mirror of https://github.com/facebook/rocksdb.git
795 lines
32 KiB
C++
795 lines
32 KiB
C++
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
//
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "db/compaction/compaction_outputs.h"
|
|
|
|
#include "db/builder.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
void CompactionOutputs::NewBuilder(const TableBuilderOptions& tboptions) {
|
|
builder_.reset(NewTableBuilder(tboptions, file_writer_.get()));
|
|
}
|
|
|
|
Status CompactionOutputs::Finish(
|
|
const Status& intput_status,
|
|
const SeqnoToTimeMapping& seqno_to_time_mapping) {
|
|
FileMetaData* meta = GetMetaData();
|
|
assert(meta != nullptr);
|
|
Status s = intput_status;
|
|
if (s.ok()) {
|
|
std::string seqno_to_time_mapping_str;
|
|
seqno_to_time_mapping.Encode(
|
|
seqno_to_time_mapping_str, meta->fd.smallest_seqno,
|
|
meta->fd.largest_seqno, meta->file_creation_time);
|
|
builder_->SetSeqnoTimeTableProperties(seqno_to_time_mapping_str,
|
|
meta->oldest_ancester_time);
|
|
s = builder_->Finish();
|
|
|
|
} else {
|
|
builder_->Abandon();
|
|
}
|
|
Status io_s = builder_->io_status();
|
|
if (s.ok()) {
|
|
s = io_s;
|
|
} else {
|
|
io_s.PermitUncheckedError();
|
|
}
|
|
const uint64_t current_bytes = builder_->FileSize();
|
|
if (s.ok()) {
|
|
meta->fd.file_size = current_bytes;
|
|
meta->tail_size = builder_->GetTailSize();
|
|
meta->marked_for_compaction = builder_->NeedCompact();
|
|
meta->user_defined_timestamps_persisted = static_cast<bool>(
|
|
builder_->GetTableProperties().user_defined_timestamps_persisted);
|
|
}
|
|
current_output().finished = true;
|
|
stats_.bytes_written += current_bytes;
|
|
stats_.num_output_files = outputs_.size();
|
|
|
|
return s;
|
|
}
|
|
|
|
IOStatus CompactionOutputs::WriterSyncClose(const Status& input_status,
|
|
SystemClock* clock,
|
|
Statistics* statistics,
|
|
bool use_fsync) {
|
|
IOStatus io_s;
|
|
if (input_status.ok()) {
|
|
StopWatch sw(clock, statistics, COMPACTION_OUTFILE_SYNC_MICROS);
|
|
io_s = file_writer_->Sync(use_fsync);
|
|
}
|
|
if (input_status.ok() && io_s.ok()) {
|
|
io_s = file_writer_->Close();
|
|
}
|
|
|
|
if (input_status.ok() && io_s.ok()) {
|
|
FileMetaData* meta = GetMetaData();
|
|
meta->file_checksum = file_writer_->GetFileChecksum();
|
|
meta->file_checksum_func_name = file_writer_->GetFileChecksumFuncName();
|
|
}
|
|
|
|
file_writer_.reset();
|
|
|
|
return io_s;
|
|
}
|
|
|
|
bool CompactionOutputs::UpdateFilesToCutForTTLStates(
|
|
const Slice& internal_key) {
|
|
if (!files_to_cut_for_ttl_.empty()) {
|
|
const InternalKeyComparator* icmp =
|
|
&compaction_->column_family_data()->internal_comparator();
|
|
if (cur_files_to_cut_for_ttl_ != -1) {
|
|
// Previous key is inside the range of a file
|
|
if (icmp->Compare(internal_key,
|
|
files_to_cut_for_ttl_[cur_files_to_cut_for_ttl_]
|
|
->largest.Encode()) > 0) {
|
|
next_files_to_cut_for_ttl_ = cur_files_to_cut_for_ttl_ + 1;
|
|
cur_files_to_cut_for_ttl_ = -1;
|
|
return true;
|
|
}
|
|
} else {
|
|
// Look for the key position
|
|
while (next_files_to_cut_for_ttl_ <
|
|
static_cast<int>(files_to_cut_for_ttl_.size())) {
|
|
if (icmp->Compare(internal_key,
|
|
files_to_cut_for_ttl_[next_files_to_cut_for_ttl_]
|
|
->smallest.Encode()) >= 0) {
|
|
if (icmp->Compare(internal_key,
|
|
files_to_cut_for_ttl_[next_files_to_cut_for_ttl_]
|
|
->largest.Encode()) <= 0) {
|
|
// With in the current file
|
|
cur_files_to_cut_for_ttl_ = next_files_to_cut_for_ttl_;
|
|
return true;
|
|
}
|
|
// Beyond the current file
|
|
next_files_to_cut_for_ttl_++;
|
|
} else {
|
|
// Still fall into the gap
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
size_t CompactionOutputs::UpdateGrandparentBoundaryInfo(
|
|
const Slice& internal_key) {
|
|
size_t curr_key_boundary_switched_num = 0;
|
|
const std::vector<FileMetaData*>& grandparents = compaction_->grandparents();
|
|
|
|
if (grandparents.empty()) {
|
|
return curr_key_boundary_switched_num;
|
|
}
|
|
const Comparator* ucmp = compaction_->column_family_data()->user_comparator();
|
|
|
|
// Move the grandparent_index_ to the file containing the current user_key.
|
|
// If there are multiple files containing the same user_key, make sure the
|
|
// index points to the last file containing the key.
|
|
while (grandparent_index_ < grandparents.size()) {
|
|
if (being_grandparent_gap_) {
|
|
if (sstableKeyCompare(ucmp, internal_key,
|
|
grandparents[grandparent_index_]->smallest) < 0) {
|
|
break;
|
|
}
|
|
if (seen_key_) {
|
|
curr_key_boundary_switched_num++;
|
|
grandparent_overlapped_bytes_ +=
|
|
grandparents[grandparent_index_]->fd.GetFileSize();
|
|
grandparent_boundary_switched_num_++;
|
|
}
|
|
being_grandparent_gap_ = false;
|
|
} else {
|
|
int cmp_result = sstableKeyCompare(
|
|
ucmp, internal_key, grandparents[grandparent_index_]->largest);
|
|
// If it's same key, make sure grandparent_index_ is pointing to the last
|
|
// one.
|
|
if (cmp_result < 0 ||
|
|
(cmp_result == 0 &&
|
|
(grandparent_index_ == grandparents.size() - 1 ||
|
|
sstableKeyCompare(ucmp, internal_key,
|
|
grandparents[grandparent_index_ + 1]->smallest) <
|
|
0))) {
|
|
break;
|
|
}
|
|
if (seen_key_) {
|
|
curr_key_boundary_switched_num++;
|
|
grandparent_boundary_switched_num_++;
|
|
}
|
|
being_grandparent_gap_ = true;
|
|
grandparent_index_++;
|
|
}
|
|
}
|
|
|
|
// If the first key is in the middle of a grandparent file, adding it to the
|
|
// overlap
|
|
if (!seen_key_ && !being_grandparent_gap_) {
|
|
assert(grandparent_overlapped_bytes_ == 0);
|
|
grandparent_overlapped_bytes_ =
|
|
GetCurrentKeyGrandparentOverlappedBytes(internal_key);
|
|
}
|
|
|
|
seen_key_ = true;
|
|
return curr_key_boundary_switched_num;
|
|
}
|
|
|
|
uint64_t CompactionOutputs::GetCurrentKeyGrandparentOverlappedBytes(
|
|
const Slice& internal_key) const {
|
|
// no overlap with any grandparent file
|
|
if (being_grandparent_gap_) {
|
|
return 0;
|
|
}
|
|
uint64_t overlapped_bytes = 0;
|
|
|
|
const std::vector<FileMetaData*>& grandparents = compaction_->grandparents();
|
|
const Comparator* ucmp = compaction_->column_family_data()->user_comparator();
|
|
InternalKey ikey;
|
|
ikey.DecodeFrom(internal_key);
|
|
#ifndef NDEBUG
|
|
// make sure the grandparent_index_ is pointing to the last files containing
|
|
// the current key.
|
|
int cmp_result =
|
|
sstableKeyCompare(ucmp, ikey, grandparents[grandparent_index_]->largest);
|
|
assert(
|
|
cmp_result < 0 ||
|
|
(cmp_result == 0 &&
|
|
(grandparent_index_ == grandparents.size() - 1 ||
|
|
sstableKeyCompare(
|
|
ucmp, ikey, grandparents[grandparent_index_ + 1]->smallest) < 0)));
|
|
assert(sstableKeyCompare(ucmp, ikey,
|
|
grandparents[grandparent_index_]->smallest) >= 0);
|
|
#endif
|
|
overlapped_bytes += grandparents[grandparent_index_]->fd.GetFileSize();
|
|
|
|
// go backwards to find all overlapped files, one key can overlap multiple
|
|
// files. In the following example, if the current output key is `c`, and one
|
|
// compaction file was cut before `c`, current `c` can overlap with 3 files:
|
|
// [a b] [c...
|
|
// [b, b] [c, c] [c, c] [c, d]
|
|
for (int64_t i = static_cast<int64_t>(grandparent_index_) - 1;
|
|
i >= 0 && sstableKeyCompare(ucmp, ikey, grandparents[i]->largest) == 0;
|
|
i--) {
|
|
overlapped_bytes += grandparents[i]->fd.GetFileSize();
|
|
}
|
|
|
|
return overlapped_bytes;
|
|
}
|
|
|
|
bool CompactionOutputs::ShouldStopBefore(const CompactionIterator& c_iter) {
|
|
assert(c_iter.Valid());
|
|
const Slice& internal_key = c_iter.key();
|
|
#ifndef NDEBUG
|
|
bool should_stop = false;
|
|
std::pair<bool*, const Slice> p{&should_stop, internal_key};
|
|
TEST_SYNC_POINT_CALLBACK(
|
|
"CompactionOutputs::ShouldStopBefore::manual_decision", (void*)&p);
|
|
if (should_stop) {
|
|
return true;
|
|
}
|
|
#endif // NDEBUG
|
|
const uint64_t previous_overlapped_bytes = grandparent_overlapped_bytes_;
|
|
const InternalKeyComparator* icmp =
|
|
&compaction_->column_family_data()->internal_comparator();
|
|
size_t num_grandparent_boundaries_crossed = 0;
|
|
bool should_stop_for_ttl = false;
|
|
// Always update grandparent information like overlapped file number, size
|
|
// etc., and TTL states.
|
|
// If compaction_->output_level() == 0, there is no need to update grandparent
|
|
// info, and that `grandparent` should be empty.
|
|
if (compaction_->output_level() > 0) {
|
|
num_grandparent_boundaries_crossed =
|
|
UpdateGrandparentBoundaryInfo(internal_key);
|
|
should_stop_for_ttl = UpdateFilesToCutForTTLStates(internal_key);
|
|
}
|
|
|
|
if (!HasBuilder()) {
|
|
return false;
|
|
}
|
|
|
|
if (should_stop_for_ttl) {
|
|
return true;
|
|
}
|
|
|
|
// If there's user defined partitioner, check that first
|
|
if (partitioner_ && partitioner_->ShouldPartition(PartitionerRequest(
|
|
last_key_for_partitioner_, c_iter.user_key(),
|
|
current_output_file_size_)) == kRequired) {
|
|
return true;
|
|
}
|
|
|
|
// files output to Level 0 won't be split
|
|
if (compaction_->output_level() == 0) {
|
|
return false;
|
|
}
|
|
|
|
// reach the max file size
|
|
if (current_output_file_size_ >= compaction_->max_output_file_size()) {
|
|
return true;
|
|
}
|
|
|
|
// Check if it needs to split for RoundRobin
|
|
// Invalid local_output_split_key indicates that we do not need to split
|
|
if (local_output_split_key_ != nullptr && !is_split_) {
|
|
// Split occurs when the next key is larger than/equal to the cursor
|
|
if (icmp->Compare(internal_key, local_output_split_key_->Encode()) >= 0) {
|
|
is_split_ = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// only check if the current key is going to cross the grandparents file
|
|
// boundary (either the file beginning or ending).
|
|
if (num_grandparent_boundaries_crossed > 0) {
|
|
// Cut the file before the current key if the size of the current output
|
|
// file + its overlapped grandparent files is bigger than
|
|
// max_compaction_bytes. Which is to prevent future bigger than
|
|
// max_compaction_bytes compaction from the current output level.
|
|
if (grandparent_overlapped_bytes_ + current_output_file_size_ >
|
|
compaction_->max_compaction_bytes()) {
|
|
return true;
|
|
}
|
|
|
|
// Cut the file if including the key is going to add a skippable file on
|
|
// the grandparent level AND its size is reasonably big (1/8 of target file
|
|
// size). For example, if it's compacting the files L0 + L1:
|
|
// L0: [1, 21]
|
|
// L1: [3, 23]
|
|
// L2: [2, 4] [11, 15] [22, 24]
|
|
// Without this break, it will output as:
|
|
// L1: [1,3, 21,23]
|
|
// With this break, it will output as (assuming [11, 15] at L2 is bigger
|
|
// than 1/8 of target size):
|
|
// L1: [1,3] [21,23]
|
|
// Then for the future compactions, [11,15] won't be included.
|
|
// For random datasets (either evenly distributed or skewed), it rarely
|
|
// triggers this condition, but if the user is adding 2 different datasets
|
|
// without any overlap, it may likely happen.
|
|
// More details, check PR #1963
|
|
const size_t num_skippable_boundaries_crossed =
|
|
being_grandparent_gap_ ? 2 : 3;
|
|
if (compaction_->immutable_options()->compaction_style ==
|
|
kCompactionStyleLevel &&
|
|
compaction_->immutable_options()->level_compaction_dynamic_file_size &&
|
|
num_grandparent_boundaries_crossed >=
|
|
num_skippable_boundaries_crossed &&
|
|
grandparent_overlapped_bytes_ - previous_overlapped_bytes >
|
|
compaction_->target_output_file_size() / 8) {
|
|
return true;
|
|
}
|
|
|
|
// Pre-cut the output file if it's reaching a certain size AND it's at the
|
|
// boundary of a grandparent file. It can reduce the future compaction size,
|
|
// the cost is having smaller files.
|
|
// The pre-cut size threshold is based on how many grandparent boundaries
|
|
// it has seen before. Basically, if it has seen no boundary at all, then it
|
|
// will pre-cut at 50% target file size. Every boundary it has seen
|
|
// increases the threshold by 5%, max at 90%, which it will always cut.
|
|
// The idea is based on if it has seen more boundaries before, it will more
|
|
// likely to see another boundary (file cutting opportunity) before the
|
|
// target file size. The test shows it can generate larger files than a
|
|
// static threshold like 75% and has a similar write amplification
|
|
// improvement.
|
|
if (compaction_->immutable_options()->compaction_style ==
|
|
kCompactionStyleLevel &&
|
|
compaction_->immutable_options()->level_compaction_dynamic_file_size &&
|
|
current_output_file_size_ >=
|
|
((compaction_->target_output_file_size() + 99) / 100) *
|
|
(50 + std::min(grandparent_boundary_switched_num_ * 5,
|
|
size_t{40}))) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Status CompactionOutputs::AddToOutput(
|
|
const CompactionIterator& c_iter,
|
|
const CompactionFileOpenFunc& open_file_func,
|
|
const CompactionFileCloseFunc& close_file_func) {
|
|
Status s;
|
|
bool is_range_del = c_iter.IsDeleteRangeSentinelKey();
|
|
if (is_range_del && compaction_->bottommost_level()) {
|
|
// We don't consider range tombstone for bottommost level since:
|
|
// 1. there is no grandparent and hence no overlap to consider
|
|
// 2. range tombstone may be dropped at bottommost level.
|
|
return s;
|
|
}
|
|
const Slice& key = c_iter.key();
|
|
if (ShouldStopBefore(c_iter) && HasBuilder()) {
|
|
s = close_file_func(*this, c_iter.InputStatus(), key);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
// reset grandparent information
|
|
grandparent_boundary_switched_num_ = 0;
|
|
grandparent_overlapped_bytes_ =
|
|
GetCurrentKeyGrandparentOverlappedBytes(key);
|
|
if (UNLIKELY(is_range_del)) {
|
|
// lower bound for this new output file, this is needed as the lower bound
|
|
// does not come from the smallest point key in this case.
|
|
range_tombstone_lower_bound_.DecodeFrom(key);
|
|
} else {
|
|
range_tombstone_lower_bound_.Clear();
|
|
}
|
|
}
|
|
|
|
// Open output file if necessary
|
|
if (!HasBuilder()) {
|
|
s = open_file_func(*this);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
}
|
|
|
|
// c_iter may emit range deletion keys, so update `last_key_for_partitioner_`
|
|
// here before returning below when `is_range_del` is true
|
|
if (partitioner_) {
|
|
last_key_for_partitioner_.assign(c_iter.user_key().data_,
|
|
c_iter.user_key().size_);
|
|
}
|
|
|
|
if (UNLIKELY(is_range_del)) {
|
|
return s;
|
|
}
|
|
|
|
assert(builder_ != nullptr);
|
|
const Slice& value = c_iter.value();
|
|
s = current_output().validator.Add(key, value);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
builder_->Add(key, value);
|
|
|
|
stats_.num_output_records++;
|
|
current_output_file_size_ = builder_->EstimatedFileSize();
|
|
|
|
if (blob_garbage_meter_) {
|
|
s = blob_garbage_meter_->ProcessOutFlow(key, value);
|
|
}
|
|
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
const ParsedInternalKey& ikey = c_iter.ikey();
|
|
s = current_output().meta.UpdateBoundaries(key, value, ikey.sequence,
|
|
ikey.type);
|
|
|
|
return s;
|
|
}
|
|
|
|
namespace {
|
|
void SetMaxSeqAndTs(InternalKey& internal_key, const Slice& user_key,
|
|
const size_t ts_sz) {
|
|
if (ts_sz) {
|
|
static constexpr char kTsMax[] = "\xff\xff\xff\xff\xff\xff\xff\xff\xff";
|
|
if (ts_sz <= strlen(kTsMax)) {
|
|
internal_key = InternalKey(user_key, kMaxSequenceNumber,
|
|
kTypeRangeDeletion, Slice(kTsMax, ts_sz));
|
|
} else {
|
|
internal_key =
|
|
InternalKey(user_key, kMaxSequenceNumber, kTypeRangeDeletion,
|
|
std::string(ts_sz, '\xff'));
|
|
}
|
|
} else {
|
|
internal_key.Set(user_key, kMaxSequenceNumber, kTypeRangeDeletion);
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
Status CompactionOutputs::AddRangeDels(
|
|
const Slice* comp_start_user_key, const Slice* comp_end_user_key,
|
|
CompactionIterationStats& range_del_out_stats, bool bottommost_level,
|
|
const InternalKeyComparator& icmp, SequenceNumber earliest_snapshot,
|
|
const Slice& next_table_min_key, const std::string& full_history_ts_low) {
|
|
// The following example does not happen since
|
|
// CompactionOutput::ShouldStopBefore() always return false for the first
|
|
// point key. But we should consider removing this dependency. Suppose for the
|
|
// first compaction output file,
|
|
// - next_table_min_key.user_key == comp_start_user_key
|
|
// - no point key is in the output file
|
|
// - there is a range tombstone @seqno to be added that covers
|
|
// comp_start_user_key
|
|
// Then meta.smallest will be set to comp_start_user_key@seqno
|
|
// and meta.largest will be set to comp_start_user_key@kMaxSequenceNumber
|
|
// which violates the assumption that meta.smallest should be <= meta.largest.
|
|
assert(HasRangeDel());
|
|
FileMetaData& meta = current_output().meta;
|
|
const Comparator* ucmp = icmp.user_comparator();
|
|
InternalKey lower_bound_buf, upper_bound_buf;
|
|
Slice lower_bound_guard, upper_bound_guard;
|
|
std::string smallest_user_key;
|
|
const Slice *lower_bound, *upper_bound;
|
|
|
|
// We first determine the internal key lower_bound and upper_bound for
|
|
// this output file. All and only range tombstones that overlap with
|
|
// [lower_bound, upper_bound] should be added to this file. File
|
|
// boundaries (meta.smallest/largest) should be updated accordingly when
|
|
// extended by range tombstones.
|
|
size_t output_size = outputs_.size();
|
|
if (output_size == 1) {
|
|
// This is the first file in the subcompaction.
|
|
//
|
|
// When outputting a range tombstone that spans a subcompaction boundary,
|
|
// the files on either side of that boundary need to include that
|
|
// boundary's user key. Otherwise, the spanning range tombstone would lose
|
|
// coverage.
|
|
//
|
|
// To achieve this while preventing files from overlapping in internal key
|
|
// (an LSM invariant violation), we allow the earlier file to include the
|
|
// boundary user key up to `kMaxSequenceNumber,kTypeRangeDeletion`. The
|
|
// later file can begin at the boundary user key at the newest key version
|
|
// it contains. At this point that version number is unknown since we have
|
|
// not processed the range tombstones yet, so permit any version. Same story
|
|
// applies to timestamp, and a non-nullptr `comp_start_user_key` should have
|
|
// `kMaxTs` here, which similarly permits any timestamp.
|
|
if (comp_start_user_key) {
|
|
lower_bound_buf.Set(*comp_start_user_key, kMaxSequenceNumber,
|
|
kTypeRangeDeletion);
|
|
lower_bound_guard = lower_bound_buf.Encode();
|
|
lower_bound = &lower_bound_guard;
|
|
} else {
|
|
lower_bound = nullptr;
|
|
}
|
|
} else {
|
|
// For subsequent output tables, only include range tombstones from min
|
|
// key onwards since the previous file was extended to contain range
|
|
// tombstones falling before min key.
|
|
if (range_tombstone_lower_bound_.size() > 0) {
|
|
assert(meta.smallest.size() == 0 ||
|
|
icmp.Compare(range_tombstone_lower_bound_, meta.smallest) < 0);
|
|
lower_bound_guard = range_tombstone_lower_bound_.Encode();
|
|
} else {
|
|
assert(meta.smallest.size() > 0);
|
|
lower_bound_guard = meta.smallest.Encode();
|
|
}
|
|
lower_bound = &lower_bound_guard;
|
|
}
|
|
|
|
const size_t ts_sz = ucmp->timestamp_size();
|
|
if (next_table_min_key.empty()) {
|
|
// Last file of the subcompaction.
|
|
if (comp_end_user_key) {
|
|
upper_bound_buf.Set(*comp_end_user_key, kMaxSequenceNumber,
|
|
kTypeRangeDeletion);
|
|
upper_bound_guard = upper_bound_buf.Encode();
|
|
upper_bound = &upper_bound_guard;
|
|
} else {
|
|
upper_bound = nullptr;
|
|
}
|
|
} else {
|
|
// There is another file coming whose coverage will begin at
|
|
// `next_table_min_key`. The current file needs to extend range tombstone
|
|
// coverage through its own keys (through `meta.largest`) and through user
|
|
// keys preceding `next_table_min_key`'s user key.
|
|
ParsedInternalKey next_table_min_key_parsed;
|
|
ParseInternalKey(next_table_min_key, &next_table_min_key_parsed,
|
|
false /* log_err_key */)
|
|
.PermitUncheckedError();
|
|
assert(next_table_min_key_parsed.sequence < kMaxSequenceNumber);
|
|
assert(meta.largest.size() == 0 ||
|
|
icmp.Compare(meta.largest.Encode(), next_table_min_key) < 0);
|
|
assert(!lower_bound || icmp.Compare(*lower_bound, next_table_min_key) <= 0);
|
|
if (meta.largest.size() > 0 &&
|
|
ucmp->EqualWithoutTimestamp(meta.largest.user_key(),
|
|
next_table_min_key_parsed.user_key)) {
|
|
// Caution: this assumes meta.largest.Encode() lives longer than
|
|
// upper_bound, which is only true if meta.largest is never updated.
|
|
// This just happens to be the case here since meta.largest serves
|
|
// as the upper_bound.
|
|
upper_bound_guard = meta.largest.Encode();
|
|
} else {
|
|
SetMaxSeqAndTs(upper_bound_buf, next_table_min_key_parsed.user_key,
|
|
ts_sz);
|
|
upper_bound_guard = upper_bound_buf.Encode();
|
|
}
|
|
upper_bound = &upper_bound_guard;
|
|
}
|
|
if (lower_bound && upper_bound &&
|
|
icmp.Compare(*lower_bound, *upper_bound) > 0) {
|
|
assert(meta.smallest.size() == 0 &&
|
|
ucmp->EqualWithoutTimestamp(ExtractUserKey(*lower_bound),
|
|
ExtractUserKey(*upper_bound)));
|
|
// This can only happen when lower_bound have the same user key as
|
|
// next_table_min_key and that there is no point key in the current
|
|
// compaction output file.
|
|
return Status::OK();
|
|
}
|
|
// The end key of the subcompaction must be bigger or equal to the upper
|
|
// bound. If the end of subcompaction is null or the upper bound is null,
|
|
// it means that this file is the last file in the compaction. So there
|
|
// will be no overlapping between this file and others.
|
|
assert(comp_end_user_key == nullptr || upper_bound == nullptr ||
|
|
ucmp->CompareWithoutTimestamp(ExtractUserKey(*upper_bound),
|
|
*comp_end_user_key) <= 0);
|
|
auto it = range_del_agg_->NewIterator(lower_bound, upper_bound);
|
|
Slice last_tombstone_start_user_key{};
|
|
bool reached_lower_bound = false;
|
|
const ReadOptions read_options(Env::IOActivity::kCompaction);
|
|
for (it->SeekToFirst(); it->Valid(); it->Next()) {
|
|
auto tombstone = it->Tombstone();
|
|
auto kv = tombstone.Serialize();
|
|
InternalKey tombstone_end = tombstone.SerializeEndKey();
|
|
// TODO: the underlying iterator should support clamping the bounds.
|
|
// tombstone_end.Encode is of form user_key@kMaxSeqno
|
|
// if it is equal to lower_bound, there is no need to include
|
|
// such range tombstone.
|
|
if (!reached_lower_bound && lower_bound &&
|
|
icmp.Compare(tombstone_end.Encode(), *lower_bound) <= 0) {
|
|
continue;
|
|
}
|
|
assert(!lower_bound ||
|
|
icmp.Compare(*lower_bound, tombstone_end.Encode()) <= 0);
|
|
reached_lower_bound = true;
|
|
|
|
// Garbage collection for range tombstones.
|
|
// If user-defined timestamp is enabled, range tombstones are dropped if
|
|
// they are at bottommost_level, below full_history_ts_low and not visible
|
|
// in any snapshot. trim_ts_ is passed to the constructor for
|
|
// range_del_agg_, and range_del_agg_ internally drops tombstones above
|
|
// trim_ts_.
|
|
bool consider_drop =
|
|
tombstone.seq_ <= earliest_snapshot &&
|
|
(ts_sz == 0 ||
|
|
(!full_history_ts_low.empty() &&
|
|
ucmp->CompareTimestamp(tombstone.ts_, full_history_ts_low) < 0));
|
|
if (consider_drop && bottommost_level) {
|
|
// TODO(andrewkr): tombstones that span multiple output files are
|
|
// counted for each compaction output file, so lots of double
|
|
// counting.
|
|
range_del_out_stats.num_range_del_drop_obsolete++;
|
|
range_del_out_stats.num_record_drop_obsolete++;
|
|
continue;
|
|
}
|
|
|
|
assert(lower_bound == nullptr ||
|
|
ucmp->CompareWithoutTimestamp(ExtractUserKey(*lower_bound),
|
|
kv.second) < 0);
|
|
InternalKey tombstone_start = kv.first;
|
|
if (lower_bound &&
|
|
ucmp->CompareWithoutTimestamp(tombstone_start.user_key(),
|
|
ExtractUserKey(*lower_bound)) < 0) {
|
|
// This just updates the non-timestamp portion of `tombstone_start`'s user
|
|
// key. Ideally there would be a simpler API usage
|
|
ParsedInternalKey tombstone_start_parsed;
|
|
ParseInternalKey(tombstone_start.Encode(), &tombstone_start_parsed,
|
|
false /* log_err_key */)
|
|
.PermitUncheckedError();
|
|
// timestamp should be from where sequence number is from, which is from
|
|
// tombstone in this case
|
|
std::string ts =
|
|
tombstone_start_parsed.GetTimestamp(ucmp->timestamp_size())
|
|
.ToString();
|
|
tombstone_start_parsed.user_key = ExtractUserKey(*lower_bound);
|
|
tombstone_start.SetFrom(tombstone_start_parsed, ts);
|
|
}
|
|
if (upper_bound != nullptr &&
|
|
icmp.Compare(*upper_bound, tombstone_start.Encode()) < 0) {
|
|
break;
|
|
}
|
|
if (lower_bound &&
|
|
icmp.Compare(tombstone_start.Encode(), *lower_bound) < 0) {
|
|
tombstone_start.DecodeFrom(*lower_bound);
|
|
}
|
|
if (upper_bound && icmp.Compare(*upper_bound, tombstone_end.Encode()) < 0) {
|
|
tombstone_end.DecodeFrom(*upper_bound);
|
|
}
|
|
if (consider_drop && compaction_->KeyRangeNotExistsBeyondOutputLevel(
|
|
tombstone_start.user_key(),
|
|
tombstone_end.user_key(), &level_ptrs_)) {
|
|
range_del_out_stats.num_range_del_drop_obsolete++;
|
|
range_del_out_stats.num_record_drop_obsolete++;
|
|
continue;
|
|
}
|
|
// Here we show that *only* range tombstones that overlap with
|
|
// [lower_bound, upper_bound] are added to the current file, and
|
|
// sanity checking invariants that should hold:
|
|
// - [tombstone_start, tombstone_end] overlaps with [lower_bound,
|
|
// upper_bound]
|
|
// - meta.smallest <= meta.largest
|
|
// Corresponding assertions are made, the proof is broken is any of them
|
|
// fails.
|
|
// TODO: show that *all* range tombstones that overlap with
|
|
// [lower_bound, upper_bound] are added.
|
|
// TODO: some invariant about boundaries are correctly updated.
|
|
//
|
|
// Note that `tombstone_start` is updated in the if condition above, we use
|
|
// tombstone_start to refer to its initial value, i.e.,
|
|
// it->Tombstone().first, and use tombstone_start* to refer to its value
|
|
// after the update.
|
|
//
|
|
// To show [lower_bound, upper_bound] overlaps with [tombstone_start,
|
|
// tombstone_end]:
|
|
// lower_bound <= upper_bound from the if condition right after all
|
|
// bounds are initialized. We assume each tombstone fragment has
|
|
// start_key.user_key < end_key.user_key, so
|
|
// tombstone_start < tombstone_end by
|
|
// FragmentedTombstoneIterator::Tombstone(). So these two ranges are both
|
|
// non-emtpy. The flag `reached_lower_bound` and the if logic before it
|
|
// ensures lower_bound <= tombstone_end. tombstone_start is only updated
|
|
// if it has a smaller user_key than lower_bound user_key, so
|
|
// tombstone_start <= tombstone_start*. The above if condition implies
|
|
// tombstone_start* <= upper_bound. So we have
|
|
// tombstone_start <= upper_bound and lower_bound <= tombstone_end
|
|
// and the two ranges overlap.
|
|
//
|
|
// To show meta.smallest <= meta.largest:
|
|
// From the implementation of UpdateBoundariesForRange(), it suffices to
|
|
// prove that when it is first called in this function, its parameters
|
|
// satisfy `start <= end`, where start = max(tombstone_start*, lower_bound)
|
|
// and end = min(tombstone_end, upper_bound). From the above proof we have
|
|
// lower_bound <= tombstone_end and lower_bound <= upper_bound. We only need
|
|
// to show that tombstone_start* <= min(tombstone_end, upper_bound).
|
|
// Note that tombstone_start*.user_key = max(tombstone_start.user_key,
|
|
// lower_bound.user_key). Assuming tombstone_end always has
|
|
// kMaxSequenceNumber and lower_bound.seqno < kMaxSequenceNumber.
|
|
// Since lower_bound <= tombstone_end and lower_bound.seqno <
|
|
// tombstone_end.seqno (in absolute number order, not internal key order),
|
|
// lower_bound.user_key < tombstone_end.user_key.
|
|
// Since lower_bound.user_key < tombstone_end.user_key and
|
|
// tombstone_start.user_key < tombstone_end.user_key, tombstone_start* <
|
|
// tombstone_end. Since tombstone_start* <= upper_bound from the above proof
|
|
// and tombstone_start* < tombstone_end, tombstone_start* <=
|
|
// min(tombstone_end, upper_bound), so the two ranges overlap.
|
|
|
|
// Range tombstone is not supported by output validator yet.
|
|
builder_->Add(kv.first.Encode(), kv.second);
|
|
assert(icmp.Compare(tombstone_start, tombstone_end) <= 0);
|
|
meta.UpdateBoundariesForRange(tombstone_start, tombstone_end,
|
|
tombstone.seq_, icmp);
|
|
if (!bottommost_level) {
|
|
bool start_user_key_changed =
|
|
last_tombstone_start_user_key.empty() ||
|
|
ucmp->CompareWithoutTimestamp(last_tombstone_start_user_key,
|
|
it->start_key()) < 0;
|
|
last_tombstone_start_user_key = it->start_key();
|
|
if (start_user_key_changed) {
|
|
// If tombstone_start >= tombstone_end, then either no key range is
|
|
// covered, or that they have the same user key. If they have the same
|
|
// user key, then the internal key range should only be within this
|
|
// level, and no keys from older levels is covered.
|
|
if (ucmp->CompareWithoutTimestamp(tombstone_start.user_key(),
|
|
tombstone_end.user_key()) < 0) {
|
|
SizeApproximationOptions approx_opts;
|
|
approx_opts.files_size_error_margin = 0.1;
|
|
auto approximate_covered_size =
|
|
compaction_->input_version()->version_set()->ApproximateSize(
|
|
approx_opts, read_options, compaction_->input_version(),
|
|
tombstone_start.Encode(), tombstone_end.Encode(),
|
|
compaction_->output_level() + 1 /* start_level */,
|
|
-1 /* end_level */, kCompaction);
|
|
meta.compensated_range_deletion_size += approximate_covered_size;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
void CompactionOutputs::FillFilesToCutForTtl() {
|
|
if (compaction_->immutable_options()->compaction_style !=
|
|
kCompactionStyleLevel ||
|
|
compaction_->immutable_options()->compaction_pri !=
|
|
kMinOverlappingRatio ||
|
|
compaction_->mutable_cf_options()->ttl == 0 ||
|
|
compaction_->num_input_levels() < 2 || compaction_->bottommost_level()) {
|
|
return;
|
|
}
|
|
|
|
// We define new file with the oldest ancestor time to be younger than 1/4
|
|
// TTL, and an old one to be older than 1/2 TTL time.
|
|
int64_t temp_current_time;
|
|
auto get_time_status =
|
|
compaction_->immutable_options()->clock->GetCurrentTime(
|
|
&temp_current_time);
|
|
if (!get_time_status.ok()) {
|
|
return;
|
|
}
|
|
|
|
auto current_time = static_cast<uint64_t>(temp_current_time);
|
|
if (current_time < compaction_->mutable_cf_options()->ttl) {
|
|
return;
|
|
}
|
|
|
|
uint64_t old_age_thres =
|
|
current_time - compaction_->mutable_cf_options()->ttl / 2;
|
|
const std::vector<FileMetaData*>& olevel =
|
|
*(compaction_->inputs(compaction_->num_input_levels() - 1));
|
|
for (FileMetaData* file : olevel) {
|
|
// Worth filtering out by start and end?
|
|
uint64_t oldest_ancester_time = file->TryGetOldestAncesterTime();
|
|
// We put old files if they are not too small to prevent a flood
|
|
// of small files.
|
|
if (oldest_ancester_time < old_age_thres &&
|
|
file->fd.GetFileSize() >
|
|
compaction_->mutable_cf_options()->target_file_size_base / 2) {
|
|
files_to_cut_for_ttl_.push_back(file);
|
|
}
|
|
}
|
|
}
|
|
|
|
CompactionOutputs::CompactionOutputs(const Compaction* compaction,
|
|
const bool is_penultimate_level)
|
|
: compaction_(compaction), is_penultimate_level_(is_penultimate_level) {
|
|
partitioner_ = compaction->output_level() == 0
|
|
? nullptr
|
|
: compaction->CreateSstPartitioner();
|
|
|
|
if (compaction->output_level() != 0) {
|
|
FillFilesToCutForTtl();
|
|
}
|
|
|
|
level_ptrs_ = std::vector<size_t>(compaction_->number_levels(), 0);
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|