rocksdb/db/range_tombstone_fragmenter.h
Yu Zhang 071a146fa0 Add support for range deletion when user timestamps are not persisted (#12254)
Summary:
For the user defined timestamps in memtable only feature, some special handling for range deletion blocks are needed since both the key (start_key) and the value (end_key) of a range tombstone can contain user-defined timestamps. Handling for the key is taken care of in the same way as the other data blocks in the block based table. This PR adds the special handling needed for the value (end_key) part. This includes:

1) On the write path, when L0 SST files are first created from flush, user-defined timestamps are removed from an end key of a range tombstone. There are places where it's logically removed (replaced with a min timestamp) because there is still logic with the running comparator that expects a user key that contains timestamp. And in the block based builder, it is eventually physically removed before persisted in a block.

2) On the read path, when range deletion block is being read, we artificially pad a min timestamp to the end key of a range tombstone in `BlockBasedTableReader`.

3) For file boundary `FileMetaData.largest`, we artificially pad a max timestamp to it if it contains a range deletion sentinel. Anytime when range deletion end_key is used to update file boundaries, it's using max timestamp instead of the range tombstone's actual timestamp to mark it as an exclusive end. d69628e6ce/db/dbformat.h (L923-L935)
This max timestamp is removed when in memory `FileMetaData.largest` is persisted into Manifest, we pad it back when it's read from Manifest while handling related `VersionEdit` in `VersionEditHandler`.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12254

Test Plan: Added unit test and enabled this feature combination's stress test.

Reviewed By: cbi42

Differential Revision: D52965527

Pulled By: jowlyzhang

fbshipit-source-id: e8315f8a2c5268e2ae0f7aec8012c266b86df985
2024-01-29 11:37:34 -08:00

364 lines
14 KiB
C++

// Copyright (c) 2018-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
#include <list>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include "db/dbformat.h"
#include "db/pinned_iterators_manager.h"
#include "rocksdb/status.h"
#include "table/internal_iterator.h"
namespace ROCKSDB_NAMESPACE {
struct FragmentedRangeTombstoneList;
struct FragmentedRangeTombstoneListCache {
// ensure only the first reader needs to initialize l
std::mutex reader_mutex;
std::unique_ptr<FragmentedRangeTombstoneList> tombstones = nullptr;
// readers will first check this bool to avoid
std::atomic<bool> initialized = false;
};
struct FragmentedRangeTombstoneList {
public:
// A compact representation of a "stack" of range tombstone fragments, which
// start and end at the same user keys but have different sequence numbers.
// The members seq_start_idx and seq_end_idx are intended to be parameters to
// seq_iter().
// If user-defined timestamp is enabled, `start` and `end` should be user keys
// with timestamp, and the timestamps are set to max timestamp to be returned
// by parsed_start_key()/parsed_end_key(). seq_start_idx and seq_end_idx will
// also be used as parameters to ts_iter().
struct RangeTombstoneStack {
RangeTombstoneStack(const Slice& start, const Slice& end, size_t start_idx,
size_t end_idx)
: start_key(start),
end_key(end),
seq_start_idx(start_idx),
seq_end_idx(end_idx) {}
Slice start_key;
Slice end_key;
size_t seq_start_idx;
size_t seq_end_idx;
};
// Assumes unfragmented_tombstones->key() and unfragmented_tombstones->value()
// both contain timestamp if enabled.
FragmentedRangeTombstoneList(
std::unique_ptr<InternalIterator> unfragmented_tombstones,
const InternalKeyComparator& icmp, bool for_compaction = false,
const std::vector<SequenceNumber>& snapshots = {},
const bool tombstone_end_include_ts = true);
std::vector<RangeTombstoneStack>::const_iterator begin() const {
return tombstones_.begin();
}
std::vector<RangeTombstoneStack>::const_iterator end() const {
return tombstones_.end();
}
std::vector<SequenceNumber>::const_iterator seq_iter(size_t idx) const {
return std::next(tombstone_seqs_.begin(), idx);
}
std::vector<Slice>::const_iterator ts_iter(size_t idx) const {
return std::next(tombstone_timestamps_.begin(), idx);
}
std::vector<SequenceNumber>::const_iterator seq_begin() const {
return tombstone_seqs_.begin();
}
std::vector<SequenceNumber>::const_iterator seq_end() const {
return tombstone_seqs_.end();
}
bool empty() const { return tombstones_.empty(); }
// Returns true if the stored tombstones contain with one with a sequence
// number in [lower, upper].
// This method is not const as it internally lazy initialize a set of
// sequence numbers (`seq_set_`).
bool ContainsRange(SequenceNumber lower, SequenceNumber upper);
uint64_t num_unfragmented_tombstones() const {
return num_unfragmented_tombstones_;
}
uint64_t total_tombstone_payload_bytes() const {
return total_tombstone_payload_bytes_;
}
private:
// Given an ordered range tombstone iterator unfragmented_tombstones,
// "fragment" the tombstones into non-overlapping pieces. Each
// "non-overlapping piece" is a RangeTombstoneStack in tombstones_, which
// contains start_key, end_key, and indices that points to sequence numbers
// (in tombstone_seqs_) and timestamps (in tombstone_timestamps_). If
// for_compaction is true, then `snapshots` should be provided. Range
// tombstone fragments are dropped if they are not visible in any snapshot and
// user-defined timestamp is not enabled. That is, for each snapshot stripe
// [lower, upper], the range tombstone fragment with largest seqno in [lower,
// upper] is preserved, and all the other range tombstones are dropped.
void FragmentTombstones(
std::unique_ptr<InternalIterator> unfragmented_tombstones,
const InternalKeyComparator& icmp, bool for_compaction,
const std::vector<SequenceNumber>& snapshots);
std::vector<RangeTombstoneStack> tombstones_;
std::vector<SequenceNumber> tombstone_seqs_;
std::vector<Slice> tombstone_timestamps_;
std::once_flag seq_set_init_once_flag_;
std::set<SequenceNumber> seq_set_;
std::list<std::string> pinned_slices_;
PinnedIteratorsManager pinned_iters_mgr_;
uint64_t num_unfragmented_tombstones_;
uint64_t total_tombstone_payload_bytes_;
};
// FragmentedRangeTombstoneIterator converts an InternalIterator of a range-del
// meta block into an iterator over non-overlapping tombstone fragments. The
// tombstone fragmentation process should be more efficient than the range
// tombstone collapsing algorithm in RangeDelAggregator because this leverages
// the internal key ordering already provided by the input iterator, if
// applicable (when the iterator is unsorted, a new sorted iterator is created
// before proceeding). If there are few overlaps, creating a
// FragmentedRangeTombstoneIterator should be O(n), while the RangeDelAggregator
// tombstone collapsing is always O(n log n).
class FragmentedRangeTombstoneIterator : public InternalIterator {
public:
FragmentedRangeTombstoneIterator(FragmentedRangeTombstoneList* tombstones,
const InternalKeyComparator& icmp,
SequenceNumber upper_bound,
const Slice* ts_upper_bound = nullptr,
SequenceNumber lower_bound = 0);
FragmentedRangeTombstoneIterator(
const std::shared_ptr<FragmentedRangeTombstoneList>& tombstones,
const InternalKeyComparator& icmp, SequenceNumber upper_bound,
const Slice* ts_upper_bound = nullptr, SequenceNumber lower_bound = 0);
FragmentedRangeTombstoneIterator(
const std::shared_ptr<FragmentedRangeTombstoneListCache>& tombstones,
const InternalKeyComparator& icmp, SequenceNumber upper_bound,
const Slice* ts_upper_bound = nullptr, SequenceNumber lower_bound = 0);
void SetRangeDelReadSeqno(SequenceNumber read_seqno) override {
upper_bound_ = read_seqno;
}
void SeekToFirst() override;
void SeekToLast() override;
void SeekToTopFirst();
void SeekToTopLast();
// NOTE: Seek and SeekForPrev do not behave in the way InternalIterator
// seeking should behave. This is OK because they are not currently used, but
// eventually FragmentedRangeTombstoneIterator should no longer implement
// InternalIterator.
//
// Seeks to the range tombstone that covers target at a seqnum in the
// snapshot. If no such tombstone exists, seek to the earliest tombstone in
// the snapshot that ends after target.
void Seek(const Slice& target) override;
// Seeks to the range tombstone that covers target at a seqnum in the
// snapshot. If no such tombstone exists, seek to the latest tombstone in the
// snapshot that starts before target.
void SeekForPrev(const Slice& target) override;
void Next() override;
void Prev() override;
void TopNext();
void TopPrev();
bool Valid() const override;
// Note that key() and value() do not return correct timestamp.
// Caller should call timestamp() to get the current timestamp.
Slice key() const override {
MaybePinKey();
return current_start_key_.Encode();
}
Slice value() const override { return pos_->end_key; }
bool IsKeyPinned() const override { return false; }
bool IsValuePinned() const override { return true; }
Status status() const override { return Status::OK(); }
bool empty() const { return tombstones_->empty(); }
void Invalidate() {
pos_ = tombstones_->end();
seq_pos_ = tombstones_->seq_end();
pinned_pos_ = tombstones_->end();
pinned_seq_pos_ = tombstones_->seq_end();
}
RangeTombstone Tombstone(bool logical_strip_timestamp = false) const {
assert(Valid());
if (icmp_->user_comparator()->timestamp_size()) {
return RangeTombstone(start_key(), end_key(), seq(), timestamp(),
logical_strip_timestamp);
}
return RangeTombstone(start_key(), end_key(), seq());
}
// Note that start_key() and end_key() are not guaranteed to have the
// correct timestamp. User can call timestamp() to get the correct
// timestamp().
Slice start_key() const { return pos_->start_key; }
Slice end_key() const { return pos_->end_key; }
SequenceNumber seq() const { return *seq_pos_; }
Slice timestamp() const {
// seqno and timestamp are stored in the same order.
return *tombstones_->ts_iter(seq_pos_ - tombstones_->seq_begin());
}
// Current use case is by CompactionRangeDelAggregator to set
// full_history_ts_low_.
void SetTimestampUpperBound(const Slice* ts_upper_bound) {
ts_upper_bound_ = ts_upper_bound;
}
ParsedInternalKey parsed_start_key() const {
return ParsedInternalKey(pos_->start_key, seq(), kTypeRangeDeletion);
}
ParsedInternalKey parsed_end_key() const {
return ParsedInternalKey(pos_->end_key, kMaxSequenceNumber,
kTypeRangeDeletion);
}
// Return the max sequence number of a range tombstone that covers
// the given user key.
// If there is no covering tombstone, then 0 is returned.
SequenceNumber MaxCoveringTombstoneSeqnum(const Slice& user_key);
// Splits the iterator into n+1 iterators (where n is the number of
// snapshots), each providing a view over a "stripe" of sequence numbers. The
// iterators are keyed by the upper bound of their ranges (the provided
// snapshots + kMaxSequenceNumber).
//
// NOTE: the iterators in the returned map are no longer valid if their
// parent iterator is deleted, since they do not modify the refcount of the
// underlying tombstone list. Therefore, this map should be deleted before
// the parent iterator.
std::map<SequenceNumber, std::unique_ptr<FragmentedRangeTombstoneIterator>>
SplitBySnapshot(const std::vector<SequenceNumber>& snapshots);
SequenceNumber upper_bound() const { return upper_bound_; }
SequenceNumber lower_bound() const { return lower_bound_; }
uint64_t num_unfragmented_tombstones() const {
return tombstones_->num_unfragmented_tombstones();
}
uint64_t total_tombstone_payload_bytes() const {
return tombstones_->total_tombstone_payload_bytes();
}
private:
using RangeTombstoneStack = FragmentedRangeTombstoneList::RangeTombstoneStack;
struct RangeTombstoneStackStartComparator {
explicit RangeTombstoneStackStartComparator(const Comparator* c) : cmp(c) {}
bool operator()(const RangeTombstoneStack& a,
const RangeTombstoneStack& b) const {
return cmp->CompareWithoutTimestamp(a.start_key, b.start_key) < 0;
}
bool operator()(const RangeTombstoneStack& a, const Slice& b) const {
return cmp->CompareWithoutTimestamp(a.start_key, b) < 0;
}
bool operator()(const Slice& a, const RangeTombstoneStack& b) const {
return cmp->CompareWithoutTimestamp(a, b.start_key) < 0;
}
const Comparator* cmp;
};
struct RangeTombstoneStackEndComparator {
explicit RangeTombstoneStackEndComparator(const Comparator* c) : cmp(c) {}
bool operator()(const RangeTombstoneStack& a,
const RangeTombstoneStack& b) const {
return cmp->CompareWithoutTimestamp(a.end_key, b.end_key) < 0;
}
bool operator()(const RangeTombstoneStack& a, const Slice& b) const {
return cmp->CompareWithoutTimestamp(a.end_key, b) < 0;
}
bool operator()(const Slice& a, const RangeTombstoneStack& b) const {
return cmp->CompareWithoutTimestamp(a, b.end_key) < 0;
}
const Comparator* cmp;
};
void MaybePinKey() const {
if (pos_ != tombstones_->end() && seq_pos_ != tombstones_->seq_end() &&
(pinned_pos_ != pos_ || pinned_seq_pos_ != seq_pos_)) {
current_start_key_.Set(pos_->start_key, *seq_pos_, kTypeRangeDeletion);
pinned_pos_ = pos_;
pinned_seq_pos_ = seq_pos_;
}
}
void SeekToCoveringTombstone(const Slice& key);
void SeekForPrevToCoveringTombstone(const Slice& key);
void ScanForwardToVisibleTombstone();
void ScanBackwardToVisibleTombstone();
bool ValidPos() const {
return Valid() && seq_pos_ != tombstones_->seq_iter(pos_->seq_end_idx);
}
const RangeTombstoneStackStartComparator tombstone_start_cmp_;
const RangeTombstoneStackEndComparator tombstone_end_cmp_;
const InternalKeyComparator* icmp_;
const Comparator* ucmp_;
std::shared_ptr<FragmentedRangeTombstoneList> tombstones_ref_;
std::shared_ptr<FragmentedRangeTombstoneListCache> tombstones_cache_ref_;
FragmentedRangeTombstoneList* tombstones_;
SequenceNumber upper_bound_;
SequenceNumber lower_bound_;
// Only consider timestamps <= ts_upper_bound_.
const Slice* ts_upper_bound_;
std::vector<RangeTombstoneStack>::const_iterator pos_;
std::vector<SequenceNumber>::const_iterator seq_pos_;
mutable std::vector<RangeTombstoneStack>::const_iterator pinned_pos_;
mutable std::vector<SequenceNumber>::const_iterator pinned_seq_pos_;
mutable InternalKey current_start_key_;
// Check the current RangeTombstoneStack `pos_` against timestamp
// upper bound `ts_upper_bound_` and sequence number upper bound
// `upper_bound_`. Update the sequence number (and timestamp) pointer
// `seq_pos_` to the first valid position satisfying both bounds.
void SetMaxVisibleSeqAndTimestamp() {
seq_pos_ = std::lower_bound(tombstones_->seq_iter(pos_->seq_start_idx),
tombstones_->seq_iter(pos_->seq_end_idx),
upper_bound_, std::greater<SequenceNumber>());
if (ts_upper_bound_ && !ts_upper_bound_->empty()) {
auto ts_pos = std::lower_bound(
tombstones_->ts_iter(pos_->seq_start_idx),
tombstones_->ts_iter(pos_->seq_end_idx), *ts_upper_bound_,
[this](const Slice& s1, const Slice& s2) {
return ucmp_->CompareTimestamp(s1, s2) > 0;
});
auto ts_idx = ts_pos - tombstones_->ts_iter(pos_->seq_start_idx);
auto seq_idx = seq_pos_ - tombstones_->seq_iter(pos_->seq_start_idx);
if (seq_idx < ts_idx) {
// seq and ts are ordered in non-increasing order. Only updates seq_pos_
// to a larger index for smaller sequence number and timestamp.
seq_pos_ = tombstones_->seq_iter(pos_->seq_start_idx + ts_idx);
}
}
}
};
} // namespace ROCKSDB_NAMESPACE