added to hash_test for both. Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause) Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126 Test Plan: ### Basic correctness Several tests needed updates to work with the new functionality, mostly because we are no longer relying on filesystem for stable cache keys so table builders & readers need more context info to agree on cache keys. This functionality is so core, a huge number of existing tests exercise the cache key functionality. ### Performance Create db with `TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters` And test performance with `TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4` using DEBUG_LEVEL=0 and simultaneous before & after runs. Before ops/sec, avg over 100 runs: 121924 After ops/sec, avg over 100 runs: 125385 (+2.8%) ### Collision probability I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity over many months, by making some pessimistic simplifying assumptions: * Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys) * All of every file is cached for its entire lifetime We use a simple table with skewed address assignment and replacement on address collision to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output with `./cache_bench -stress_cache_key -sck_keep_bits=40`: ``` Total cache or DBs size: 32TiB Writing 925.926 MiB/s or 76.2939TiB/day Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached) ``` These come from default settings of 2.5M files per day of 32 MB each, and `-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of the 128-bit cache key. With file size of 2\*\*25 contiguous keys (pessimistic), our simulation is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality. More default assumptions, relatively pessimistic: * 100 DBs in same process (doesn't matter much) * Re-open DB in same process (new session ID related to old session ID) on average every 100 files generated * Restart process (all new session IDs unrelated to old) 24 times per day After enough data, we get a result at the end: ``` (keep 40 bits) 17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected) ``` If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data: ``` (keep 41 bits) 16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected) (keep 42 bits) 19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected) ``` The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases: ``` 197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected) ``` I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data. Reviewed By: zhichao-cao Differential Revision: D33171746 Pulled By: pdillinger fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
311 lines
8.4 KiB
C++
311 lines
8.4 KiB
C++
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
#pragma once
|
|
|
|
#include "util/coding_lean.h"
|
|
#include "util/math.h"
|
|
|
|
#ifdef TEST_UINT128_COMPAT
|
|
#undef HAVE_UINT128_EXTENSION
|
|
#endif
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
// Unsigned128 is a 128 bit value supporting (at least) bitwise operators,
|
|
// shifts, and comparisons. __uint128_t is not always available.
|
|
|
|
#ifdef HAVE_UINT128_EXTENSION
|
|
using Unsigned128 = __uint128_t;
|
|
#else
|
|
struct Unsigned128 {
|
|
uint64_t lo;
|
|
uint64_t hi;
|
|
|
|
inline Unsigned128() {
|
|
static_assert(sizeof(Unsigned128) == 2 * sizeof(uint64_t),
|
|
"unexpected overhead in representation");
|
|
lo = 0;
|
|
hi = 0;
|
|
}
|
|
|
|
inline Unsigned128(uint64_t lower) {
|
|
lo = lower;
|
|
hi = 0;
|
|
}
|
|
|
|
inline Unsigned128(uint64_t lower, uint64_t upper) {
|
|
lo = lower;
|
|
hi = upper;
|
|
}
|
|
|
|
explicit operator uint64_t() { return lo; }
|
|
|
|
explicit operator uint32_t() { return static_cast<uint32_t>(lo); }
|
|
|
|
explicit operator uint16_t() { return static_cast<uint16_t>(lo); }
|
|
|
|
explicit operator uint8_t() { return static_cast<uint8_t>(lo); }
|
|
};
|
|
|
|
inline Unsigned128 operator<<(const Unsigned128& lhs, unsigned shift) {
|
|
shift &= 127;
|
|
Unsigned128 rv;
|
|
if (shift >= 64) {
|
|
rv.lo = 0;
|
|
rv.hi = lhs.lo << (shift & 63);
|
|
} else {
|
|
uint64_t tmp = lhs.lo;
|
|
rv.lo = tmp << shift;
|
|
// Ensure shift==0 shifts away everything. (This avoids another
|
|
// conditional branch on shift == 0.)
|
|
tmp = tmp >> 1 >> (63 - shift);
|
|
rv.hi = tmp | (lhs.hi << shift);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
inline Unsigned128& operator<<=(Unsigned128& lhs, unsigned shift) {
|
|
lhs = lhs << shift;
|
|
return lhs;
|
|
}
|
|
|
|
inline Unsigned128 operator>>(const Unsigned128& lhs, unsigned shift) {
|
|
shift &= 127;
|
|
Unsigned128 rv;
|
|
if (shift >= 64) {
|
|
rv.hi = 0;
|
|
rv.lo = lhs.hi >> (shift & 63);
|
|
} else {
|
|
uint64_t tmp = lhs.hi;
|
|
rv.hi = tmp >> shift;
|
|
// Ensure shift==0 shifts away everything
|
|
tmp = tmp << 1 << (63 - shift);
|
|
rv.lo = tmp | (lhs.lo >> shift);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
inline Unsigned128& operator>>=(Unsigned128& lhs, unsigned shift) {
|
|
lhs = lhs >> shift;
|
|
return lhs;
|
|
}
|
|
|
|
inline Unsigned128 operator&(const Unsigned128& lhs, const Unsigned128& rhs) {
|
|
return Unsigned128(lhs.lo & rhs.lo, lhs.hi & rhs.hi);
|
|
}
|
|
|
|
inline Unsigned128& operator&=(Unsigned128& lhs, const Unsigned128& rhs) {
|
|
lhs = lhs & rhs;
|
|
return lhs;
|
|
}
|
|
|
|
inline Unsigned128 operator|(const Unsigned128& lhs, const Unsigned128& rhs) {
|
|
return Unsigned128(lhs.lo | rhs.lo, lhs.hi | rhs.hi);
|
|
}
|
|
|
|
inline Unsigned128& operator|=(Unsigned128& lhs, const Unsigned128& rhs) {
|
|
lhs = lhs | rhs;
|
|
return lhs;
|
|
}
|
|
|
|
inline Unsigned128 operator^(const Unsigned128& lhs, const Unsigned128& rhs) {
|
|
return Unsigned128(lhs.lo ^ rhs.lo, lhs.hi ^ rhs.hi);
|
|
}
|
|
|
|
inline Unsigned128& operator^=(Unsigned128& lhs, const Unsigned128& rhs) {
|
|
lhs = lhs ^ rhs;
|
|
return lhs;
|
|
}
|
|
|
|
inline Unsigned128 operator~(const Unsigned128& v) {
|
|
return Unsigned128(~v.lo, ~v.hi);
|
|
}
|
|
|
|
inline bool operator==(const Unsigned128& lhs, const Unsigned128& rhs) {
|
|
return lhs.lo == rhs.lo && lhs.hi == rhs.hi;
|
|
}
|
|
|
|
inline bool operator!=(const Unsigned128& lhs, const Unsigned128& rhs) {
|
|
return lhs.lo != rhs.lo || lhs.hi != rhs.hi;
|
|
}
|
|
|
|
inline bool operator>(const Unsigned128& lhs, const Unsigned128& rhs) {
|
|
return lhs.hi > rhs.hi || (lhs.hi == rhs.hi && lhs.lo > rhs.lo);
|
|
}
|
|
|
|
inline bool operator<(const Unsigned128& lhs, const Unsigned128& rhs) {
|
|
return lhs.hi < rhs.hi || (lhs.hi == rhs.hi && lhs.lo < rhs.lo);
|
|
}
|
|
|
|
inline bool operator>=(const Unsigned128& lhs, const Unsigned128& rhs) {
|
|
return lhs.hi > rhs.hi || (lhs.hi == rhs.hi && lhs.lo >= rhs.lo);
|
|
}
|
|
|
|
inline bool operator<=(const Unsigned128& lhs, const Unsigned128& rhs) {
|
|
return lhs.hi < rhs.hi || (lhs.hi == rhs.hi && lhs.lo <= rhs.lo);
|
|
}
|
|
#endif
|
|
|
|
inline uint64_t Lower64of128(Unsigned128 v) {
|
|
#ifdef HAVE_UINT128_EXTENSION
|
|
return static_cast<uint64_t>(v);
|
|
#else
|
|
return v.lo;
|
|
#endif
|
|
}
|
|
|
|
inline uint64_t Upper64of128(Unsigned128 v) {
|
|
#ifdef HAVE_UINT128_EXTENSION
|
|
return static_cast<uint64_t>(v >> 64);
|
|
#else
|
|
return v.hi;
|
|
#endif
|
|
}
|
|
|
|
// This generally compiles down to a single fast instruction on 64-bit.
|
|
// This doesn't really make sense as operator* because it's not a
|
|
// general 128x128 multiply and provides more output than 64x64 multiply.
|
|
inline Unsigned128 Multiply64to128(uint64_t a, uint64_t b) {
|
|
#ifdef HAVE_UINT128_EXTENSION
|
|
return Unsigned128{a} * Unsigned128{b};
|
|
#else
|
|
// Full decomposition
|
|
// NOTE: GCC seems to fully understand this code as 64-bit x 64-bit
|
|
// -> 128-bit multiplication and optimize it appropriately.
|
|
uint64_t tmp = uint64_t{b & 0xffffFFFF} * uint64_t{a & 0xffffFFFF};
|
|
uint64_t lower = tmp & 0xffffFFFF;
|
|
tmp >>= 32;
|
|
tmp += uint64_t{b & 0xffffFFFF} * uint64_t{a >> 32};
|
|
// Avoid overflow: first add lower 32 of tmp2, and later upper 32
|
|
uint64_t tmp2 = uint64_t{b >> 32} * uint64_t{a & 0xffffFFFF};
|
|
tmp += tmp2 & 0xffffFFFF;
|
|
lower |= tmp << 32;
|
|
tmp >>= 32;
|
|
tmp += tmp2 >> 32;
|
|
tmp += uint64_t{b >> 32} * uint64_t{a >> 32};
|
|
return Unsigned128(lower, tmp);
|
|
#endif
|
|
}
|
|
|
|
template <>
|
|
inline int FloorLog2(Unsigned128 v) {
|
|
if (Upper64of128(v) == 0) {
|
|
return FloorLog2(Lower64of128(v));
|
|
} else {
|
|
return FloorLog2(Upper64of128(v)) + 64;
|
|
}
|
|
}
|
|
|
|
template <>
|
|
inline int CountTrailingZeroBits(Unsigned128 v) {
|
|
if (Lower64of128(v) != 0) {
|
|
return CountTrailingZeroBits(Lower64of128(v));
|
|
} else {
|
|
return CountTrailingZeroBits(Upper64of128(v)) + 64;
|
|
}
|
|
}
|
|
|
|
template <>
|
|
inline int BitsSetToOne(Unsigned128 v) {
|
|
return BitsSetToOne(Lower64of128(v)) + BitsSetToOne(Upper64of128(v));
|
|
}
|
|
|
|
template <>
|
|
inline int BitParity(Unsigned128 v) {
|
|
return BitParity(Lower64of128(v) ^ Upper64of128(v));
|
|
}
|
|
|
|
template <>
|
|
inline Unsigned128 EndianSwapValue(Unsigned128 v) {
|
|
return (Unsigned128{EndianSwapValue(Lower64of128(v))} << 64) |
|
|
EndianSwapValue(Upper64of128(v));
|
|
}
|
|
|
|
template <>
|
|
inline Unsigned128 ReverseBits(Unsigned128 v) {
|
|
return (Unsigned128{ReverseBits(Lower64of128(v))} << 64) |
|
|
ReverseBits(Upper64of128(v));
|
|
}
|
|
|
|
template <typename T>
|
|
struct IsUnsignedUpTo128
|
|
: std::integral_constant<bool, std::is_unsigned<T>::value ||
|
|
std::is_same<T, Unsigned128>::value> {};
|
|
|
|
inline void EncodeFixed128(char* dst, Unsigned128 value) {
|
|
EncodeFixed64(dst, Lower64of128(value));
|
|
EncodeFixed64(dst + 8, Upper64of128(value));
|
|
}
|
|
|
|
inline Unsigned128 DecodeFixed128(const char* ptr) {
|
|
Unsigned128 rv = DecodeFixed64(ptr + 8);
|
|
return (rv << 64) | DecodeFixed64(ptr);
|
|
}
|
|
|
|
// A version of EncodeFixed* for generic algorithms. Likely to be used
|
|
// with Unsigned128, so lives here for now.
|
|
template <typename T>
|
|
inline void EncodeFixedGeneric(char* /*dst*/, T /*value*/) {
|
|
// Unfortunately, GCC does not appear to optimize this simple code down
|
|
// to a trivial load on Intel:
|
|
//
|
|
// T ret_val = 0;
|
|
// for (size_t i = 0; i < sizeof(T); ++i) {
|
|
// ret_val |= (static_cast<T>(static_cast<unsigned char>(ptr[i])) << (8 *
|
|
// i));
|
|
// }
|
|
// return ret_val;
|
|
//
|
|
// But does unroll the loop, and does optimize manually unrolled version
|
|
// for specific sizes down to a trivial load. I have no idea why it doesn't
|
|
// do both on this code.
|
|
|
|
// So instead, we rely on specializations
|
|
static_assert(sizeof(T) == 0, "No specialization provided for this type");
|
|
}
|
|
|
|
template <>
|
|
inline void EncodeFixedGeneric(char* dst, uint16_t value) {
|
|
return EncodeFixed16(dst, value);
|
|
}
|
|
template <>
|
|
inline void EncodeFixedGeneric(char* dst, uint32_t value) {
|
|
return EncodeFixed32(dst, value);
|
|
}
|
|
template <>
|
|
inline void EncodeFixedGeneric(char* dst, uint64_t value) {
|
|
return EncodeFixed64(dst, value);
|
|
}
|
|
template <>
|
|
inline void EncodeFixedGeneric(char* dst, Unsigned128 value) {
|
|
return EncodeFixed128(dst, value);
|
|
}
|
|
|
|
// A version of EncodeFixed* for generic algorithms.
|
|
template <typename T>
|
|
inline T DecodeFixedGeneric(const char* /*dst*/) {
|
|
static_assert(sizeof(T) == 0, "No specialization provided for this type");
|
|
}
|
|
|
|
template <>
|
|
inline uint16_t DecodeFixedGeneric(const char* dst) {
|
|
return DecodeFixed16(dst);
|
|
}
|
|
template <>
|
|
inline uint32_t DecodeFixedGeneric(const char* dst) {
|
|
return DecodeFixed32(dst);
|
|
}
|
|
template <>
|
|
inline uint64_t DecodeFixedGeneric(const char* dst) {
|
|
return DecodeFixed64(dst);
|
|
}
|
|
template <>
|
|
inline Unsigned128 DecodeFixedGeneric(const char* dst) {
|
|
return DecodeFixed128(dst);
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|