mirror of
https://github.com/facebook/rocksdb.git
synced 2024-12-02 10:15:54 +00:00
a3acf2ef87
Summary: Which will be used for tiered storage to preclude hot data from compacting to the cold tier (the last level). Internally, adding seqno to time mapping. A periodic_task is scheduled to record the current_seqno -> current_time in certain cadence. When memtable flush, the mapping informaiton is stored in sstable property. During compaction, the mapping information are merged and get the approximate time of sequence number, which is used to determine if a key is recently inserted or not and preclude it from the last level if it's recently inserted (within the `preclude_last_level_data_seconds`). Pull Request resolved: https://github.com/facebook/rocksdb/pull/10338 Test Plan: CI Reviewed By: siying Differential Revision: D37810187 Pulled By: jay-zhuang fbshipit-source-id: 6953be7a18a99de8b1cb3b162d712f79c2b4899f
322 lines
12 KiB
C++
322 lines
12 KiB
C++
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
//
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "db/compaction/compaction_outputs.h"
|
|
|
|
#include "db/builder.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
void CompactionOutputs::NewBuilder(const TableBuilderOptions& tboptions) {
|
|
builder_.reset(NewTableBuilder(tboptions, file_writer_.get()));
|
|
}
|
|
|
|
Status CompactionOutputs::Finish(const Status& intput_status,
|
|
const SeqnoToTimeMapping& seqno_time_mapping) {
|
|
FileMetaData* meta = GetMetaData();
|
|
assert(meta != nullptr);
|
|
Status s = intput_status;
|
|
if (s.ok()) {
|
|
std::string seqno_time_mapping_str;
|
|
seqno_time_mapping.Encode(seqno_time_mapping_str, meta->fd.smallest_seqno,
|
|
meta->fd.largest_seqno, meta->file_creation_time);
|
|
builder_->SetSeqnoTimeTableProperties(seqno_time_mapping_str,
|
|
meta->oldest_ancester_time);
|
|
s = builder_->Finish();
|
|
|
|
} else {
|
|
builder_->Abandon();
|
|
}
|
|
Status io_s = builder_->io_status();
|
|
if (s.ok()) {
|
|
s = io_s;
|
|
} else {
|
|
io_s.PermitUncheckedError();
|
|
}
|
|
const uint64_t current_bytes = builder_->FileSize();
|
|
if (s.ok()) {
|
|
meta->fd.file_size = current_bytes;
|
|
meta->marked_for_compaction = builder_->NeedCompact();
|
|
}
|
|
current_output().finished = true;
|
|
stats_.bytes_written += current_bytes;
|
|
stats_.num_output_files = outputs_.size();
|
|
|
|
return s;
|
|
}
|
|
|
|
IOStatus CompactionOutputs::WriterSyncClose(const Status& input_status,
|
|
SystemClock* clock,
|
|
Statistics* statistics,
|
|
bool use_fsync) {
|
|
IOStatus io_s;
|
|
if (input_status.ok()) {
|
|
StopWatch sw(clock, statistics, COMPACTION_OUTFILE_SYNC_MICROS);
|
|
io_s = file_writer_->Sync(use_fsync);
|
|
}
|
|
if (input_status.ok() && io_s.ok()) {
|
|
io_s = file_writer_->Close();
|
|
}
|
|
|
|
if (input_status.ok() && io_s.ok()) {
|
|
FileMetaData* meta = GetMetaData();
|
|
meta->file_checksum = file_writer_->GetFileChecksum();
|
|
meta->file_checksum_func_name = file_writer_->GetFileChecksumFuncName();
|
|
}
|
|
|
|
file_writer_.reset();
|
|
|
|
return io_s;
|
|
}
|
|
|
|
Status CompactionOutputs::AddToOutput(
|
|
const CompactionIterator& c_iter,
|
|
const CompactionFileOpenFunc& open_file_func,
|
|
const CompactionFileCloseFunc& close_file_func) {
|
|
Status s;
|
|
const Slice& key = c_iter.key();
|
|
|
|
if (!pending_close_ && c_iter.Valid() && partitioner_ && HasBuilder() &&
|
|
partitioner_->ShouldPartition(
|
|
PartitionerRequest(last_key_for_partitioner_, c_iter.user_key(),
|
|
current_output_file_size_)) == kRequired) {
|
|
pending_close_ = true;
|
|
}
|
|
|
|
if (pending_close_) {
|
|
s = close_file_func(*this, c_iter.InputStatus(), key);
|
|
pending_close_ = false;
|
|
}
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
// Open output file if necessary
|
|
if (!HasBuilder()) {
|
|
s = open_file_func(*this);
|
|
}
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
Output& curr = current_output();
|
|
assert(builder_ != nullptr);
|
|
const Slice& value = c_iter.value();
|
|
s = curr.validator.Add(key, value);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
builder_->Add(key, value);
|
|
|
|
stats_.num_output_records++;
|
|
current_output_file_size_ = builder_->EstimatedFileSize();
|
|
|
|
if (blob_garbage_meter_) {
|
|
s = blob_garbage_meter_->ProcessOutFlow(key, value);
|
|
}
|
|
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
const ParsedInternalKey& ikey = c_iter.ikey();
|
|
s = current_output().meta.UpdateBoundaries(key, value, ikey.sequence,
|
|
ikey.type);
|
|
|
|
// Close output file if it is big enough. Two possibilities determine it's
|
|
// time to close it: (1) the current key should be this file's last key, (2)
|
|
// the next key should not be in this file.
|
|
//
|
|
// TODO(aekmekji): determine if file should be closed earlier than this
|
|
// during subcompactions (i.e. if output size, estimated by input size, is
|
|
// going to be 1.2MB and max_output_file_size = 1MB, prefer to have 0.6MB
|
|
// and 0.6MB instead of 1MB and 0.2MB)
|
|
if (compaction_->output_level() != 0 &&
|
|
current_output_file_size_ >= compaction_->max_output_file_size()) {
|
|
pending_close_ = true;
|
|
}
|
|
|
|
if (partitioner_) {
|
|
last_key_for_partitioner_.assign(c_iter.user_key().data_,
|
|
c_iter.user_key().size_);
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
Status CompactionOutputs::AddRangeDels(
|
|
const Slice* comp_start, const Slice* comp_end,
|
|
CompactionIterationStats& range_del_out_stats, bool bottommost_level,
|
|
const InternalKeyComparator& icmp, SequenceNumber earliest_snapshot,
|
|
const Slice& next_table_min_key) {
|
|
assert(HasRangeDel());
|
|
FileMetaData& meta = current_output().meta;
|
|
const Comparator* ucmp = icmp.user_comparator();
|
|
|
|
Slice lower_bound_guard, upper_bound_guard;
|
|
std::string smallest_user_key;
|
|
const Slice *lower_bound, *upper_bound;
|
|
bool lower_bound_from_sub_compact = false;
|
|
|
|
size_t output_size = outputs_.size();
|
|
if (output_size == 1) {
|
|
// For the first output table, include range tombstones before the min
|
|
// key but after the subcompaction boundary.
|
|
lower_bound = comp_start;
|
|
lower_bound_from_sub_compact = true;
|
|
} else if (meta.smallest.size() > 0) {
|
|
// For subsequent output tables, only include range tombstones from min
|
|
// key onwards since the previous file was extended to contain range
|
|
// tombstones falling before min key.
|
|
smallest_user_key = meta.smallest.user_key().ToString(false /*hex*/);
|
|
lower_bound_guard = Slice(smallest_user_key);
|
|
lower_bound = &lower_bound_guard;
|
|
} else {
|
|
lower_bound = nullptr;
|
|
}
|
|
if (!next_table_min_key.empty()) {
|
|
// This may be the last file in the subcompaction in some cases, so we
|
|
// need to compare the end key of subcompaction with the next file start
|
|
// key. When the end key is chosen by the subcompaction, we know that
|
|
// it must be the biggest key in output file. Therefore, it is safe to
|
|
// use the smaller key as the upper bound of the output file, to ensure
|
|
// that there is no overlapping between different output files.
|
|
upper_bound_guard = ExtractUserKey(next_table_min_key);
|
|
if (comp_end != nullptr &&
|
|
ucmp->Compare(upper_bound_guard, *comp_end) >= 0) {
|
|
upper_bound = comp_end;
|
|
} else {
|
|
upper_bound = &upper_bound_guard;
|
|
}
|
|
} else {
|
|
// This is the last file in the subcompaction, so extend until the
|
|
// subcompaction ends.
|
|
upper_bound = comp_end;
|
|
}
|
|
bool has_overlapping_endpoints;
|
|
if (upper_bound != nullptr && meta.largest.size() > 0) {
|
|
has_overlapping_endpoints =
|
|
ucmp->Compare(meta.largest.user_key(), *upper_bound) == 0;
|
|
} else {
|
|
has_overlapping_endpoints = false;
|
|
}
|
|
|
|
// The end key of the subcompaction must be bigger or equal to the upper
|
|
// bound. If the end of subcompaction is null or the upper bound is null,
|
|
// it means that this file is the last file in the compaction. So there
|
|
// will be no overlapping between this file and others.
|
|
assert(comp_end == nullptr || upper_bound == nullptr ||
|
|
ucmp->Compare(*upper_bound, *comp_end) <= 0);
|
|
auto it = range_del_agg_->NewIterator(lower_bound, upper_bound,
|
|
has_overlapping_endpoints);
|
|
// Position the range tombstone output iterator. There may be tombstone
|
|
// fragments that are entirely out of range, so make sure that we do not
|
|
// include those.
|
|
if (lower_bound != nullptr) {
|
|
it->Seek(*lower_bound);
|
|
} else {
|
|
it->SeekToFirst();
|
|
}
|
|
for (; it->Valid(); it->Next()) {
|
|
auto tombstone = it->Tombstone();
|
|
if (upper_bound != nullptr) {
|
|
int cmp = ucmp->Compare(*upper_bound, tombstone.start_key_);
|
|
if ((has_overlapping_endpoints && cmp < 0) ||
|
|
(!has_overlapping_endpoints && cmp <= 0)) {
|
|
// Tombstones starting after upper_bound only need to be included in
|
|
// the next table. If the current SST ends before upper_bound, i.e.,
|
|
// `has_overlapping_endpoints == false`, we can also skip over range
|
|
// tombstones that start exactly at upper_bound. Such range
|
|
// tombstones will be included in the next file and are not relevant
|
|
// to the point keys or endpoints of the current file.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (bottommost_level && tombstone.seq_ <= earliest_snapshot) {
|
|
// TODO(andrewkr): tombstones that span multiple output files are
|
|
// counted for each compaction output file, so lots of double
|
|
// counting.
|
|
range_del_out_stats.num_range_del_drop_obsolete++;
|
|
range_del_out_stats.num_record_drop_obsolete++;
|
|
continue;
|
|
}
|
|
|
|
auto kv = tombstone.Serialize();
|
|
assert(lower_bound == nullptr ||
|
|
ucmp->Compare(*lower_bound, kv.second) < 0);
|
|
// Range tombstone is not supported by output validator yet.
|
|
builder_->Add(kv.first.Encode(), kv.second);
|
|
InternalKey smallest_candidate = std::move(kv.first);
|
|
if (lower_bound != nullptr &&
|
|
ucmp->Compare(smallest_candidate.user_key(), *lower_bound) <= 0) {
|
|
// Pretend the smallest key has the same user key as lower_bound
|
|
// (the max key in the previous table or subcompaction) in order for
|
|
// files to appear key-space partitioned.
|
|
//
|
|
// When lower_bound is chosen by a subcompaction, we know that
|
|
// subcompactions over smaller keys cannot contain any keys at
|
|
// lower_bound. We also know that smaller subcompactions exist,
|
|
// because otherwise the subcompaction woud be unbounded on the left.
|
|
// As a result, we know that no other files on the output level will
|
|
// contain actual keys at lower_bound (an output file may have a
|
|
// largest key of lower_bound@kMaxSequenceNumber, but this only
|
|
// indicates a large range tombstone was truncated). Therefore, it is
|
|
// safe to use the tombstone's sequence number, to ensure that keys at
|
|
// lower_bound at lower levels are covered by truncated tombstones.
|
|
//
|
|
// If lower_bound was chosen by the smallest data key in the file,
|
|
// choose lowest seqnum so this file's smallest internal key comes
|
|
// after the previous file's largest. The fake seqnum is OK because
|
|
// the read path's file-picking code only considers user key.
|
|
smallest_candidate = InternalKey(
|
|
*lower_bound, lower_bound_from_sub_compact ? tombstone.seq_ : 0,
|
|
kTypeRangeDeletion);
|
|
}
|
|
InternalKey largest_candidate = tombstone.SerializeEndKey();
|
|
if (upper_bound != nullptr &&
|
|
ucmp->Compare(*upper_bound, largest_candidate.user_key()) <= 0) {
|
|
// Pretend the largest key has the same user key as upper_bound (the
|
|
// min key in the following table or subcompaction) in order for files
|
|
// to appear key-space partitioned.
|
|
//
|
|
// Choose highest seqnum so this file's largest internal key comes
|
|
// before the next file's/subcompaction's smallest. The fake seqnum is
|
|
// OK because the read path's file-picking code only considers the
|
|
// user key portion.
|
|
//
|
|
// Note Seek() also creates InternalKey with (user_key,
|
|
// kMaxSequenceNumber), but with kTypeDeletion (0x7) instead of
|
|
// kTypeRangeDeletion (0xF), so the range tombstone comes before the
|
|
// Seek() key in InternalKey's ordering. So Seek() will look in the
|
|
// next file for the user key.
|
|
largest_candidate =
|
|
InternalKey(*upper_bound, kMaxSequenceNumber, kTypeRangeDeletion);
|
|
}
|
|
#ifndef NDEBUG
|
|
SequenceNumber smallest_ikey_seqnum = kMaxSequenceNumber;
|
|
if (meta.smallest.size() > 0) {
|
|
smallest_ikey_seqnum = GetInternalKeySeqno(meta.smallest.Encode());
|
|
}
|
|
#endif
|
|
meta.UpdateBoundariesForRange(smallest_candidate, largest_candidate,
|
|
tombstone.seq_, icmp);
|
|
// The smallest key in a file is used for range tombstone truncation, so
|
|
// it cannot have a seqnum of 0 (unless the smallest data key in a file
|
|
// has a seqnum of 0). Otherwise, the truncated tombstone may expose
|
|
// deleted keys at lower levels.
|
|
assert(smallest_ikey_seqnum == 0 ||
|
|
ExtractInternalKeyFooter(meta.smallest.Encode()) !=
|
|
PackSequenceAndType(0, kTypeRangeDeletion));
|
|
}
|
|
return Status::OK();
|
|
}
|
|
} // namespace ROCKSDB_NAMESPACE
|