rocksdb/db/db_secondary_test.cc

1765 lines
57 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/db_impl/db_impl_secondary.h"
#include "db/db_test_util.h"
#include "db/db_with_timestamp_test_util.h"
#include "port/stack_trace.h"
#include "rocksdb/utilities/transaction_db.h"
#include "test_util/sync_point.h"
#include "test_util/testutil.h"
#include "utilities/fault_injection_env.h"
namespace ROCKSDB_NAMESPACE {
class DBSecondaryTestBase : public DBBasicTestWithTimestampBase {
public:
explicit DBSecondaryTestBase(const std::string& dbname)
: DBBasicTestWithTimestampBase(dbname),
secondary_path_(),
handles_secondary_(),
db_secondary_(nullptr) {
secondary_path_ =
test::PerThreadDBPath(env_, "/db_secondary_test_secondary");
}
~DBSecondaryTestBase() override {
CloseSecondary();
if (getenv("KEEP_DB") != nullptr) {
fprintf(stdout, "Secondary DB is still at %s\n", secondary_path_.c_str());
} else {
Options options;
options.env = env_;
EXPECT_OK(DestroyDB(secondary_path_, options));
}
}
protected:
Status ReopenAsSecondary(const Options& options) {
return DB::OpenAsSecondary(options, dbname_, secondary_path_, &db_);
}
void OpenSecondary(const Options& options);
Status TryOpenSecondary(const Options& options);
void OpenSecondaryWithColumnFamilies(
const std::vector<std::string>& column_families, const Options& options);
void CloseSecondary() {
for (auto h : handles_secondary_) {
ASSERT_OK(db_secondary_->DestroyColumnFamilyHandle(h));
}
handles_secondary_.clear();
delete db_secondary_;
db_secondary_ = nullptr;
}
DBImplSecondary* db_secondary_full() {
return static_cast<DBImplSecondary*>(db_secondary_);
}
void CheckFileTypeCounts(const std::string& dir, int expected_log,
int expected_sst, int expected_manifest) const;
std::string secondary_path_;
std::vector<ColumnFamilyHandle*> handles_secondary_;
DB* db_secondary_;
};
void DBSecondaryTestBase::OpenSecondary(const Options& options) {
ASSERT_OK(TryOpenSecondary(options));
}
Status DBSecondaryTestBase::TryOpenSecondary(const Options& options) {
Status s =
DB::OpenAsSecondary(options, dbname_, secondary_path_, &db_secondary_);
return s;
}
void DBSecondaryTestBase::OpenSecondaryWithColumnFamilies(
const std::vector<std::string>& column_families, const Options& options) {
std::vector<ColumnFamilyDescriptor> cf_descs;
cf_descs.emplace_back(kDefaultColumnFamilyName, options);
for (const auto& cf_name : column_families) {
cf_descs.emplace_back(cf_name, options);
}
Status s = DB::OpenAsSecondary(options, dbname_, secondary_path_, cf_descs,
&handles_secondary_, &db_secondary_);
ASSERT_OK(s);
}
void DBSecondaryTestBase::CheckFileTypeCounts(const std::string& dir,
int expected_log,
int expected_sst,
int expected_manifest) const {
std::vector<std::string> filenames;
ASSERT_OK(env_->GetChildren(dir, &filenames));
int log_cnt = 0, sst_cnt = 0, manifest_cnt = 0;
for (auto file : filenames) {
uint64_t number;
FileType type;
if (ParseFileName(file, &number, &type)) {
log_cnt += (type == kWalFile);
sst_cnt += (type == kTableFile);
manifest_cnt += (type == kDescriptorFile);
}
}
ASSERT_EQ(expected_log, log_cnt);
ASSERT_EQ(expected_sst, sst_cnt);
ASSERT_EQ(expected_manifest, manifest_cnt);
}
class DBSecondaryTest : public DBSecondaryTestBase {
public:
explicit DBSecondaryTest() : DBSecondaryTestBase("db_secondary_test") {}
};
TEST_F(DBSecondaryTest, FailOpenIfLoggerCreationFail) {
Options options = GetDefaultOptions();
options.create_if_missing = true;
Reopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"rocksdb::CreateLoggerFromOptions:AfterGetPath", [&](void* arg) {
auto* s = reinterpret_cast<Status*>(arg);
assert(s);
*s = Status::IOError("Injected");
});
SyncPoint::GetInstance()->EnableProcessing();
options.max_open_files = -1;
Status s = TryOpenSecondary(options);
ASSERT_EQ(nullptr, options.info_log);
ASSERT_TRUE(s.IsIOError());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
}
TEST_F(DBSecondaryTest, NonExistingDb) {
Destroy(last_options_);
Options options = GetDefaultOptions();
options.env = env_;
options.max_open_files = -1;
const std::string dbname = "/doesnt/exist";
Status s =
DB::OpenAsSecondary(options, dbname, secondary_path_, &db_secondary_);
ASSERT_TRUE(s.IsIOError());
}
TEST_F(DBSecondaryTest, ReopenAsSecondary) {
Options options;
options.env = env_;
Reopen(options);
ASSERT_OK(Put("foo", "foo_value"));
ASSERT_OK(Put("bar", "bar_value"));
WideColumns columns{{kDefaultWideColumnName, "attr_default_val"},
{"attr_name1", "attr_value_1"},
{"attr_name2", "attr_value_2"}};
ASSERT_OK(db_->PutEntity(WriteOptions(), db_->DefaultColumnFamily(), "baz",
columns));
ASSERT_OK(dbfull()->Flush(FlushOptions()));
Close();
ASSERT_OK(ReopenAsSecondary(options));
ASSERT_EQ("foo_value", Get("foo"));
ASSERT_EQ("bar_value", Get("bar"));
PinnableWideColumns result;
ASSERT_OK(db_->GetEntity(ReadOptions(), db_->DefaultColumnFamily(), "baz",
&result));
ASSERT_EQ(result.columns(), columns);
ReadOptions ropts;
ropts.verify_checksums = true;
auto db1 = static_cast<DBImplSecondary*>(db_);
ASSERT_NE(nullptr, db1);
Iterator* iter = db1->NewIterator(ropts);
ASSERT_NE(nullptr, iter);
size_t count = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
if (0 == count) {
ASSERT_EQ("bar", iter->key().ToString());
ASSERT_EQ("bar_value", iter->value().ToString());
} else if (1 == count) {
ASSERT_EQ("baz", iter->key().ToString());
ASSERT_EQ(columns, iter->columns());
} else if (2 == count) {
ASSERT_EQ("foo", iter->key().ToString());
ASSERT_EQ("foo_value", iter->value().ToString());
}
++count;
}
ASSERT_OK(iter->status());
delete iter;
ASSERT_EQ(3, count);
}
TEST_F(DBSecondaryTest, SimpleInternalCompaction) {
Options options;
options.env = env_;
Reopen(options);
for (int i = 0; i < 3; ++i) {
ASSERT_OK(Put("foo", "foo_value" + std::to_string(i)));
ASSERT_OK(Put("bar", "bar_value" + std::to_string(i)));
ASSERT_OK(Flush());
}
CompactionServiceInput input;
ColumnFamilyMetaData meta;
db_->GetColumnFamilyMetaData(&meta);
for (auto& file : meta.levels[0].files) {
ASSERT_EQ(0, meta.levels[0].level);
input.input_files.push_back(file.name);
}
ASSERT_EQ(input.input_files.size(), 3);
input.output_level = 1;
ASSERT_OK(db_->GetDbIdentity(input.db_id));
Close();
options.max_open_files = -1;
OpenSecondary(options);
auto cfh = db_secondary_->DefaultColumnFamily();
CompactionServiceResult result;
ASSERT_OK(db_secondary_full()->TEST_CompactWithoutInstallation(
OpenAndCompactOptions(), cfh, input, &result));
ASSERT_EQ(result.output_files.size(), 1);
InternalKey smallest, largest;
smallest.DecodeFrom(result.output_files[0].smallest_internal_key);
largest.DecodeFrom(result.output_files[0].largest_internal_key);
ASSERT_EQ(smallest.user_key().ToString(), "bar");
ASSERT_EQ(largest.user_key().ToString(), "foo");
ASSERT_EQ(result.output_level, 1);
ASSERT_EQ(result.output_path, this->secondary_path_);
ASSERT_EQ(result.num_output_records, 2);
ASSERT_GT(result.bytes_written, 0);
ASSERT_OK(result.status);
}
TEST_F(DBSecondaryTest, InternalCompactionMultiLevels) {
Options options;
options.env = env_;
options.disable_auto_compactions = true;
Reopen(options);
const int kRangeL2 = 10;
const int kRangeL1 = 30;
for (int i = 0; i < 10; i++) {
ASSERT_OK(Put(Key(i * kRangeL2), "value" + std::to_string(i)));
ASSERT_OK(Put(Key((i + 1) * kRangeL2 - 1), "value" + std::to_string(i)));
ASSERT_OK(Flush());
}
MoveFilesToLevel(2);
for (int i = 0; i < 5; i++) {
ASSERT_OK(Put(Key(i * kRangeL1), "value" + std::to_string(i)));
ASSERT_OK(Put(Key((i + 1) * kRangeL1 - 1), "value" + std::to_string(i)));
ASSERT_OK(Flush());
}
MoveFilesToLevel(1);
for (int i = 0; i < 4; i++) {
ASSERT_OK(Put(Key(i * 30), "value" + std::to_string(i)));
ASSERT_OK(Put(Key(i * 30 + 50), "value" + std::to_string(i)));
ASSERT_OK(Flush());
}
ColumnFamilyMetaData meta;
db_->GetColumnFamilyMetaData(&meta);
// pick 2 files on level 0 for compaction, which has 3 overlap files on L1
CompactionServiceInput input1;
input1.input_files.push_back(meta.levels[0].files[2].name);
input1.input_files.push_back(meta.levels[0].files[3].name);
input1.input_files.push_back(meta.levels[1].files[0].name);
input1.input_files.push_back(meta.levels[1].files[1].name);
input1.input_files.push_back(meta.levels[1].files[2].name);
input1.output_level = 1;
ASSERT_OK(db_->GetDbIdentity(input1.db_id));
options.max_open_files = -1;
Close();
OpenSecondary(options);
auto cfh = db_secondary_->DefaultColumnFamily();
CompactionServiceResult result;
ASSERT_OK(db_secondary_full()->TEST_CompactWithoutInstallation(
OpenAndCompactOptions(), cfh, input1, &result));
ASSERT_OK(result.status);
// pick 2 files on level 1 for compaction, which has 6 overlap files on L2
CompactionServiceInput input2;
input2.input_files.push_back(meta.levels[1].files[1].name);
input2.input_files.push_back(meta.levels[1].files[2].name);
for (int i = 3; i < 9; i++) {
input2.input_files.push_back(meta.levels[2].files[i].name);
}
input2.output_level = 2;
input2.db_id = input1.db_id;
ASSERT_OK(db_secondary_full()->TEST_CompactWithoutInstallation(
OpenAndCompactOptions(), cfh, input2, &result));
ASSERT_OK(result.status);
CloseSecondary();
// delete all l2 files, without update manifest
for (auto& file : meta.levels[2].files) {
ASSERT_OK(env_->DeleteFile(dbname_ + file.name));
}
OpenSecondary(options);
cfh = db_secondary_->DefaultColumnFamily();
Status s = db_secondary_full()->TEST_CompactWithoutInstallation(
OpenAndCompactOptions(), cfh, input2, &result);
ASSERT_TRUE(s.IsInvalidArgument());
ASSERT_OK(result.status);
// TODO: L0 -> L1 compaction should success, currently version is not built
// if files is missing.
// ASSERT_OK(db_secondary_full()->TEST_CompactWithoutInstallation(OpenAndCompactOptions(),
// cfh, input1, &result));
}
TEST_F(DBSecondaryTest, InternalCompactionCompactedFiles) {
Options options;
options.env = env_;
options.level0_file_num_compaction_trigger = 4;
Reopen(options);
for (int i = 0; i < 3; ++i) {
ASSERT_OK(Put("foo", "foo_value" + std::to_string(i)));
ASSERT_OK(Put("bar", "bar_value" + std::to_string(i)));
ASSERT_OK(Flush());
}
CompactionServiceInput input;
ColumnFamilyMetaData meta;
db_->GetColumnFamilyMetaData(&meta);
for (auto& file : meta.levels[0].files) {
ASSERT_EQ(0, meta.levels[0].level);
input.input_files.push_back(file.name);
}
ASSERT_EQ(input.input_files.size(), 3);
input.output_level = 1;
ASSERT_OK(db_->GetDbIdentity(input.db_id));
// trigger compaction to delete the files for secondary instance compaction
ASSERT_OK(Put("foo", "foo_value" + std::to_string(3)));
ASSERT_OK(Put("bar", "bar_value" + std::to_string(3)));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
Close();
options.max_open_files = -1;
OpenSecondary(options);
auto cfh = db_secondary_->DefaultColumnFamily();
CompactionServiceResult result;
Status s = db_secondary_full()->TEST_CompactWithoutInstallation(
OpenAndCompactOptions(), cfh, input, &result);
ASSERT_TRUE(s.IsInvalidArgument());
ASSERT_OK(result.status);
}
TEST_F(DBSecondaryTest, InternalCompactionMissingFiles) {
Options options;
options.env = env_;
options.level0_file_num_compaction_trigger = 4;
Reopen(options);
for (int i = 0; i < 3; ++i) {
ASSERT_OK(Put("foo", "foo_value" + std::to_string(i)));
ASSERT_OK(Put("bar", "bar_value" + std::to_string(i)));
ASSERT_OK(Flush());
}
CompactionServiceInput input;
ColumnFamilyMetaData meta;
db_->GetColumnFamilyMetaData(&meta);
for (auto& file : meta.levels[0].files) {
ASSERT_EQ(0, meta.levels[0].level);
input.input_files.push_back(file.name);
}
ASSERT_EQ(input.input_files.size(), 3);
input.output_level = 1;
ASSERT_OK(db_->GetDbIdentity(input.db_id));
Close();
ASSERT_OK(env_->DeleteFile(dbname_ + input.input_files[0]));
options.max_open_files = -1;
OpenSecondary(options);
auto cfh = db_secondary_->DefaultColumnFamily();
CompactionServiceResult result;
Status s = db_secondary_full()->TEST_CompactWithoutInstallation(
OpenAndCompactOptions(), cfh, input, &result);
ASSERT_TRUE(s.IsInvalidArgument());
ASSERT_OK(result.status);
input.input_files.erase(input.input_files.begin());
ASSERT_OK(db_secondary_full()->TEST_CompactWithoutInstallation(
OpenAndCompactOptions(), cfh, input, &result));
ASSERT_OK(result.status);
}
TEST_F(DBSecondaryTest, OpenAsSecondary) {
Options options;
options.env = env_;
options.level0_file_num_compaction_trigger = 4;
Reopen(options);
for (int i = 0; i < 3; ++i) {
ASSERT_OK(Put("foo", "foo_value" + std::to_string(i)));
ASSERT_OK(Put("bar", "bar_value" + std::to_string(i)));
ASSERT_OK(Flush());
}
Options options1;
options1.env = env_;
options1.max_open_files = -1;
OpenSecondary(options1);
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ReadOptions ropts;
ropts.verify_checksums = true;
const auto verify_db_func = [&](const std::string& foo_val,
const std::string& bar_val) {
std::string value;
ASSERT_OK(db_secondary_->Get(ropts, "foo", &value));
ASSERT_EQ(foo_val, value);
ASSERT_OK(db_secondary_->Get(ropts, "bar", &value));
ASSERT_EQ(bar_val, value);
Iterator* iter = db_secondary_->NewIterator(ropts);
ASSERT_NE(nullptr, iter);
iter->Seek("foo");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("foo", iter->key().ToString());
ASSERT_EQ(foo_val, iter->value().ToString());
iter->Seek("bar");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bar", iter->key().ToString());
ASSERT_EQ(bar_val, iter->value().ToString());
size_t count = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
++count;
}
ASSERT_EQ(2, count);
delete iter;
};
verify_db_func("foo_value2", "bar_value2");
ASSERT_OK(Put("foo", "new_foo_value"));
ASSERT_OK(Put("bar", "new_bar_value"));
ASSERT_OK(Flush());
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
verify_db_func("new_foo_value", "new_bar_value");
}
namespace {
class TraceFileEnv : public EnvWrapper {
public:
explicit TraceFileEnv(Env* _target) : EnvWrapper(_target) {}
static const char* kClassName() { return "TraceFileEnv"; }
const char* Name() const override { return kClassName(); }
Status NewRandomAccessFile(const std::string& f,
std::unique_ptr<RandomAccessFile>* r,
const EnvOptions& env_options) override {
class TracedRandomAccessFile : public RandomAccessFile {
public:
TracedRandomAccessFile(std::unique_ptr<RandomAccessFile>&& target,
std::atomic<int>& counter)
: target_(std::move(target)), files_closed_(counter) {}
~TracedRandomAccessFile() override {
files_closed_.fetch_add(1, std::memory_order_relaxed);
}
Status Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const override {
return target_->Read(offset, n, result, scratch);
}
private:
std::unique_ptr<RandomAccessFile> target_;
std::atomic<int>& files_closed_;
};
Status s = target()->NewRandomAccessFile(f, r, env_options);
if (s.ok()) {
r->reset(new TracedRandomAccessFile(std::move(*r), files_closed_));
}
return s;
}
int files_closed() const {
return files_closed_.load(std::memory_order_relaxed);
}
private:
std::atomic<int> files_closed_{0};
};
} // anonymous namespace
TEST_F(DBSecondaryTest, SecondaryCloseFiles) {
Options options;
options.env = env_;
options.max_open_files = 1;
options.disable_auto_compactions = true;
Reopen(options);
Options options1;
std::unique_ptr<Env> traced_env(new TraceFileEnv(env_));
options1.env = traced_env.get();
OpenSecondary(options1);
static const auto verify_db = [&]() {
std::unique_ptr<Iterator> iter1(dbfull()->NewIterator(ReadOptions()));
std::unique_ptr<Iterator> iter2(db_secondary_->NewIterator(ReadOptions()));
for (iter1->SeekToFirst(), iter2->SeekToFirst();
iter1->Valid() && iter2->Valid(); iter1->Next(), iter2->Next()) {
ASSERT_EQ(iter1->key(), iter2->key());
ASSERT_EQ(iter1->value(), iter2->value());
}
ASSERT_FALSE(iter1->Valid());
ASSERT_FALSE(iter2->Valid());
ASSERT_OK(iter1->status());
ASSERT_OK(iter2->status());
};
ASSERT_OK(Put("a", "value"));
ASSERT_OK(Put("c", "value"));
ASSERT_OK(Flush());
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
verify_db();
ASSERT_OK(Put("b", "value"));
ASSERT_OK(Put("d", "value"));
ASSERT_OK(Flush());
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
verify_db();
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
ASSERT_EQ(2, static_cast<TraceFileEnv*>(traced_env.get())->files_closed());
Status s = db_secondary_->SetDBOptions({{"max_open_files", "-1"}});
ASSERT_TRUE(s.IsNotSupported());
CloseSecondary();
}
TEST_F(DBSecondaryTest, OpenAsSecondaryWALTailing) {
Options options;
options.env = env_;
options.level0_file_num_compaction_trigger = 4;
Reopen(options);
for (int i = 0; i < 3; ++i) {
ASSERT_OK(Put("foo", "foo_value" + std::to_string(i)));
ASSERT_OK(Put("bar", "bar_value" + std::to_string(i)));
}
Options options1;
options1.env = env_;
options1.max_open_files = -1;
OpenSecondary(options1);
ReadOptions ropts;
ropts.verify_checksums = true;
const auto verify_db_func = [&](const std::string& foo_val,
const std::string& bar_val) {
std::string value;
ASSERT_OK(db_secondary_->Get(ropts, "foo", &value));
ASSERT_EQ(foo_val, value);
ASSERT_OK(db_secondary_->Get(ropts, "bar", &value));
ASSERT_EQ(bar_val, value);
Iterator* iter = db_secondary_->NewIterator(ropts);
ASSERT_NE(nullptr, iter);
iter->Seek("foo");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("foo", iter->key().ToString());
ASSERT_EQ(foo_val, iter->value().ToString());
iter->Seek("bar");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bar", iter->key().ToString());
ASSERT_EQ(bar_val, iter->value().ToString());
size_t count = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
++count;
}
ASSERT_EQ(2, count);
delete iter;
};
verify_db_func("foo_value2", "bar_value2");
ASSERT_OK(Put("foo", "new_foo_value"));
ASSERT_OK(Put("bar", "new_bar_value"));
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
verify_db_func("new_foo_value", "new_bar_value");
ASSERT_OK(Flush());
ASSERT_OK(Put("foo", "new_foo_value_1"));
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
verify_db_func("new_foo_value_1", "new_bar_value");
}
TEST_F(DBSecondaryTest, SecondaryTailingBug_ISSUE_8467) {
Options options;
options.env = env_;
Reopen(options);
for (int i = 0; i < 3; ++i) {
ASSERT_OK(Put("foo", "foo_value" + std::to_string(i)));
ASSERT_OK(Put("bar", "bar_value" + std::to_string(i)));
}
Options options1;
options1.env = env_;
options1.max_open_files = -1;
OpenSecondary(options1);
const auto verify_db = [&](const std::string& foo_val,
const std::string& bar_val) {
std::string value;
ReadOptions ropts;
Status s = db_secondary_->Get(ropts, "foo", &value);
ASSERT_OK(s);
ASSERT_EQ(foo_val, value);
s = db_secondary_->Get(ropts, "bar", &value);
ASSERT_OK(s);
ASSERT_EQ(bar_val, value);
};
for (int i = 0; i < 2; ++i) {
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
verify_db("foo_value2", "bar_value2");
}
}
TEST_F(DBSecondaryTest, RefreshIterator) {
Options options;
options.env = env_;
Reopen(options);
Options options1;
options1.env = env_;
options1.max_open_files = -1;
OpenSecondary(options1);
std::unique_ptr<Iterator> it(db_secondary_->NewIterator(ReadOptions()));
for (int i = 0; i < 3; ++i) {
ASSERT_OK(Put("foo", "foo_value" + std::to_string(i)));
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
if (0 == i) {
it->Seek("foo");
ASSERT_FALSE(it->Valid());
ASSERT_OK(it->status());
ASSERT_OK(it->Refresh());
it->Seek("foo");
ASSERT_OK(it->status());
ASSERT_TRUE(it->Valid());
ASSERT_EQ("foo", it->key());
ASSERT_EQ("foo_value0", it->value());
} else {
it->Seek("foo");
ASSERT_TRUE(it->Valid());
ASSERT_EQ("foo", it->key());
ASSERT_EQ("foo_value" + std::to_string(i - 1), it->value());
ASSERT_OK(it->status());
ASSERT_OK(it->Refresh());
it->Seek("foo");
ASSERT_OK(it->status());
ASSERT_TRUE(it->Valid());
ASSERT_EQ("foo", it->key());
ASSERT_EQ("foo_value" + std::to_string(i), it->value());
}
}
}
TEST_F(DBSecondaryTest, OpenWithNonExistColumnFamily) {
Options options;
options.env = env_;
CreateAndReopenWithCF({"pikachu"}, options);
Options options1;
options1.env = env_;
options1.max_open_files = -1;
std::vector<ColumnFamilyDescriptor> cf_descs;
cf_descs.emplace_back(kDefaultColumnFamilyName, options1);
cf_descs.emplace_back("pikachu", options1);
cf_descs.emplace_back("eevee", options1);
Status s = DB::OpenAsSecondary(options1, dbname_, secondary_path_, cf_descs,
&handles_secondary_, &db_secondary_);
ASSERT_NOK(s);
}
TEST_F(DBSecondaryTest, OpenWithSubsetOfColumnFamilies) {
Options options;
options.env = env_;
CreateAndReopenWithCF({"pikachu"}, options);
Options options1;
options1.env = env_;
options1.max_open_files = -1;
OpenSecondary(options1);
ASSERT_EQ(0, handles_secondary_.size());
ASSERT_NE(nullptr, db_secondary_);
ASSERT_OK(Put(0 /*cf*/, "foo", "foo_value"));
ASSERT_OK(Put(1 /*cf*/, "foo", "foo_value"));
ASSERT_OK(Flush(0 /*cf*/));
ASSERT_OK(Flush(1 /*cf*/));
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
ReadOptions ropts;
ropts.verify_checksums = true;
std::string value;
ASSERT_OK(db_secondary_->Get(ropts, "foo", &value));
ASSERT_EQ("foo_value", value);
}
TEST_F(DBSecondaryTest, SwitchToNewManifestDuringOpen) {
Options options;
options.env = env_;
Reopen(options);
Close();
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->LoadDependency(
{{"ReactiveVersionSet::MaybeSwitchManifest:AfterGetCurrentManifestPath:0",
"VersionSet::ProcessManifestWrites:BeforeNewManifest"},
{"DBImpl::Open:AfterDeleteFiles",
"ReactiveVersionSet::MaybeSwitchManifest:AfterGetCurrentManifestPath:"
"1"}});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread ro_db_thread([&]() {
Options options1;
options1.env = env_;
options1.max_open_files = -1;
Status s = TryOpenSecondary(options1);
ASSERT_TRUE(s.IsTryAgain());
// Try again
OpenSecondary(options1);
CloseSecondary();
});
Reopen(options);
ro_db_thread.join();
}
TEST_F(DBSecondaryTest, MissingTableFileDuringOpen) {
Options options;
options.env = env_;
options.level0_file_num_compaction_trigger = 4;
Reopen(options);
for (int i = 0; i != options.level0_file_num_compaction_trigger; ++i) {
ASSERT_OK(Put("foo", "foo_value" + std::to_string(i)));
ASSERT_OK(Put("bar", "bar_value" + std::to_string(i)));
ASSERT_OK(dbfull()->Flush(FlushOptions()));
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
Options options1;
options1.env = env_;
options1.max_open_files = -1;
OpenSecondary(options1);
ReadOptions ropts;
ropts.verify_checksums = true;
std::string value;
ASSERT_OK(db_secondary_->Get(ropts, "foo", &value));
ASSERT_EQ("foo_value" +
std::to_string(options.level0_file_num_compaction_trigger - 1),
value);
ASSERT_OK(db_secondary_->Get(ropts, "bar", &value));
ASSERT_EQ("bar_value" +
std::to_string(options.level0_file_num_compaction_trigger - 1),
value);
Iterator* iter = db_secondary_->NewIterator(ropts);
ASSERT_NE(nullptr, iter);
iter->Seek("bar");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bar", iter->key().ToString());
ASSERT_EQ("bar_value" +
std::to_string(options.level0_file_num_compaction_trigger - 1),
iter->value().ToString());
iter->Seek("foo");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("foo", iter->key().ToString());
ASSERT_EQ("foo_value" +
std::to_string(options.level0_file_num_compaction_trigger - 1),
iter->value().ToString());
size_t count = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
++count;
}
ASSERT_OK(iter->status());
ASSERT_EQ(2, count);
delete iter;
}
TEST_F(DBSecondaryTest, MissingTableFile) {
Options options;
options.env = env_;
options.level0_file_num_compaction_trigger = 4;
Reopen(options);
Options options1;
options1.env = env_;
options1.max_open_files = -1;
OpenSecondary(options1);
for (int i = 0; i != options.level0_file_num_compaction_trigger; ++i) {
ASSERT_OK(Put("foo", "foo_value" + std::to_string(i)));
ASSERT_OK(Put("bar", "bar_value" + std::to_string(i)));
ASSERT_OK(dbfull()->Flush(FlushOptions()));
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_NE(nullptr, db_secondary_full());
ReadOptions ropts;
ropts.verify_checksums = true;
std::string value;
ASSERT_NOK(db_secondary_->Get(ropts, "foo", &value));
ASSERT_NOK(db_secondary_->Get(ropts, "bar", &value));
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
ASSERT_OK(db_secondary_->Get(ropts, "foo", &value));
ASSERT_EQ("foo_value" +
std::to_string(options.level0_file_num_compaction_trigger - 1),
value);
ASSERT_OK(db_secondary_->Get(ropts, "bar", &value));
ASSERT_EQ("bar_value" +
std::to_string(options.level0_file_num_compaction_trigger - 1),
value);
Iterator* iter = db_secondary_->NewIterator(ropts);
ASSERT_NE(nullptr, iter);
iter->Seek("bar");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("bar", iter->key().ToString());
ASSERT_EQ("bar_value" +
std::to_string(options.level0_file_num_compaction_trigger - 1),
iter->value().ToString());
iter->Seek("foo");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("foo", iter->key().ToString());
ASSERT_EQ("foo_value" +
std::to_string(options.level0_file_num_compaction_trigger - 1),
iter->value().ToString());
size_t count = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
++count;
}
ASSERT_OK(iter->status());
ASSERT_EQ(2, count);
delete iter;
}
TEST_F(DBSecondaryTest, PrimaryDropColumnFamily) {
Options options;
options.env = env_;
const std::string kCfName1 = "pikachu";
CreateAndReopenWithCF({kCfName1}, options);
Options options1;
options1.env = env_;
options1.max_open_files = -1;
OpenSecondaryWithColumnFamilies({kCfName1}, options1);
ASSERT_EQ(2, handles_secondary_.size());
ASSERT_OK(Put(1 /*cf*/, "foo", "foo_val_1"));
ASSERT_OK(Flush(1 /*cf*/));
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
ReadOptions ropts;
ropts.verify_checksums = true;
std::string value;
ASSERT_OK(db_secondary_->Get(ropts, handles_secondary_[1], "foo", &value));
ASSERT_EQ("foo_val_1", value);
ASSERT_OK(dbfull()->DropColumnFamily(handles_[1]));
Close();
CheckFileTypeCounts(dbname_, 1, 0, 1);
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
value.clear();
ASSERT_OK(db_secondary_->Get(ropts, handles_secondary_[1], "foo", &value));
ASSERT_EQ("foo_val_1", value);
}
TEST_F(DBSecondaryTest, SwitchManifest) {
Options options;
options.env = env_;
options.level0_file_num_compaction_trigger = 4;
const std::string cf1_name("test_cf");
CreateAndReopenWithCF({cf1_name}, options);
Options options1;
options1.env = env_;
options1.max_open_files = -1;
OpenSecondaryWithColumnFamilies({kDefaultColumnFamilyName, cf1_name},
options1);
const int kNumFiles = options.level0_file_num_compaction_trigger - 1;
// Keep it smaller than 10 so that key0, key1, ..., key9 are sorted as 0, 1,
// ..., 9.
const int kNumKeys = 10;
// Create two sst
for (int i = 0; i != kNumFiles; ++i) {
for (int j = 0; j != kNumKeys; ++j) {
ASSERT_OK(Put("key" + std::to_string(j), "value_" + std::to_string(i)));
}
ASSERT_OK(Flush());
}
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
const auto& range_scan_db = [&]() {
ReadOptions tmp_ropts;
tmp_ropts.total_order_seek = true;
tmp_ropts.verify_checksums = true;
std::unique_ptr<Iterator> iter(db_secondary_->NewIterator(tmp_ropts));
int cnt = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next(), ++cnt) {
ASSERT_EQ("key" + std::to_string(cnt), iter->key().ToString());
ASSERT_EQ("value_" + std::to_string(kNumFiles - 1),
iter->value().ToString());
}
EXPECT_OK(iter->status());
};
range_scan_db();
// While secondary instance still keeps old MANIFEST open, we close primary,
// restart primary, performs full compaction, close again, restart again so
// that next time secondary tries to catch up with primary, the secondary
// will skip the MANIFEST in middle.
ReopenWithColumnFamilies({kDefaultColumnFamilyName, cf1_name}, options);
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ReopenWithColumnFamilies({kDefaultColumnFamilyName, cf1_name}, options);
ASSERT_OK(dbfull()->SetOptions({{"disable_auto_compactions", "false"}}));
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
range_scan_db();
}
TEST_F(DBSecondaryTest, SwitchManifestTwice) {
Options options;
options.env = env_;
options.disable_auto_compactions = true;
const std::string cf1_name("test_cf");
CreateAndReopenWithCF({cf1_name}, options);
Options options1;
options1.env = env_;
options1.max_open_files = -1;
OpenSecondaryWithColumnFamilies({kDefaultColumnFamilyName, cf1_name},
options1);
ASSERT_OK(Put("0", "value0"));
ASSERT_OK(Flush());
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
std::string value;
ReadOptions ropts;
ropts.verify_checksums = true;
ASSERT_OK(db_secondary_->Get(ropts, "0", &value));
ASSERT_EQ("value0", value);
ReopenWithColumnFamilies({kDefaultColumnFamilyName, cf1_name}, options);
ASSERT_OK(dbfull()->SetOptions({{"disable_auto_compactions", "false"}}));
ReopenWithColumnFamilies({kDefaultColumnFamilyName, cf1_name}, options);
ASSERT_OK(Put("0", "value1"));
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
ASSERT_OK(db_secondary_->Get(ropts, "0", &value));
ASSERT_EQ("value1", value);
}
TEST_F(DBSecondaryTest, DISABLED_SwitchWAL) {
const int kNumKeysPerMemtable = 1;
Options options;
options.env = env_;
options.max_write_buffer_number = 4;
options.min_write_buffer_number_to_merge = 2;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerMemtable));
Reopen(options);
Options options1;
options1.env = env_;
options1.max_open_files = -1;
OpenSecondary(options1);
const auto& verify_db = [](DB* db1, DB* db2) {
ASSERT_NE(nullptr, db1);
ASSERT_NE(nullptr, db2);
ReadOptions read_opts;
read_opts.verify_checksums = true;
std::unique_ptr<Iterator> it1(db1->NewIterator(read_opts));
std::unique_ptr<Iterator> it2(db2->NewIterator(read_opts));
it1->SeekToFirst();
it2->SeekToFirst();
for (; it1->Valid() && it2->Valid(); it1->Next(), it2->Next()) {
ASSERT_EQ(it1->key(), it2->key());
ASSERT_EQ(it1->value(), it2->value());
}
ASSERT_FALSE(it1->Valid());
ASSERT_FALSE(it2->Valid());
for (it1->SeekToFirst(); it1->Valid(); it1->Next()) {
std::string value;
ASSERT_OK(db2->Get(read_opts, it1->key(), &value));
ASSERT_EQ(it1->value(), value);
}
for (it2->SeekToFirst(); it2->Valid(); it2->Next()) {
std::string value;
ASSERT_OK(db1->Get(read_opts, it2->key(), &value));
ASSERT_EQ(it2->value(), value);
}
};
for (int k = 0; k != 16; ++k) {
ASSERT_OK(Put("key" + std::to_string(k), "value" + std::to_string(k)));
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
verify_db(dbfull(), db_secondary_);
}
}
TEST_F(DBSecondaryTest, DISABLED_SwitchWALMultiColumnFamilies) {
const int kNumKeysPerMemtable = 1;
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::BackgroundCallFlush:ContextCleanedUp",
"DBSecondaryTest::SwitchWALMultipleColumnFamilies:BeforeCatchUp"}});
SyncPoint::GetInstance()->EnableProcessing();
const std::string kCFName1 = "pikachu";
Options options;
options.env = env_;
options.max_write_buffer_number = 4;
options.min_write_buffer_number_to_merge = 2;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerMemtable));
CreateAndReopenWithCF({kCFName1}, options);
Options options1;
options1.env = env_;
options1.max_open_files = -1;
OpenSecondaryWithColumnFamilies({kCFName1}, options1);
ASSERT_EQ(2, handles_secondary_.size());
const auto& verify_db = [](DB* db1,
const std::vector<ColumnFamilyHandle*>& handles1,
DB* db2,
const std::vector<ColumnFamilyHandle*>& handles2) {
ASSERT_NE(nullptr, db1);
ASSERT_NE(nullptr, db2);
ReadOptions read_opts;
read_opts.verify_checksums = true;
ASSERT_EQ(handles1.size(), handles2.size());
for (size_t i = 0; i != handles1.size(); ++i) {
std::unique_ptr<Iterator> it1(db1->NewIterator(read_opts, handles1[i]));
std::unique_ptr<Iterator> it2(db2->NewIterator(read_opts, handles2[i]));
it1->SeekToFirst();
it2->SeekToFirst();
for (; it1->Valid() && it2->Valid(); it1->Next(), it2->Next()) {
ASSERT_EQ(it1->key(), it2->key());
ASSERT_EQ(it1->value(), it2->value());
}
ASSERT_FALSE(it1->Valid());
ASSERT_FALSE(it2->Valid());
for (it1->SeekToFirst(); it1->Valid(); it1->Next()) {
std::string value;
ASSERT_OK(db2->Get(read_opts, handles2[i], it1->key(), &value));
ASSERT_EQ(it1->value(), value);
}
for (it2->SeekToFirst(); it2->Valid(); it2->Next()) {
std::string value;
ASSERT_OK(db1->Get(read_opts, handles1[i], it2->key(), &value));
ASSERT_EQ(it2->value(), value);
}
}
};
for (int k = 0; k != 8; ++k) {
for (int j = 0; j < 2; ++j) {
ASSERT_OK(Put(0 /*cf*/, "key" + std::to_string(k),
"value" + std::to_string(k)));
ASSERT_OK(Put(1 /*cf*/, "key" + std::to_string(k),
"value" + std::to_string(k)));
}
TEST_SYNC_POINT(
"DBSecondaryTest::SwitchWALMultipleColumnFamilies:BeforeCatchUp");
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
verify_db(dbfull(), handles_, db_secondary_, handles_secondary_);
SyncPoint::GetInstance()->ClearTrace();
}
}
TEST_F(DBSecondaryTest, CatchUpAfterFlush) {
const int kNumKeysPerMemtable = 16;
Options options;
options.env = env_;
options.max_write_buffer_number = 4;
options.min_write_buffer_number_to_merge = 2;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerMemtable));
Reopen(options);
Options options1;
options1.env = env_;
options1.max_open_files = -1;
OpenSecondary(options1);
WriteOptions write_opts;
WriteBatch wb;
ASSERT_OK(wb.Put("key0", "value0"));
ASSERT_OK(wb.Put("key1", "value1"));
ASSERT_OK(dbfull()->Write(write_opts, &wb));
ReadOptions read_opts;
std::unique_ptr<Iterator> iter1(db_secondary_->NewIterator(read_opts));
iter1->Seek("key0");
ASSERT_FALSE(iter1->Valid());
iter1->Seek("key1");
ASSERT_FALSE(iter1->Valid());
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
iter1->Seek("key0");
ASSERT_FALSE(iter1->Valid());
iter1->Seek("key1");
ASSERT_FALSE(iter1->Valid());
ASSERT_OK(iter1->status());
std::unique_ptr<Iterator> iter2(db_secondary_->NewIterator(read_opts));
iter2->Seek("key0");
ASSERT_TRUE(iter2->Valid());
ASSERT_EQ("value0", iter2->value());
iter2->Seek("key1");
ASSERT_TRUE(iter2->Valid());
ASSERT_OK(iter2->status());
ASSERT_EQ("value1", iter2->value());
{
WriteBatch wb1;
ASSERT_OK(wb1.Put("key0", "value01"));
ASSERT_OK(wb1.Put("key1", "value11"));
ASSERT_OK(dbfull()->Write(write_opts, &wb1));
}
{
WriteBatch wb2;
ASSERT_OK(wb2.Put("key0", "new_value0"));
ASSERT_OK(wb2.Delete("key1"));
ASSERT_OK(dbfull()->Write(write_opts, &wb2));
}
ASSERT_OK(Flush());
ASSERT_OK(db_secondary_->TryCatchUpWithPrimary());
std::unique_ptr<Iterator> iter3(db_secondary_->NewIterator(read_opts));
// iter3 should not see value01 and value11 at all.
iter3->Seek("key0");
ASSERT_TRUE(iter3->Valid());
ASSERT_EQ("new_value0", iter3->value());
iter3->Seek("key1");
ASSERT_FALSE(iter3->Valid());
ASSERT_OK(iter3->status());
}
TEST_F(DBSecondaryTest, CheckConsistencyWhenOpen) {
bool called = false;
Options options;
options.env = env_;
options.disable_auto_compactions = true;
Reopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"DBImplSecondary::CheckConsistency:AfterFirstAttempt", [&](void* arg) {
ASSERT_NE(nullptr, arg);
called = true;
auto* s = reinterpret_cast<Status*>(arg);
ASSERT_NOK(*s);
});
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::CheckConsistency:AfterGetLiveFilesMetaData",
"BackgroundCallCompaction:0"},
{"DBImpl::BackgroundCallCompaction:PurgedObsoleteFiles",
"DBImpl::CheckConsistency:BeforeGetFileSize"}});
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put("a", "value0"));
ASSERT_OK(Put("c", "value0"));
ASSERT_OK(Flush());
ASSERT_OK(Put("b", "value1"));
ASSERT_OK(Put("d", "value1"));
ASSERT_OK(Flush());
port::Thread thread([this]() {
Options opts;
opts.env = env_;
opts.max_open_files = -1;
OpenSecondary(opts);
});
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
thread.join();
ASSERT_TRUE(called);
}
TEST_F(DBSecondaryTest, StartFromInconsistent) {
Options options = CurrentOptions();
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "value"));
ASSERT_OK(Flush());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"VersionBuilder::CheckConsistencyBeforeReturn", [&](void* arg) {
ASSERT_NE(nullptr, arg);
*(reinterpret_cast<Status*>(arg)) =
Status::Corruption("Inject corruption");
});
SyncPoint::GetInstance()->EnableProcessing();
Options options1;
options1.env = env_;
Status s = TryOpenSecondary(options1);
ASSERT_TRUE(s.IsCorruption());
}
TEST_F(DBSecondaryTest, InconsistencyDuringCatchUp) {
Options options = CurrentOptions();
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "value"));
ASSERT_OK(Flush());
Options options1;
options1.env = env_;
OpenSecondary(options1);
{
std::string value;
ASSERT_OK(db_secondary_->Get(ReadOptions(), "foo", &value));
ASSERT_EQ("value", value);
}
ASSERT_OK(Put("bar", "value1"));
ASSERT_OK(Flush());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"VersionBuilder::CheckConsistencyBeforeReturn", [&](void* arg) {
ASSERT_NE(nullptr, arg);
*(reinterpret_cast<Status*>(arg)) =
Status::Corruption("Inject corruption");
});
SyncPoint::GetInstance()->EnableProcessing();
Status s = db_secondary_->TryCatchUpWithPrimary();
ASSERT_TRUE(s.IsCorruption());
}
TEST_F(DBSecondaryTest, OpenWithTransactionDB) {
Options options = CurrentOptions();
options.create_if_missing = true;
// Destroy the DB to recreate as a TransactionDB.
Close();
Destroy(options, true);
// Create a TransactionDB.
TransactionDB* txn_db = nullptr;
TransactionDBOptions txn_db_opts;
ASSERT_OK(TransactionDB::Open(options, txn_db_opts, dbname_, &txn_db));
ASSERT_NE(txn_db, nullptr);
db_ = txn_db;
std::vector<std::string> cfs = {"new_CF"};
CreateColumnFamilies(cfs, options);
ASSERT_EQ(handles_.size(), 1);
WriteOptions wopts;
TransactionOptions txn_opts;
Transaction* txn1 = txn_db->BeginTransaction(wopts, txn_opts, nullptr);
ASSERT_NE(txn1, nullptr);
ASSERT_OK(txn1->Put(handles_[0], "k1", "v1"));
ASSERT_OK(txn1->Commit());
delete txn1;
options = CurrentOptions();
options.max_open_files = -1;
ASSERT_OK(TryOpenSecondary(options));
}
class DBSecondaryTestWithTimestamp : public DBSecondaryTestBase {
public:
explicit DBSecondaryTestWithTimestamp()
: DBSecondaryTestBase("db_secondary_test_with_timestamp") {}
};
TEST_F(DBSecondaryTestWithTimestamp, IteratorAndGetReadTimestampSizeMismatch) {
const int kNumKeysPerFile = 128;
const uint64_t kMaxKey = 1024;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
DestroyAndReopen(options);
const std::string write_timestamp = Timestamp(1, 0);
WriteOptions write_opts;
for (uint64_t key = 0; key <= kMaxKey; ++key) {
Status s = db_->Put(write_opts, Key1(key), write_timestamp,
"value" + std::to_string(key));
ASSERT_OK(s);
}
// Reopen the database as secondary instance to test its timestamp support.
Close();
options.max_open_files = -1;
ASSERT_OK(ReopenAsSecondary(options));
ReadOptions read_opts;
std::string different_size_read_timestamp;
PutFixed32(&different_size_read_timestamp, 2);
Slice different_size_read_ts = different_size_read_timestamp;
read_opts.timestamp = &different_size_read_ts;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
ASSERT_FALSE(iter->Valid());
ASSERT_TRUE(iter->status().IsInvalidArgument());
}
for (uint64_t key = 0; key <= kMaxKey; ++key) {
std::string value_from_get;
std::string timestamp;
ASSERT_TRUE(db_->Get(read_opts, Key1(key), &value_from_get, &timestamp)
.IsInvalidArgument());
}
Close();
}
TEST_F(DBSecondaryTestWithTimestamp,
IteratorAndGetReadTimestampSpecifiedWithoutWriteTimestamp) {
const int kNumKeysPerFile = 128;
const uint64_t kMaxKey = 1024;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
DestroyAndReopen(options);
WriteOptions write_opts;
for (uint64_t key = 0; key <= kMaxKey; ++key) {
Status s = db_->Put(write_opts, Key1(key), "value" + std::to_string(key));
ASSERT_OK(s);
}
// Reopen the database as secondary instance to test its timestamp support.
Close();
options.max_open_files = -1;
ASSERT_OK(ReopenAsSecondary(options));
ReadOptions read_opts;
const std::string read_timestamp = Timestamp(2, 0);
Slice read_ts = read_timestamp;
read_opts.timestamp = &read_ts;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
ASSERT_FALSE(iter->Valid());
ASSERT_TRUE(iter->status().IsInvalidArgument());
}
for (uint64_t key = 0; key <= kMaxKey; ++key) {
std::string value_from_get;
std::string timestamp;
ASSERT_TRUE(db_->Get(read_opts, Key1(key), &value_from_get, &timestamp)
.IsInvalidArgument());
}
Close();
}
TEST_F(DBSecondaryTestWithTimestamp,
IteratorAndGetWriteWithTimestampReadWithoutTimestamp) {
const int kNumKeysPerFile = 128;
const uint64_t kMaxKey = 1024;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
DestroyAndReopen(options);
const std::string write_timestamp = Timestamp(1, 0);
WriteOptions write_opts;
for (uint64_t key = 0; key <= kMaxKey; ++key) {
Status s = db_->Put(write_opts, Key1(key), write_timestamp,
"value" + std::to_string(key));
ASSERT_OK(s);
}
// Reopen the database as secondary instance to test its timestamp support.
Close();
options.max_open_files = -1;
ASSERT_OK(ReopenAsSecondary(options));
ReadOptions read_opts;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
ASSERT_FALSE(iter->Valid());
ASSERT_TRUE(iter->status().IsInvalidArgument());
}
for (uint64_t key = 0; key <= kMaxKey; ++key) {
std::string value_from_get;
ASSERT_TRUE(
db_->Get(read_opts, Key1(key), &value_from_get).IsInvalidArgument());
}
Close();
}
TEST_F(DBSecondaryTestWithTimestamp, IteratorAndGet) {
const int kNumKeysPerFile = 128;
const uint64_t kMaxKey = 1024;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
DestroyAndReopen(options);
const std::vector<uint64_t> start_keys = {1, 0};
const std::vector<std::string> write_timestamps = {Timestamp(1, 0),
Timestamp(3, 0)};
const std::vector<std::string> read_timestamps = {Timestamp(2, 0),
Timestamp(4, 0)};
for (size_t i = 0; i < write_timestamps.size(); ++i) {
WriteOptions write_opts;
for (uint64_t key = start_keys[i]; key <= kMaxKey; ++key) {
Status s = db_->Put(write_opts, Key1(key), write_timestamps[i],
"value" + std::to_string(i));
ASSERT_OK(s);
}
}
// Reopen the database as secondary instance to test its timestamp support.
Close();
options.max_open_files = -1;
ASSERT_OK(ReopenAsSecondary(options));
auto get_value_and_check = [](DB* db, ReadOptions read_opts, Slice key,
Slice expected_value, std::string expected_ts) {
std::string value_from_get;
std::string timestamp;
ASSERT_OK(db->Get(read_opts, key.ToString(), &value_from_get, &timestamp));
ASSERT_EQ(expected_value, value_from_get);
ASSERT_EQ(expected_ts, timestamp);
};
for (size_t i = 0; i < read_timestamps.size(); ++i) {
ReadOptions read_opts;
Slice read_ts = read_timestamps[i];
read_opts.timestamp = &read_ts;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
int count = 0;
uint64_t key = 0;
// Forward iterate.
for (it->Seek(Key1(0)), key = start_keys[i]; it->Valid();
it->Next(), ++count, ++key) {
CheckIterUserEntry(it.get(), Key1(key), kTypeValue,
"value" + std::to_string(i), write_timestamps[i]);
get_value_and_check(db_, read_opts, it->key(), it->value(),
write_timestamps[i]);
}
ASSERT_OK(it->status());
size_t expected_count = kMaxKey - start_keys[i] + 1;
ASSERT_EQ(expected_count, count);
// Backward iterate.
count = 0;
for (it->SeekForPrev(Key1(kMaxKey)), key = kMaxKey; it->Valid();
it->Prev(), ++count, --key) {
CheckIterUserEntry(it.get(), Key1(key), kTypeValue,
"value" + std::to_string(i), write_timestamps[i]);
get_value_and_check(db_, read_opts, it->key(), it->value(),
write_timestamps[i]);
}
ASSERT_OK(it->status());
ASSERT_EQ(static_cast<size_t>(kMaxKey) - start_keys[i] + 1, count);
// SeekToFirst()/SeekToLast() with lower/upper bounds.
// Then iter with lower and upper bounds.
uint64_t l = 0;
uint64_t r = kMaxKey + 1;
while (l < r) {
std::string lb_str = Key1(l);
Slice lb = lb_str;
std::string ub_str = Key1(r);
Slice ub = ub_str;
read_opts.iterate_lower_bound = &lb;
read_opts.iterate_upper_bound = &ub;
it.reset(db_->NewIterator(read_opts));
for (it->SeekToFirst(), key = std::max(l, start_keys[i]), count = 0;
it->Valid(); it->Next(), ++key, ++count) {
CheckIterUserEntry(it.get(), Key1(key), kTypeValue,
"value" + std::to_string(i), write_timestamps[i]);
get_value_and_check(db_, read_opts, it->key(), it->value(),
write_timestamps[i]);
}
ASSERT_OK(it->status());
ASSERT_EQ(r - std::max(l, start_keys[i]), count);
for (it->SeekToLast(), key = std::min(r, kMaxKey + 1), count = 0;
it->Valid(); it->Prev(), --key, ++count) {
CheckIterUserEntry(it.get(), Key1(key - 1), kTypeValue,
"value" + std::to_string(i), write_timestamps[i]);
get_value_and_check(db_, read_opts, it->key(), it->value(),
write_timestamps[i]);
}
ASSERT_OK(it->status());
l += (kMaxKey / 100);
r -= (kMaxKey / 100);
}
}
Close();
}
TEST_F(DBSecondaryTestWithTimestamp, IteratorsReadTimestampSizeMismatch) {
const int kNumKeysPerFile = 128;
const uint64_t kMaxKey = 1024;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
DestroyAndReopen(options);
const std::string write_timestamp = Timestamp(1, 0);
WriteOptions write_opts;
for (uint64_t key = 0; key <= kMaxKey; ++key) {
Status s = db_->Put(write_opts, Key1(key), write_timestamp,
"value" + std::to_string(key));
ASSERT_OK(s);
}
// Reopen the database as secondary instance to test its timestamp support.
Close();
options.max_open_files = -1;
ASSERT_OK(ReopenAsSecondary(options));
ReadOptions read_opts;
std::string different_size_read_timestamp;
PutFixed32(&different_size_read_timestamp, 2);
Slice different_size_read_ts = different_size_read_timestamp;
read_opts.timestamp = &different_size_read_ts;
{
std::vector<Iterator*> iters;
ASSERT_TRUE(
db_->NewIterators(read_opts, {db_->DefaultColumnFamily()}, &iters)
.IsInvalidArgument());
}
Close();
}
TEST_F(DBSecondaryTestWithTimestamp, FullHistoryTsLowSanityCheckFail) {
Options options = CurrentOptions();
options.env = env_;
options.comparator = test::BytewiseComparatorWithU64TsWrapper();
// Use UDT in memtable only feature for this test, so we can control that
// newly set `full_history_ts_low` collapse history when Flush happens.
options.persist_user_defined_timestamps = false;
options.allow_concurrent_memtable_write = false;
DestroyAndReopen(options);
std::string write_ts;
PutFixed64(&write_ts, 1);
ASSERT_OK(db_->Put(WriteOptions(), "foo", write_ts, "val1"));
std::string full_history_ts_low;
PutFixed64(&full_history_ts_low, 3);
ASSERT_OK(db_->IncreaseFullHistoryTsLow(db_->DefaultColumnFamily(),
full_history_ts_low));
ASSERT_OK(Flush(0));
// Reopen the database as secondary instance to test its timestamp support.
Close();
options.max_open_files = -1;
ASSERT_OK(ReopenAsSecondary(options));
// Reading below full_history_ts_low fails a sanity check.
std::string read_ts;
PutFixed64(&read_ts, 2);
Slice read_ts_slice = read_ts;
ReadOptions read_opts;
read_opts.timestamp = &read_ts_slice;
// Get()
std::string value;
ASSERT_TRUE(db_->Get(read_opts, "foo", &value).IsInvalidArgument());
// NewIterator()
std::unique_ptr<Iterator> iter(
db_->NewIterator(read_opts, db_->DefaultColumnFamily()));
ASSERT_TRUE(iter->status().IsInvalidArgument());
// NewIterators()
std::vector<ColumnFamilyHandle*> cfhs = {db_->DefaultColumnFamily()};
std::vector<Iterator*> iterators;
ASSERT_TRUE(
db_->NewIterators(read_opts, cfhs, &iterators).IsInvalidArgument());
Close();
}
TEST_F(DBSecondaryTestWithTimestamp,
IteratorsReadTimestampSpecifiedWithoutWriteTimestamp) {
const int kNumKeysPerFile = 128;
const uint64_t kMaxKey = 1024;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
DestroyAndReopen(options);
WriteOptions write_opts;
for (uint64_t key = 0; key <= kMaxKey; ++key) {
Status s = db_->Put(write_opts, Key1(key), "value" + std::to_string(key));
ASSERT_OK(s);
}
// Reopen the database as secondary instance to test its timestamp support.
Close();
options.max_open_files = -1;
ASSERT_OK(ReopenAsSecondary(options));
ReadOptions read_opts;
const std::string read_timestamp = Timestamp(2, 0);
Slice read_ts = read_timestamp;
read_opts.timestamp = &read_ts;
{
std::vector<Iterator*> iters;
ASSERT_TRUE(
db_->NewIterators(read_opts, {db_->DefaultColumnFamily()}, &iters)
.IsInvalidArgument());
}
Close();
}
TEST_F(DBSecondaryTestWithTimestamp,
IteratorsWriteWithTimestampReadWithoutTimestamp) {
const int kNumKeysPerFile = 128;
const uint64_t kMaxKey = 1024;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
DestroyAndReopen(options);
const std::string write_timestamp = Timestamp(1, 0);
WriteOptions write_opts;
for (uint64_t key = 0; key <= kMaxKey; ++key) {
Status s = db_->Put(write_opts, Key1(key), write_timestamp,
"value" + std::to_string(key));
ASSERT_OK(s);
}
// Reopen the database as secondary instance to test its timestamp support.
Close();
options.max_open_files = -1;
ASSERT_OK(ReopenAsSecondary(options));
ReadOptions read_opts;
{
std::vector<Iterator*> iters;
ASSERT_TRUE(
db_->NewIterators(read_opts, {db_->DefaultColumnFamily()}, &iters)
.IsInvalidArgument());
}
Close();
}
TEST_F(DBSecondaryTestWithTimestamp, Iterators) {
const int kNumKeysPerFile = 128;
const uint64_t kMaxKey = 1024;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
DestroyAndReopen(options);
const std::string write_timestamp = Timestamp(1, 0);
const std::string read_timestamp = Timestamp(2, 0);
WriteOptions write_opts;
for (uint64_t key = 0; key <= kMaxKey; ++key) {
Status s = db_->Put(write_opts, Key1(key), write_timestamp,
"value" + std::to_string(key));
ASSERT_OK(s);
}
// Reopen the database as secondary instance to test its timestamp support.
Close();
options.max_open_files = -1;
ASSERT_OK(ReopenAsSecondary(options));
ReadOptions read_opts;
Slice read_ts = read_timestamp;
read_opts.timestamp = &read_ts;
std::vector<Iterator*> iters;
ASSERT_OK(db_->NewIterators(read_opts, {db_->DefaultColumnFamily()}, &iters));
ASSERT_EQ(static_cast<uint64_t>(1), iters.size());
int count = 0;
uint64_t key = 0;
// Forward iterate.
for (iters[0]->Seek(Key1(0)), key = 0; iters[0]->Valid();
iters[0]->Next(), ++count, ++key) {
CheckIterUserEntry(iters[0], Key1(key), kTypeValue,
"value" + std::to_string(key), write_timestamp);
}
ASSERT_OK(iters[0]->status());
size_t expected_count = kMaxKey - 0 + 1;
ASSERT_EQ(expected_count, count);
delete iters[0];
Close();
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}