mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-25 22:44:05 +00:00
239d17a19c
Summary: Primarily this change refactors the optimize_filters_for_memory code for Bloom filters, based on malloc_usable_size, to also work for Ribbon filters. This change also replaces the somewhat slow but general BuiltinFilterBitsBuilder::ApproximateNumEntries with implementation-specific versions for Ribbon (new) and Legacy Bloom (based on a recently deleted version). The reason is to emphasize speed in ApproximateNumEntries rather than 100% accuracy. Justification: ApproximateNumEntries (formerly CalculateNumEntry) is only used by RocksDB for range-partitioned filters, called each time we start to construct one. (In theory, it should be possible to reuse the estimate, but the abstractions provided by FilterPolicy don't really make that workable.) But this is only used as a heuristic estimate for hitting a desired partitioned filter size because of alignment to data blocks, which have various numbers of unique keys or prefixes. The two factors lead us to prioritize reasonable speed over 100% accuracy. optimize_filters_for_memory adds extra complication, because precisely calculating num_entries for some allowed number of bytes depends on state with optimize_filters_for_memory enabled. And the allocator-agnostic implementation of optimize_filters_for_memory, using malloc_usable_size, means we would have to actually allocate memory, many times, just to precisely determine how many entries (keys) could be added and stay below some size budget, for the current state. (In a draft, I got this working, and then realized the balance of speed vs. accuracy was all wrong.) So related to that, I have made CalculateSpace, an internal-only API only used for testing, non-authoritative also if optimize_filters_for_memory is enabled. This simplifies some code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7774 Test Plan: unit test updated, and for FilterSize test, range of tested values is greatly expanded (still super fast) Also tested `db_bench -benchmarks=fillrandom,stats -bloom_bits=10 -num=1000000 -partition_index_and_filters -format_version=5 [-optimize_filters_for_memory] [-use_ribbon_filter]` with temporary debug output of generated filter sizes. Bloom+optimize_filters_for_memory: 1 Filter size: 197 (224 in memory) 134 Filter size: 3525 (3584 in memory) 107 Filter size: 4037 (4096 in memory) Total on disk: 904,506 Total in memory: 918,752 Ribbon+optimize_filters_for_memory: 1 Filter size: 3061 (3072 in memory) 110 Filter size: 3573 (3584 in memory) 58 Filter size: 4085 (4096 in memory) Total on disk: 633,021 (-30.0%) Total in memory: 634,880 (-30.9%) Bloom (no offm): 1 Filter size: 261 (320 in memory) 1 Filter size: 3333 (3584 in memory) 240 Filter size: 3717 (4096 in memory) Total on disk: 895,674 (-1% on disk vs. +offm; known tolerable overhead of offm) Total in memory: 986,944 (+7.4% vs. +offm) Ribbon (no offm): 1 Filter size: 2949 (3072 in memory) 1 Filter size: 3381 (3584 in memory) 167 Filter size: 3701 (4096 in memory) Total on disk: 624,397 (-30.3% vs. Bloom) Total in memory: 690,688 (-30.0% vs. Bloom) Note that optimize_filters_for_memory is even more effective for Ribbon filter than for cache-local Bloom, because it can close the unused memory gap even tighter than Bloom filter, because of 16 byte increments for Ribbon vs. 64 byte increments for Bloom. Reviewed By: jay-zhuang Differential Revision: D25592970 Pulled By: pdillinger fbshipit-source-id: 606fdaa025bb790d7e9c21601e8ea86e10541912
1063 lines
43 KiB
C++
1063 lines
43 KiB
C++
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
#pragma once
|
|
|
|
#include <cmath>
|
|
|
|
#include "port/port.h" // for PREFETCH
|
|
#include "util/ribbon_alg.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
namespace ribbon {
|
|
|
|
// RIBBON PHSF & RIBBON Filter (Rapid Incremental Boolean Banding ON-the-fly)
|
|
//
|
|
// ribbon_impl.h: templated (parameterized) standard implementations
|
|
//
|
|
// Ribbon is a Perfect Hash Static Function construction useful as a compact
|
|
// static Bloom filter alternative. See ribbon_alg.h for core algorithms
|
|
// and core design details.
|
|
//
|
|
// TODO: more details on trade-offs and practical issues.
|
|
|
|
// Ribbon implementations in this file take these parameters, which must be
|
|
// provided in a class/struct type with members expressed in this concept:
|
|
|
|
// concept TypesAndSettings {
|
|
// // See RibbonTypes and *Hasher in ribbon_alg.h, except here we have
|
|
// // the added constraint that Hash be equivalent to either uint32_t or
|
|
// // uint64_t.
|
|
// typename Hash;
|
|
// typename CoeffRow;
|
|
// typename ResultRow;
|
|
// typename Index;
|
|
// typename Key;
|
|
// static constexpr bool kFirstCoeffAlwaysOne;
|
|
//
|
|
// // An unsigned integer type for identifying a hash seed, typically
|
|
// // uint32_t or uint64_t. Importantly, this is the amount of data
|
|
// // stored in memory for identifying a raw seed. See StandardHasher.
|
|
// typename Seed;
|
|
//
|
|
// // When true, the PHSF implements a static filter, expecting just
|
|
// // keys as inputs for construction. When false, implements a general
|
|
// // PHSF and expects std::pair<Key, ResultRow> as inputs for
|
|
// // construction.
|
|
// static constexpr bool kIsFilter;
|
|
//
|
|
// // When true, adds a tiny bit more hashing logic on queries and
|
|
// // construction to improve utilization at the beginning and end of
|
|
// // the structure. Recommended when CoeffRow is only 64 bits (or
|
|
// // less), so typical num_starts < 10k.
|
|
// static constexpr bool kUseSmash;
|
|
//
|
|
// // When true, allows number of "starts" to be zero, for best support
|
|
// // of the "no keys to add" case by always returning false for filter
|
|
// // queries. (This is distinct from the "keys added but no space for
|
|
// // any data" case, in which a filter always returns true.) The cost
|
|
// // supporting this is a conditional branch (probably predictable) in
|
|
// // queries.
|
|
// static constexpr bool kAllowZeroStarts;
|
|
//
|
|
// // A seedable stock hash function on Keys. All bits of Hash must
|
|
// // be reasonably high quality. XXH functions recommended, but
|
|
// // Murmur, City, Farm, etc. also work.
|
|
// static Hash HashFn(const Key &, Seed raw_seed);
|
|
// };
|
|
|
|
// A bit of a hack to automatically construct the type for
|
|
// AddInput based on a constexpr bool.
|
|
template <typename Key, typename ResultRow, bool IsFilter>
|
|
struct AddInputSelector {
|
|
// For general PHSF, not filter
|
|
using T = std::pair<Key, ResultRow>;
|
|
};
|
|
|
|
template <typename Key, typename ResultRow>
|
|
struct AddInputSelector<Key, ResultRow, true /*IsFilter*/> {
|
|
// For Filter
|
|
using T = Key;
|
|
};
|
|
|
|
// To avoid writing 'typename' everywhere that we use types like 'Index'
|
|
#define IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings) \
|
|
using CoeffRow = typename TypesAndSettings::CoeffRow; \
|
|
using ResultRow = typename TypesAndSettings::ResultRow; \
|
|
using Index = typename TypesAndSettings::Index; \
|
|
using Hash = typename TypesAndSettings::Hash; \
|
|
using Key = typename TypesAndSettings::Key; \
|
|
using Seed = typename TypesAndSettings::Seed; \
|
|
\
|
|
/* Some more additions */ \
|
|
using QueryInput = Key; \
|
|
using AddInput = typename ROCKSDB_NAMESPACE::ribbon::AddInputSelector< \
|
|
Key, ResultRow, TypesAndSettings::kIsFilter>::T; \
|
|
static constexpr auto kCoeffBits = \
|
|
static_cast<Index>(sizeof(CoeffRow) * 8U); \
|
|
\
|
|
/* Export to algorithm */ \
|
|
static constexpr bool kFirstCoeffAlwaysOne = \
|
|
TypesAndSettings::kFirstCoeffAlwaysOne; \
|
|
\
|
|
static_assert(sizeof(CoeffRow) + sizeof(ResultRow) + sizeof(Index) + \
|
|
sizeof(Hash) + sizeof(Key) + sizeof(Seed) + \
|
|
sizeof(QueryInput) + sizeof(AddInput) + kCoeffBits + \
|
|
kFirstCoeffAlwaysOne > \
|
|
0, \
|
|
"avoid unused warnings, semicolon expected after macro call")
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 4309) // cast truncating constant
|
|
#pragma warning(disable : 4307) // arithmetic constant overflow
|
|
#endif
|
|
|
|
// StandardHasher: A standard implementation of concepts RibbonTypes,
|
|
// PhsfQueryHasher, FilterQueryHasher, and BandingHasher from ribbon_alg.h.
|
|
//
|
|
// This implementation should be suitable for most all practical purposes
|
|
// as it "behaves" across a wide range of settings, with little room left
|
|
// for improvement. The key functionality in this hasher is generating
|
|
// CoeffRows, starts, and (for filters) ResultRows, which could be ~150
|
|
// bits of data or more, from a modest hash of 64 or even just 32 bits, with
|
|
// enough uniformity and bitwise independence to be close to "the best you
|
|
// can do" with available hash information in terms of FP rate and
|
|
// compactness. (64 bits recommended and sufficient for PHSF practical
|
|
// purposes.)
|
|
//
|
|
// Another feature of this hasher is a minimal "premixing" of seeds before
|
|
// they are provided to TypesAndSettings::HashFn in case that function does
|
|
// not provide sufficiently independent hashes when iterating merely
|
|
// sequentially on seeds. (This for example works around a problem with the
|
|
// preview version 0.7.2 of XXH3 used in RocksDB, a.k.a. XXH3p or Hash64, and
|
|
// MurmurHash1 used in RocksDB, a.k.a. Hash.) We say this pre-mixing step
|
|
// translates "ordinal seeds," which we iterate sequentially to find a
|
|
// solution, into "raw seeds," with many more bits changing for each
|
|
// iteration. The translation is an easily reversible lightweight mixing,
|
|
// not suitable for hashing on its own. An advantage of this approach is that
|
|
// StandardHasher can store just the raw seed (e.g. 64 bits) for fast query
|
|
// times, while from the application perspective, we can limit to a small
|
|
// number of ordinal keys (e.g. 64 in 6 bits) for saving in metadata.
|
|
//
|
|
// The default constructor initializes the seed to ordinal seed zero, which
|
|
// is equal to raw seed zero.
|
|
//
|
|
template <class TypesAndSettings>
|
|
class StandardHasher {
|
|
public:
|
|
IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings);
|
|
|
|
inline Hash GetHash(const Key& key) const {
|
|
return TypesAndSettings::HashFn(key, raw_seed_);
|
|
};
|
|
// For when AddInput == pair<Key, ResultRow> (kIsFilter == false)
|
|
inline Hash GetHash(const std::pair<Key, ResultRow>& bi) const {
|
|
return GetHash(bi.first);
|
|
};
|
|
inline Index GetStart(Hash h, Index num_starts) const {
|
|
// This is "critical path" code because it's required before memory
|
|
// lookup.
|
|
//
|
|
// FastRange gives us a fast and effective mapping from h to the
|
|
// appropriate range. This depends most, sometimes exclusively, on
|
|
// upper bits of h.
|
|
//
|
|
if (TypesAndSettings::kUseSmash) {
|
|
// Extra logic to "smash" entries at beginning and end, for
|
|
// better utilization. For example, without smash and with
|
|
// kFirstCoeffAlwaysOne, there's about a 30% chance that the
|
|
// first slot in the banding will be unused, and worse without
|
|
// kFirstCoeffAlwaysOne. The ending slots are even less utilized
|
|
// without smash.
|
|
//
|
|
// But since this only affects roughly kCoeffBits of the slots,
|
|
// it's usually small enough to be ignorable (less computation in
|
|
// this function) when number of slots is roughly 10k or larger.
|
|
//
|
|
// The best values for these smash weights might depend on how
|
|
// densely you're packing entries, and also kCoeffBits, but this
|
|
// seems to work well for roughly 95% success probability.
|
|
//
|
|
constexpr Index kFrontSmash = kCoeffBits / 4;
|
|
constexpr Index kBackSmash = kCoeffBits / 4;
|
|
Index start = FastRangeGeneric(h, num_starts + kFrontSmash + kBackSmash);
|
|
start = std::max(start, kFrontSmash);
|
|
start -= kFrontSmash;
|
|
start = std::min(start, num_starts - 1);
|
|
return start;
|
|
} else {
|
|
// For query speed, we allow small number of initial and final
|
|
// entries to be under-utilized.
|
|
// NOTE: This call statically enforces that Hash is equivalent to
|
|
// either uint32_t or uint64_t.
|
|
return FastRangeGeneric(h, num_starts);
|
|
}
|
|
}
|
|
inline CoeffRow GetCoeffRow(Hash h) const {
|
|
// This is not so much "critical path" code because it can be done in
|
|
// parallel (instruction level) with memory lookup.
|
|
//
|
|
// We do not need exhaustive remixing for CoeffRow, but just enough that
|
|
// (a) every bit is reasonably independent from Start.
|
|
// (b) every Hash-length bit subsequence of the CoeffRow has full or
|
|
// nearly full entropy from h.
|
|
// (c) if nontrivial bit subsequences within are correlated, it needs to
|
|
// be more complicated than exact copy or bitwise not (at least without
|
|
// kFirstCoeffAlwaysOne), or else there seems to be a kind of
|
|
// correlated clustering effect.
|
|
// (d) the CoeffRow is not zero, so that no one input on its own can
|
|
// doom construction success. (Preferably a mix of 1's and 0's if
|
|
// satisfying above.)
|
|
|
|
// First, establish sufficient bitwise independence from Start, with
|
|
// multiplication by a large random prime.
|
|
// Note that we cast to Hash because if we use product bits beyond
|
|
// original input size, that's going to correlate with Start (FastRange)
|
|
// even with a (likely) different multiplier here.
|
|
Hash a = h * kCoeffAndResultFactor;
|
|
|
|
// If that's big enough, we're done. If not, we have to expand it,
|
|
// maybe up to 4x size.
|
|
uint64_t b = a;
|
|
static_assert(
|
|
sizeof(Hash) == sizeof(uint64_t) || sizeof(Hash) == sizeof(uint32_t),
|
|
"Supported sizes");
|
|
if (sizeof(Hash) < sizeof(uint64_t)) {
|
|
// Almost-trivial hash expansion (OK - see above), favoring roughly
|
|
// equal number of 1's and 0's in result
|
|
b = (b << 32) ^ b ^ kCoeffXor32;
|
|
}
|
|
Unsigned128 c = b;
|
|
static_assert(sizeof(CoeffRow) == sizeof(uint64_t) ||
|
|
sizeof(CoeffRow) == sizeof(Unsigned128),
|
|
"Supported sizes");
|
|
if (sizeof(uint64_t) < sizeof(CoeffRow)) {
|
|
// Almost-trivial hash expansion (OK - see above), favoring roughly
|
|
// equal number of 1's and 0's in result
|
|
c = (c << 64) ^ c ^ kCoeffXor64;
|
|
}
|
|
auto cr = static_cast<CoeffRow>(c);
|
|
|
|
// Now ensure the value is non-zero
|
|
if (kFirstCoeffAlwaysOne) {
|
|
cr |= 1;
|
|
} else if (sizeof(CoeffRow) == sizeof(Hash)) {
|
|
// Still have to ensure some bit is non-zero
|
|
cr |= (cr == 0) ? 1 : 0;
|
|
} else {
|
|
// (We did trivial expansion with constant xor, which ensures some
|
|
// bits are non-zero.)
|
|
}
|
|
return cr;
|
|
}
|
|
inline ResultRow GetResultRowMask() const {
|
|
// TODO: will be used with InterleavedSolutionStorage?
|
|
// For now, all bits set (note: might be a small type so might need to
|
|
// narrow after promotion)
|
|
return static_cast<ResultRow>(~ResultRow{0});
|
|
}
|
|
inline ResultRow GetResultRowFromHash(Hash h) const {
|
|
if (TypesAndSettings::kIsFilter) {
|
|
// This is not so much "critical path" code because it can be done in
|
|
// parallel (instruction level) with memory lookup.
|
|
//
|
|
// ResultRow bits only needs to be independent from CoeffRow bits if
|
|
// many entries might have the same start location, where "many" is
|
|
// comparable to number of hash bits or kCoeffBits. If !kUseSmash
|
|
// and num_starts > kCoeffBits, it is safe and efficient to draw from
|
|
// the same bits computed for CoeffRow, which are reasonably
|
|
// independent from Start. (Inlining and common subexpression
|
|
// elimination with GetCoeffRow should make this
|
|
// a single shared multiplication in generated code.)
|
|
//
|
|
// TODO: fix & test the kUseSmash case with very small num_starts
|
|
Hash a = h * kCoeffAndResultFactor;
|
|
// The bits here that are *most* independent of Start are the highest
|
|
// order bits (as in Knuth multiplicative hash). To make those the
|
|
// most preferred for use in the result row, we do a bswap here.
|
|
auto rr = static_cast<ResultRow>(EndianSwapValue(a));
|
|
return rr & GetResultRowMask();
|
|
} else {
|
|
// Must be zero
|
|
return 0;
|
|
}
|
|
}
|
|
// For when AddInput == Key (kIsFilter == true)
|
|
inline ResultRow GetResultRowFromInput(const Key&) const {
|
|
// Must be zero
|
|
return 0;
|
|
}
|
|
// For when AddInput == pair<Key, ResultRow> (kIsFilter == false)
|
|
inline ResultRow GetResultRowFromInput(
|
|
const std::pair<Key, ResultRow>& bi) const {
|
|
// Simple extraction
|
|
return bi.second;
|
|
}
|
|
|
|
// Seed tracking APIs - see class comment
|
|
void SetRawSeed(Seed seed) { raw_seed_ = seed; }
|
|
Seed GetRawSeed() { return raw_seed_; }
|
|
void SetOrdinalSeed(Seed count) {
|
|
// A simple, reversible mixing of any size (whole bytes) up to 64 bits.
|
|
// This allows casting the raw seed to any smaller size we use for
|
|
// ordinal seeds without risk of duplicate raw seeds for unique ordinal
|
|
// seeds.
|
|
|
|
// Seed type might be smaller than numerical promotion size, but Hash
|
|
// should be at least that size, so we use Hash as intermediate type.
|
|
static_assert(sizeof(Seed) <= sizeof(Hash),
|
|
"Hash must be at least size of Seed");
|
|
|
|
// Multiply by a large random prime (one-to-one for any prefix of bits)
|
|
Hash tmp = count * kToRawSeedFactor;
|
|
// Within-byte one-to-one mixing
|
|
static_assert((kSeedMixMask & (kSeedMixMask >> kSeedMixShift)) == 0,
|
|
"Illegal mask+shift");
|
|
tmp ^= (tmp & kSeedMixMask) >> kSeedMixShift;
|
|
raw_seed_ = static_cast<Seed>(tmp);
|
|
// dynamic verification
|
|
assert(GetOrdinalSeed() == count);
|
|
}
|
|
Seed GetOrdinalSeed() {
|
|
Hash tmp = raw_seed_;
|
|
// Within-byte one-to-one mixing (its own inverse)
|
|
tmp ^= (tmp & kSeedMixMask) >> kSeedMixShift;
|
|
// Multiply by 64-bit multiplicative inverse
|
|
static_assert(kToRawSeedFactor * kFromRawSeedFactor == Hash{1},
|
|
"Must be inverses");
|
|
return static_cast<Seed>(tmp * kFromRawSeedFactor);
|
|
}
|
|
|
|
protected:
|
|
// For expanding hash:
|
|
// large random prime
|
|
static constexpr Hash kCoeffAndResultFactor =
|
|
static_cast<Hash>(0xc28f82822b650bedULL);
|
|
// random-ish data
|
|
static constexpr uint32_t kCoeffXor32 = 0xa6293635U;
|
|
static constexpr uint64_t kCoeffXor64 = 0xc367844a6e52731dU;
|
|
|
|
// For pre-mixing seeds
|
|
static constexpr Hash kSeedMixMask = static_cast<Hash>(0xf0f0f0f0f0f0f0f0ULL);
|
|
static constexpr unsigned kSeedMixShift = 4U;
|
|
static constexpr Hash kToRawSeedFactor =
|
|
static_cast<Hash>(0xc78219a23eeadd03ULL);
|
|
static constexpr Hash kFromRawSeedFactor =
|
|
static_cast<Hash>(0xfe1a137d14b475abULL);
|
|
|
|
// See class description
|
|
Seed raw_seed_ = 0;
|
|
};
|
|
|
|
// StandardRehasher (and StandardRehasherAdapter): A variant of
|
|
// StandardHasher that uses the same type for keys as for hashes.
|
|
// This is primarily intended for building a Ribbon filter
|
|
// from existing hashes without going back to original inputs in
|
|
// order to apply a different seed. This hasher seeds a 1-to-1 mixing
|
|
// transformation to apply a seed to an existing hash. (Untested for
|
|
// hash-sized keys that are not already uniformly distributed.) This
|
|
// transformation builds on the seed pre-mixing done in StandardHasher.
|
|
//
|
|
// Testing suggests essentially no degradation of solution success rate
|
|
// vs. going back to original inputs when changing hash seeds. For example:
|
|
// Average re-seeds for solution with r=128, 1.02x overhead, and ~100k keys
|
|
// is about 1.10 for both StandardHasher and StandardRehasher.
|
|
//
|
|
// StandardRehasher is not really recommended for general PHSFs (not
|
|
// filters) because a collision in the original hash could prevent
|
|
// construction despite re-seeding the Rehasher. (Such collisions
|
|
// do not interfere with filter construction.)
|
|
//
|
|
// concept RehasherTypesAndSettings: like TypesAndSettings but
|
|
// does not require Key or HashFn.
|
|
template <class RehasherTypesAndSettings>
|
|
class StandardRehasherAdapter : public RehasherTypesAndSettings {
|
|
public:
|
|
using Hash = typename RehasherTypesAndSettings::Hash;
|
|
using Key = Hash;
|
|
using Seed = typename RehasherTypesAndSettings::Seed;
|
|
|
|
static Hash HashFn(const Hash& input, Seed raw_seed) {
|
|
// Note: raw_seed is already lightly pre-mixed, and this multiplication
|
|
// by a large prime is sufficient mixing (low-to-high bits) on top of
|
|
// that for good FastRange results, which depends primarily on highest
|
|
// bits. (The hashed CoeffRow and ResultRow are less sensitive to
|
|
// mixing than Start.)
|
|
// Also note: did consider adding ^ (input >> some) before the
|
|
// multiplication, but doesn't appear to be necessary.
|
|
return (input ^ raw_seed) * kRehashFactor;
|
|
}
|
|
|
|
private:
|
|
static constexpr Hash kRehashFactor =
|
|
static_cast<Hash>(0x6193d459236a3a0dULL);
|
|
};
|
|
|
|
// See comment on StandardRehasherAdapter
|
|
template <class RehasherTypesAndSettings>
|
|
using StandardRehasher =
|
|
StandardHasher<StandardRehasherAdapter<RehasherTypesAndSettings>>;
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
// Especially with smaller hashes (e.g. 32 bit), there can be noticeable
|
|
// false positives due to collisions in the Hash returned by GetHash.
|
|
// This function returns the expected FP rate due to those collisions,
|
|
// which can be added to the expected FP rate from the underlying data
|
|
// structure. (Note: technically, a + b is only a good approximation of
|
|
// 1-(1-a)(1-b) == a + b - a*b, if a and b are much closer to 0 than to 1.)
|
|
// The number of entries added can be a double here in case it's an
|
|
// average.
|
|
template <class Hasher, typename Numerical>
|
|
double ExpectedCollisionFpRate(const Hasher& hasher, Numerical added) {
|
|
// Standardize on the 'double' specialization
|
|
return ExpectedCollisionFpRate(hasher, 1.0 * added);
|
|
}
|
|
template <class Hasher>
|
|
double ExpectedCollisionFpRate(const Hasher& /*hasher*/, double added) {
|
|
// Technically, there could be overlap among the added, but ignoring that
|
|
// is typically close enough.
|
|
return added / std::pow(256.0, sizeof(typename Hasher::Hash));
|
|
}
|
|
|
|
// StandardBanding: a canonical implementation of BandingStorage and
|
|
// BacktrackStorage, with convenience API for banding (solving with on-the-fly
|
|
// Gaussian elimination) with and without backtracking.
|
|
template <class TypesAndSettings>
|
|
class StandardBanding : public StandardHasher<TypesAndSettings> {
|
|
public:
|
|
IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings);
|
|
|
|
StandardBanding(Index num_slots = 0, Index backtrack_size = 0) {
|
|
Reset(num_slots, backtrack_size);
|
|
}
|
|
|
|
void Reset(Index num_slots, Index backtrack_size = 0) {
|
|
if (num_slots == 0) {
|
|
// Unusual (TypesAndSettings::kAllowZeroStarts) or "uninitialized"
|
|
num_starts_ = 0;
|
|
} else {
|
|
// Normal
|
|
assert(num_slots >= kCoeffBits);
|
|
if (num_slots > num_slots_allocated_) {
|
|
coeff_rows_.reset(new CoeffRow[num_slots]());
|
|
// Note: don't strictly have to zero-init result_rows,
|
|
// except possible information leakage ;)
|
|
result_rows_.reset(new ResultRow[num_slots]());
|
|
num_slots_allocated_ = num_slots;
|
|
} else {
|
|
for (Index i = 0; i < num_slots; ++i) {
|
|
coeff_rows_[i] = 0;
|
|
// Note: don't strictly have to zero-init result_rows
|
|
result_rows_[i] = 0;
|
|
}
|
|
}
|
|
num_starts_ = num_slots - kCoeffBits + 1;
|
|
}
|
|
EnsureBacktrackSize(backtrack_size);
|
|
}
|
|
|
|
void EnsureBacktrackSize(Index backtrack_size) {
|
|
if (backtrack_size > backtrack_size_) {
|
|
backtrack_.reset(new Index[backtrack_size]);
|
|
backtrack_size_ = backtrack_size;
|
|
}
|
|
}
|
|
|
|
// ********************************************************************
|
|
// From concept BandingStorage
|
|
|
|
inline bool UsePrefetch() const {
|
|
// A rough guesstimate of when prefetching during construction pays off.
|
|
// TODO: verify/validate
|
|
return num_starts_ > 1500;
|
|
}
|
|
inline void Prefetch(Index i) const {
|
|
PREFETCH(&coeff_rows_[i], 1 /* rw */, 1 /* locality */);
|
|
PREFETCH(&result_rows_[i], 1 /* rw */, 1 /* locality */);
|
|
}
|
|
inline CoeffRow* CoeffRowPtr(Index i) { return &coeff_rows_[i]; }
|
|
inline ResultRow* ResultRowPtr(Index i) { return &result_rows_[i]; }
|
|
inline Index GetNumStarts() const { return num_starts_; }
|
|
|
|
// from concept BacktrackStorage, for when backtracking is used
|
|
inline bool UseBacktrack() const { return true; }
|
|
inline void BacktrackPut(Index i, Index to_save) { backtrack_[i] = to_save; }
|
|
inline Index BacktrackGet(Index i) const { return backtrack_[i]; }
|
|
|
|
// ********************************************************************
|
|
// Some useful API, still somewhat low level. Here an input is
|
|
// a Key for filters, or std::pair<Key, ResultRow> for general PHSF.
|
|
|
|
// Adds a range of inputs to the banding, returning true if successful.
|
|
// False means none or some may have been successfully added, so it's
|
|
// best to Reset this banding before any further use.
|
|
//
|
|
// Adding can fail even before all the "slots" are completely "full".
|
|
//
|
|
template <typename InputIterator>
|
|
bool AddRange(InputIterator begin, InputIterator end) {
|
|
assert(num_starts_ > 0 || TypesAndSettings::kAllowZeroStarts);
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual. Can't add any in this case.
|
|
return begin == end;
|
|
}
|
|
// Normal
|
|
return BandingAddRange(this, *this, begin, end);
|
|
}
|
|
|
|
// Adds a range of inputs to the banding, returning true if successful,
|
|
// or if unsuccessful, rolls back to state before this call and returns
|
|
// false. Caller guarantees that the number of inputs in this batch
|
|
// does not exceed `backtrack_size` provided to Reset.
|
|
//
|
|
// Adding can fail even before all the "slots" are completely "full".
|
|
//
|
|
template <typename InputIterator>
|
|
bool AddRangeOrRollBack(InputIterator begin, InputIterator end) {
|
|
assert(num_starts_ > 0 || TypesAndSettings::kAllowZeroStarts);
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual. Can't add any in this case.
|
|
return begin == end;
|
|
}
|
|
// else Normal
|
|
return BandingAddRange(this, this, *this, begin, end);
|
|
}
|
|
|
|
// Adds a single input to the banding, returning true if successful.
|
|
// If unsuccessful, returns false and banding state is unchanged.
|
|
//
|
|
// Adding can fail even before all the "slots" are completely "full".
|
|
//
|
|
bool Add(const AddInput& input) {
|
|
// Pointer can act as iterator
|
|
return AddRange(&input, &input + 1);
|
|
}
|
|
|
|
// Return the number of "occupied" rows (with non-zero coefficients stored).
|
|
Index GetOccupiedCount() const {
|
|
Index count = 0;
|
|
if (num_starts_ > 0) {
|
|
const Index num_slots = num_starts_ + kCoeffBits - 1;
|
|
for (Index i = 0; i < num_slots; ++i) {
|
|
if (coeff_rows_[i] != 0) {
|
|
++count;
|
|
}
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
// ********************************************************************
|
|
// High-level API
|
|
|
|
// Iteratively (a) resets the structure for `num_slots`, (b) attempts
|
|
// to add the range of inputs, and (c) if unsuccessful, chooses next
|
|
// hash seed, until either successful or unsuccessful with all the
|
|
// allowed seeds. Returns true if successful. In that case, use
|
|
// GetOrdinalSeed() or GetRawSeed() to get the successful seed.
|
|
//
|
|
// The allowed sequence of hash seeds is determined by
|
|
// `starting_ordinal_seed,` the first ordinal seed to be attempted
|
|
// (see StandardHasher), and `ordinal_seed_mask,` a bit mask (power of
|
|
// two minus one) for the range of ordinal seeds to consider. The
|
|
// max number of seeds considered will be ordinal_seed_mask + 1.
|
|
// For filters we suggest `starting_ordinal_seed` be chosen randomly
|
|
// or round-robin, to minimize false positive correlations between keys.
|
|
//
|
|
// If unsuccessful, how best to continue is going to be application
|
|
// specific. It should be possible to choose parameters such that
|
|
// failure is extremely unlikely, using max_seed around 32 to 64.
|
|
// (TODO: APIs to help choose parameters) One option for fallback in
|
|
// constructing a filter is to construct a Bloom filter instead.
|
|
// Increasing num_slots is an option, but should not be used often
|
|
// unless construction maximum latency is a concern (rather than
|
|
// average running time of construction). Instead, choose parameters
|
|
// appropriately and trust that seeds are independent. (Also,
|
|
// increasing num_slots without changing hash seed would have a
|
|
// significant correlation in success, rather than independence.)
|
|
template <typename InputIterator>
|
|
bool ResetAndFindSeedToSolve(Index num_slots, InputIterator begin,
|
|
InputIterator end,
|
|
Seed starting_ordinal_seed = 0U,
|
|
Seed ordinal_seed_mask = 63U) {
|
|
// power of 2 minus 1
|
|
assert((ordinal_seed_mask & (ordinal_seed_mask + 1)) == 0);
|
|
// starting seed is within mask
|
|
assert((starting_ordinal_seed & ordinal_seed_mask) ==
|
|
starting_ordinal_seed);
|
|
starting_ordinal_seed &= ordinal_seed_mask; // if not debug
|
|
|
|
Seed cur_ordinal_seed = starting_ordinal_seed;
|
|
do {
|
|
StandardHasher<TypesAndSettings>::SetOrdinalSeed(cur_ordinal_seed);
|
|
Reset(num_slots);
|
|
bool success = AddRange(begin, end);
|
|
if (success) {
|
|
return true;
|
|
}
|
|
cur_ordinal_seed = (cur_ordinal_seed + 1) & ordinal_seed_mask;
|
|
} while (cur_ordinal_seed != starting_ordinal_seed);
|
|
// Reached limit by circling around
|
|
return false;
|
|
}
|
|
|
|
// ********************************************************************
|
|
// Static high-level API
|
|
|
|
// Based on data from FindOccupancyForSuccessRate in ribbon_test,
|
|
// returns a number of slots for a given number of entries to add
|
|
// that should have roughly 95% or better chance of successful
|
|
// construction per seed. Does NOT do rounding for InterleavedSoln;
|
|
// call RoundUpNumSlots for that.
|
|
//
|
|
// num_to_add should not exceed roughly 2/3rds of the maximum value
|
|
// of the Index type to avoid overflow.
|
|
static Index GetNumSlotsFor95PctSuccess(Index num_to_add) {
|
|
if (num_to_add == 0) {
|
|
return 0;
|
|
}
|
|
double factor = GetFactorFor95PctSuccess(num_to_add);
|
|
Index num_slots = static_cast<Index>(num_to_add * factor);
|
|
assert(num_slots >= num_to_add);
|
|
return num_slots;
|
|
}
|
|
|
|
// Based on data from FindOccupancyForSuccessRate in ribbon_test,
|
|
// given a number of entries to add, returns a space overhead factor
|
|
// (slots divided by num_to_add) that should have roughly 95% or better
|
|
// chance of successful construction per seed. Does NOT do rounding for
|
|
// InterleavedSoln; call RoundUpNumSlots for that.
|
|
//
|
|
// The reason that num_to_add is needed is that Ribbon filters of a
|
|
// particular CoeffRow size do not scale infinitely.
|
|
static double GetFactorFor95PctSuccess(Index num_to_add) {
|
|
double log2_num_to_add = std::log(num_to_add) * 1.442695;
|
|
if (kCoeffBits == 64) {
|
|
if (TypesAndSettings::kUseSmash) {
|
|
return 1.02 + std::max(log2_num_to_add - 8.5, 0.0) * 0.009;
|
|
} else {
|
|
return 1.05 + std::max(log2_num_to_add - 11.0, 0.0) * 0.009;
|
|
}
|
|
} else {
|
|
// Currently only support 64 and 128
|
|
assert(kCoeffBits == 128);
|
|
if (TypesAndSettings::kUseSmash) {
|
|
return 1.01 + std::max(log2_num_to_add - 10.0, 0.0) * 0.0042;
|
|
} else {
|
|
return 1.02 + std::max(log2_num_to_add - 12.0, 0.0) * 0.0042;
|
|
}
|
|
}
|
|
}
|
|
|
|
protected:
|
|
// TODO: explore combining in a struct
|
|
std::unique_ptr<CoeffRow[]> coeff_rows_;
|
|
std::unique_ptr<ResultRow[]> result_rows_;
|
|
// We generally store "starts" instead of slots for speed of GetStart(),
|
|
// as in StandardHasher.
|
|
Index num_starts_ = 0;
|
|
Index num_slots_allocated_ = 0;
|
|
std::unique_ptr<Index[]> backtrack_;
|
|
Index backtrack_size_ = 0;
|
|
};
|
|
|
|
// Implements concept SimpleSolutionStorage, mostly for demonstration
|
|
// purposes. This is "in memory" only because it does not handle byte
|
|
// ordering issues for serialization.
|
|
template <class TypesAndSettings>
|
|
class InMemSimpleSolution {
|
|
public:
|
|
IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings);
|
|
|
|
void PrepareForNumStarts(Index num_starts) {
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts == 0) {
|
|
// Unusual
|
|
num_starts_ = 0;
|
|
} else {
|
|
// Normal
|
|
const Index num_slots = num_starts + kCoeffBits - 1;
|
|
assert(num_slots >= kCoeffBits);
|
|
if (num_slots > num_slots_allocated_) {
|
|
// Do not need to init the memory
|
|
solution_rows_.reset(new ResultRow[num_slots]);
|
|
num_slots_allocated_ = num_slots;
|
|
}
|
|
num_starts_ = num_starts;
|
|
}
|
|
}
|
|
|
|
Index GetNumStarts() const { return num_starts_; }
|
|
|
|
ResultRow Load(Index slot_num) const { return solution_rows_[slot_num]; }
|
|
|
|
void Store(Index slot_num, ResultRow solution_row) {
|
|
solution_rows_[slot_num] = solution_row;
|
|
}
|
|
|
|
// ********************************************************************
|
|
// High-level API
|
|
|
|
template <typename BandingStorage>
|
|
void BackSubstFrom(const BandingStorage& bs) {
|
|
if (TypesAndSettings::kAllowZeroStarts && bs.GetNumStarts() == 0) {
|
|
// Unusual
|
|
PrepareForNumStarts(0);
|
|
} else {
|
|
// Normal
|
|
SimpleBackSubst(this, bs);
|
|
}
|
|
}
|
|
|
|
template <typename PhsfQueryHasher>
|
|
ResultRow PhsfQuery(const Key& input, const PhsfQueryHasher& hasher) {
|
|
assert(!TypesAndSettings::kIsFilter);
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual
|
|
return 0;
|
|
} else {
|
|
// Normal
|
|
return SimplePhsfQuery(input, hasher, *this);
|
|
}
|
|
}
|
|
|
|
template <typename FilterQueryHasher>
|
|
bool FilterQuery(const Key& input, const FilterQueryHasher& hasher) {
|
|
assert(TypesAndSettings::kIsFilter);
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual. Zero starts presumes no keys added -> always false
|
|
return false;
|
|
} else {
|
|
// Normal, or upper_num_columns_ == 0 means "no space for data" and
|
|
// thus will always return true.
|
|
return SimpleFilterQuery(input, hasher, *this);
|
|
}
|
|
}
|
|
|
|
double ExpectedFpRate() {
|
|
assert(TypesAndSettings::kIsFilter);
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual, but we don't have FPs if we always return false.
|
|
return 0.0;
|
|
}
|
|
// else Normal
|
|
|
|
// Each result (solution) bit (column) cuts FP rate in half
|
|
return std::pow(0.5, 8U * sizeof(ResultRow));
|
|
}
|
|
|
|
protected:
|
|
// We generally store "starts" instead of slots for speed of GetStart(),
|
|
// as in StandardHasher.
|
|
Index num_starts_ = 0;
|
|
Index num_slots_allocated_ = 0;
|
|
std::unique_ptr<ResultRow[]> solution_rows_;
|
|
};
|
|
|
|
// Implements concept InterleavedSolutionStorage always using little-endian
|
|
// byte order, so easy for serialization/deserialization. This implementation
|
|
// fully supports fractional bits per key, where any number of segments
|
|
// (number of bytes multiple of sizeof(CoeffRow)) can be used with any number
|
|
// of slots that is a multiple of kCoeffBits.
|
|
//
|
|
// The structure is passed an externally allocated/de-allocated byte buffer
|
|
// that is optionally pre-populated (from storage) for answering queries,
|
|
// or can be populated by BackSubstFrom.
|
|
//
|
|
template <class TypesAndSettings>
|
|
class SerializableInterleavedSolution {
|
|
public:
|
|
IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings);
|
|
|
|
// Does not take ownership of `data` but uses it (up to `data_len` bytes)
|
|
// throughout lifetime
|
|
SerializableInterleavedSolution(char* data, size_t data_len)
|
|
: data_(data), data_len_(data_len) {}
|
|
|
|
void PrepareForNumStarts(Index num_starts) {
|
|
assert(num_starts == 0 || (num_starts % kCoeffBits == 1));
|
|
num_starts_ = num_starts;
|
|
|
|
InternalConfigure();
|
|
}
|
|
|
|
Index GetNumStarts() const { return num_starts_; }
|
|
|
|
Index GetNumBlocks() const {
|
|
const Index num_slots = num_starts_ + kCoeffBits - 1;
|
|
return num_slots / kCoeffBits;
|
|
}
|
|
|
|
Index GetUpperNumColumns() const { return upper_num_columns_; }
|
|
|
|
Index GetUpperStartBlock() const { return upper_start_block_; }
|
|
|
|
Index GetNumSegments() const {
|
|
return static_cast<Index>(data_len_ / sizeof(CoeffRow));
|
|
}
|
|
|
|
CoeffRow LoadSegment(Index segment_num) const {
|
|
assert(data_ != nullptr); // suppress clang analyzer report
|
|
return DecodeFixedGeneric<CoeffRow>(data_ + segment_num * sizeof(CoeffRow));
|
|
}
|
|
void StoreSegment(Index segment_num, CoeffRow val) {
|
|
assert(data_ != nullptr); // suppress clang analyzer report
|
|
EncodeFixedGeneric(data_ + segment_num * sizeof(CoeffRow), val);
|
|
}
|
|
|
|
// ********************************************************************
|
|
// High-level API
|
|
|
|
void ConfigureForNumBlocks(Index num_blocks) {
|
|
if (num_blocks == 0) {
|
|
PrepareForNumStarts(0);
|
|
} else {
|
|
PrepareForNumStarts(num_blocks * kCoeffBits - kCoeffBits + 1);
|
|
}
|
|
}
|
|
|
|
void ConfigureForNumSlots(Index num_slots) {
|
|
assert(num_slots % kCoeffBits == 0);
|
|
ConfigureForNumBlocks(num_slots / kCoeffBits);
|
|
}
|
|
|
|
template <typename BandingStorage>
|
|
void BackSubstFrom(const BandingStorage& bs) {
|
|
if (TypesAndSettings::kAllowZeroStarts && bs.GetNumStarts() == 0) {
|
|
// Unusual
|
|
PrepareForNumStarts(0);
|
|
} else {
|
|
// Normal
|
|
InterleavedBackSubst(this, bs);
|
|
}
|
|
}
|
|
|
|
template <typename PhsfQueryHasher>
|
|
ResultRow PhsfQuery(const Key& input, const PhsfQueryHasher& hasher) {
|
|
assert(!TypesAndSettings::kIsFilter);
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual
|
|
return 0;
|
|
} else {
|
|
// Normal
|
|
return InterleavedPhsfQuery(input, hasher, *this);
|
|
}
|
|
}
|
|
|
|
template <typename FilterQueryHasher>
|
|
bool FilterQuery(const Key& input, const FilterQueryHasher& hasher) {
|
|
assert(TypesAndSettings::kIsFilter);
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual. Zero starts presumes no keys added -> always false
|
|
return false;
|
|
} else {
|
|
// Normal, or upper_num_columns_ == 0 means "no space for data" and
|
|
// thus will always return true.
|
|
return InterleavedFilterQuery(input, hasher, *this);
|
|
}
|
|
}
|
|
|
|
double ExpectedFpRate() {
|
|
assert(TypesAndSettings::kIsFilter);
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual. Zero starts presumes no keys added -> always false
|
|
return 0.0;
|
|
}
|
|
// else Normal
|
|
|
|
// Note: Ignoring smash setting; still close enough in that case
|
|
double lower_portion =
|
|
(upper_start_block_ * 1.0 * kCoeffBits) / num_starts_;
|
|
|
|
// Each result (solution) bit (column) cuts FP rate in half. Weight that
|
|
// for upper and lower number of bits (columns).
|
|
return lower_portion * std::pow(0.5, upper_num_columns_ - 1) +
|
|
(1.0 - lower_portion) * std::pow(0.5, upper_num_columns_);
|
|
}
|
|
|
|
// ********************************************************************
|
|
// Static high-level API
|
|
|
|
// Round up to a number of slots supported by this structure. Note that
|
|
// this needs to be must be taken into account for the banding if this
|
|
// solution layout/storage is to be used.
|
|
static Index RoundUpNumSlots(Index num_slots) {
|
|
// Must be multiple of kCoeffBits
|
|
Index corrected = (num_slots + kCoeffBits - 1) / kCoeffBits * kCoeffBits;
|
|
|
|
// Do not use num_starts==1 unless kUseSmash, because the hashing
|
|
// might not be equipped for stacking up so many entries on a
|
|
// single start location.
|
|
if (!TypesAndSettings::kUseSmash && corrected == kCoeffBits) {
|
|
corrected += kCoeffBits;
|
|
}
|
|
return corrected;
|
|
}
|
|
|
|
// Round down to a number of slots supported by this structure. Note that
|
|
// this needs to be must be taken into account for the banding if this
|
|
// solution layout/storage is to be used.
|
|
static Index RoundDownNumSlots(Index num_slots) {
|
|
// Must be multiple of kCoeffBits
|
|
Index corrected = num_slots / kCoeffBits * kCoeffBits;
|
|
|
|
// Do not use num_starts==1 unless kUseSmash, because the hashing
|
|
// might not be equipped for stacking up so many entries on a
|
|
// single start location.
|
|
if (!TypesAndSettings::kUseSmash && corrected == kCoeffBits) {
|
|
corrected = 0;
|
|
}
|
|
return corrected;
|
|
}
|
|
|
|
// Compute the number of bytes for a given number of slots and desired
|
|
// FP rate. Since desired FP rate might not be exactly achievable,
|
|
// rounding_bias32==0 means to always round toward lower FP rate
|
|
// than desired (more bytes); rounding_bias32==max uint32_t means always
|
|
// round toward higher FP rate than desired (fewer bytes); other values
|
|
// act as a proportional threshold or bias between the two.
|
|
static size_t GetBytesForFpRate(Index num_slots, double desired_fp_rate,
|
|
uint32_t rounding_bias32) {
|
|
return InternalGetBytesForFpRate(num_slots, desired_fp_rate,
|
|
1.0 / desired_fp_rate, rounding_bias32);
|
|
}
|
|
|
|
// The same, but specifying desired accuracy as 1.0 / FP rate, or
|
|
// one_in_fp_rate. E.g. desired_one_in_fp_rate=100 means 1% FP rate.
|
|
static size_t GetBytesForOneInFpRate(Index num_slots,
|
|
double desired_one_in_fp_rate,
|
|
uint32_t rounding_bias32) {
|
|
return InternalGetBytesForFpRate(num_slots, 1.0 / desired_one_in_fp_rate,
|
|
desired_one_in_fp_rate, rounding_bias32);
|
|
}
|
|
|
|
protected:
|
|
static size_t InternalGetBytesForFpRate(Index num_slots,
|
|
double desired_fp_rate,
|
|
double desired_one_in_fp_rate,
|
|
uint32_t rounding_bias32) {
|
|
assert(TypesAndSettings::kIsFilter);
|
|
if (TypesAndSettings::kAllowZeroStarts) {
|
|
if (num_slots == 0) {
|
|
// Unusual. Zero starts presumes no keys added -> always false (no FPs)
|
|
return 0U;
|
|
}
|
|
} else {
|
|
assert(num_slots > 0);
|
|
}
|
|
// Must be rounded up already.
|
|
assert(RoundUpNumSlots(num_slots) == num_slots);
|
|
|
|
if (desired_one_in_fp_rate > 1.0 && desired_fp_rate < 1.0) {
|
|
// Typical: less than 100% FP rate
|
|
if (desired_one_in_fp_rate <= static_cast<ResultRow>(-1)) {
|
|
// Typical: Less than maximum result row entropy
|
|
ResultRow rounded = static_cast<ResultRow>(desired_one_in_fp_rate);
|
|
int lower_columns = FloorLog2(rounded);
|
|
double lower_columns_fp_rate = std::pow(2.0, -lower_columns);
|
|
double upper_columns_fp_rate = std::pow(2.0, -(lower_columns + 1));
|
|
// Floating point don't let me down!
|
|
assert(lower_columns_fp_rate >= desired_fp_rate);
|
|
assert(upper_columns_fp_rate <= desired_fp_rate);
|
|
|
|
double lower_portion = (desired_fp_rate - upper_columns_fp_rate) /
|
|
(lower_columns_fp_rate - upper_columns_fp_rate);
|
|
// Floating point don't let me down!
|
|
assert(lower_portion >= 0.0);
|
|
assert(lower_portion <= 1.0);
|
|
|
|
double rounding_bias = (rounding_bias32 + 0.5) / double{0x100000000};
|
|
assert(rounding_bias > 0.0);
|
|
assert(rounding_bias < 1.0);
|
|
|
|
// Note: Ignoring smash setting; still close enough in that case
|
|
Index num_starts = num_slots - kCoeffBits + 1;
|
|
// Lower upper_start_block means lower FP rate (higher accuracy)
|
|
Index upper_start_block = static_cast<Index>(
|
|
(lower_portion * num_starts + rounding_bias) / kCoeffBits);
|
|
Index num_blocks = num_slots / kCoeffBits;
|
|
assert(upper_start_block < num_blocks);
|
|
|
|
// Start by assuming all blocks use lower number of columns
|
|
Index num_segments = num_blocks * static_cast<Index>(lower_columns);
|
|
// Correct by 1 each for blocks using upper number of columns
|
|
num_segments += (num_blocks - upper_start_block);
|
|
// Total bytes
|
|
return num_segments * sizeof(CoeffRow);
|
|
} else {
|
|
// one_in_fp_rate too big, thus requested FP rate is smaller than
|
|
// supported. Use max number of columns for minimum supported FP rate.
|
|
return num_slots * sizeof(ResultRow);
|
|
}
|
|
} else {
|
|
// Effectively asking for 100% FP rate, or NaN etc.
|
|
if (TypesAndSettings::kAllowZeroStarts) {
|
|
// Zero segments
|
|
return 0U;
|
|
} else {
|
|
// One segment (minimum size, maximizing FP rate)
|
|
return sizeof(CoeffRow);
|
|
}
|
|
}
|
|
}
|
|
|
|
void InternalConfigure() {
|
|
const Index num_blocks = GetNumBlocks();
|
|
Index num_segments = GetNumSegments();
|
|
|
|
if (num_blocks == 0) {
|
|
// Exceptional
|
|
upper_num_columns_ = 0;
|
|
upper_start_block_ = 0;
|
|
} else {
|
|
// Normal
|
|
upper_num_columns_ =
|
|
(num_segments + /*round up*/ num_blocks - 1) / num_blocks;
|
|
upper_start_block_ = upper_num_columns_ * num_blocks - num_segments;
|
|
// Unless that's more columns than supported by ResultRow data type
|
|
if (upper_num_columns_ > 8U * sizeof(ResultRow)) {
|
|
// Use maximum columns (there will be space unused)
|
|
upper_num_columns_ = static_cast<Index>(8U * sizeof(ResultRow));
|
|
upper_start_block_ = 0;
|
|
num_segments = num_blocks * upper_num_columns_;
|
|
}
|
|
}
|
|
// Update data_len_ for correct rounding and/or unused space
|
|
// NOTE: unused space stays gone if we PrepareForNumStarts again.
|
|
// We are prioritizing minimizing the number of fields over making
|
|
// the "unusued space" feature work well.
|
|
data_len_ = num_segments * sizeof(CoeffRow);
|
|
}
|
|
|
|
char* const data_;
|
|
size_t data_len_;
|
|
Index num_starts_ = 0;
|
|
Index upper_num_columns_ = 0;
|
|
Index upper_start_block_ = 0;
|
|
};
|
|
|
|
} // namespace ribbon
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|
|
// For convenience working with templates
|
|
#define IMPORT_RIBBON_IMPL_TYPES(TypesAndSettings) \
|
|
using Hasher = ROCKSDB_NAMESPACE::ribbon::StandardHasher<TypesAndSettings>; \
|
|
using Banding = \
|
|
ROCKSDB_NAMESPACE::ribbon::StandardBanding<TypesAndSettings>; \
|
|
using SimpleSoln = \
|
|
ROCKSDB_NAMESPACE::ribbon::InMemSimpleSolution<TypesAndSettings>; \
|
|
using InterleavedSoln = \
|
|
ROCKSDB_NAMESPACE::ribbon::SerializableInterleavedSolution< \
|
|
TypesAndSettings>; \
|
|
static_assert(sizeof(Hasher) + sizeof(Banding) + sizeof(SimpleSoln) + \
|
|
sizeof(InterleavedSoln) > \
|
|
0, \
|
|
"avoid unused warnings, semicolon expected after macro call")
|