rocksdb/utilities/transactions/write_prepared_txn_db.h
Maysam Yabandeh 680864ae54 WritePrepared Txn: Fix bug with duplicate keys during recovery
Summary:
Fix the following bugs:
- During recovery a duplicate key was inserted twice into the write batch of the recovery transaction,
once when the memtable returns false (because it was duplicates) and once for the 2nd attempt. This would result into different SubBatch count measured when the recovered transactions is committing.
- If a cf is flushed during recovery the memtable is not available to assist in detecting the duplicate key. This could result into not advancing the sequence number when iterating over duplicate keys of a flushed cf and hence inserting the next key with the wrong sequence number.
- SubBacthCounter would reset the comparator to default comparator after the first duplicate key. The 2nd duplicate key hence would have gone through a wrong comparator and not being detected.
Closes https://github.com/facebook/rocksdb/pull/3562

Differential Revision: D7149440

Pulled By: maysamyabandeh

fbshipit-source-id: 91ec317b165f363f5d11ff8b8c47c81cebb8ed77
2018-03-05 10:57:59 -08:00

571 lines
25 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
#ifndef ROCKSDB_LITE
#include <mutex>
#include <queue>
#include <set>
#include <string>
#include <unordered_map>
#include <vector>
#include "db/db_iter.h"
#include "db/pre_release_callback.h"
#include "db/read_callback.h"
#include "db/snapshot_checker.h"
#include "rocksdb/db.h"
#include "rocksdb/options.h"
#include "rocksdb/utilities/transaction_db.h"
#include "util/string_util.h"
#include "utilities/transactions/pessimistic_transaction.h"
#include "utilities/transactions/pessimistic_transaction_db.h"
#include "utilities/transactions/transaction_lock_mgr.h"
#include "utilities/transactions/write_prepared_txn.h"
namespace rocksdb {
#define ROCKS_LOG_DETAILS(LGR, FMT, ...) \
; // due to overhead by default skip such lines
// ROCKS_LOG_DEBUG(LGR, FMT, ##__VA_ARGS__)
// A PessimisticTransactionDB that writes data to DB after prepare phase of 2PC.
// In this way some data in the DB might not be committed. The DB provides
// mechanisms to tell such data apart from committed data.
class WritePreparedTxnDB : public PessimisticTransactionDB {
public:
explicit WritePreparedTxnDB(
DB* db, const TransactionDBOptions& txn_db_options,
size_t snapshot_cache_bits = DEF_SNAPSHOT_CACHE_BITS,
size_t commit_cache_bits = DEF_COMMIT_CACHE_BITS)
: PessimisticTransactionDB(db, txn_db_options),
SNAPSHOT_CACHE_BITS(snapshot_cache_bits),
SNAPSHOT_CACHE_SIZE(static_cast<size_t>(1ull << SNAPSHOT_CACHE_BITS)),
COMMIT_CACHE_BITS(commit_cache_bits),
COMMIT_CACHE_SIZE(static_cast<size_t>(1ull << COMMIT_CACHE_BITS)),
FORMAT(COMMIT_CACHE_BITS) {
Init(txn_db_options);
}
explicit WritePreparedTxnDB(
StackableDB* db, const TransactionDBOptions& txn_db_options,
size_t snapshot_cache_bits = DEF_SNAPSHOT_CACHE_BITS,
size_t commit_cache_bits = DEF_COMMIT_CACHE_BITS)
: PessimisticTransactionDB(db, txn_db_options),
SNAPSHOT_CACHE_BITS(snapshot_cache_bits),
SNAPSHOT_CACHE_SIZE(static_cast<size_t>(1ull << SNAPSHOT_CACHE_BITS)),
COMMIT_CACHE_BITS(commit_cache_bits),
COMMIT_CACHE_SIZE(static_cast<size_t>(1ull << COMMIT_CACHE_BITS)),
FORMAT(COMMIT_CACHE_BITS) {
Init(txn_db_options);
}
virtual ~WritePreparedTxnDB();
virtual Status Initialize(
const std::vector<size_t>& compaction_enabled_cf_indices,
const std::vector<ColumnFamilyHandle*>& handles) override;
Transaction* BeginTransaction(const WriteOptions& write_options,
const TransactionOptions& txn_options,
Transaction* old_txn) override;
// Optimized version of ::Write that receives more optimization request such
// as skip_concurrency_control.
using PessimisticTransactionDB::Write;
Status Write(const WriteOptions& opts, const TransactionDBWriteOptimizations&,
WriteBatch* updates) override;
// Write the batch to the underlying DB and mark it as committed. Could be
// used by both directly from TxnDB or through a transaction.
Status WriteInternal(const WriteOptions& write_options, WriteBatch* batch,
size_t batch_cnt, WritePreparedTxn* txn);
using DB::Get;
virtual Status Get(const ReadOptions& options,
ColumnFamilyHandle* column_family, const Slice& key,
PinnableSlice* value) override;
using DB::MultiGet;
virtual std::vector<Status> MultiGet(
const ReadOptions& options,
const std::vector<ColumnFamilyHandle*>& column_family,
const std::vector<Slice>& keys,
std::vector<std::string>* values) override;
using DB::NewIterator;
virtual Iterator* NewIterator(const ReadOptions& options,
ColumnFamilyHandle* column_family) override;
using DB::NewIterators;
virtual Status NewIterators(
const ReadOptions& options,
const std::vector<ColumnFamilyHandle*>& column_families,
std::vector<Iterator*>* iterators) override;
virtual void ReleaseSnapshot(const Snapshot* snapshot) override;
// Check whether the transaction that wrote the value with seqeunce number seq
// is visible to the snapshot with sequence number snapshot_seq
bool IsInSnapshot(uint64_t seq, uint64_t snapshot_seq) const;
// Add the trasnaction with prepare sequence seq to the prepared list
void AddPrepared(uint64_t seq);
// Rollback a prepared txn identified with prep_seq. rollback_seq is the seq
// with which the additional data is written to cancel the txn effect. It can
// be used to idenitfy the snapshots that overlap with the rolled back txn.
void RollbackPrepared(uint64_t prep_seq, uint64_t rollback_seq);
// Add the transaction with prepare sequence prepare_seq and commit sequence
// commit_seq to the commit map. prepare_skipped is set if the prpeare phase
// is skipped for this commit. loop_cnt is to detect infinite loops.
void AddCommitted(uint64_t prepare_seq, uint64_t commit_seq,
bool prepare_skipped = false, uint8_t loop_cnt = 0);
struct CommitEntry {
uint64_t prep_seq;
uint64_t commit_seq;
CommitEntry() : prep_seq(0), commit_seq(0) {}
CommitEntry(uint64_t ps, uint64_t cs) : prep_seq(ps), commit_seq(cs) {}
bool operator==(const CommitEntry& rhs) const {
return prep_seq == rhs.prep_seq && commit_seq == rhs.commit_seq;
}
};
struct CommitEntry64bFormat {
explicit CommitEntry64bFormat(size_t index_bits)
: INDEX_BITS(index_bits),
PREP_BITS(static_cast<size_t>(64 - PAD_BITS - INDEX_BITS)),
COMMIT_BITS(static_cast<size_t>(64 - PREP_BITS)),
COMMIT_FILTER(static_cast<uint64_t>((1ull << COMMIT_BITS) - 1)),
DELTA_UPPERBOUND(static_cast<uint64_t>((1ull << COMMIT_BITS))) {}
// Number of higher bits of a sequence number that is not used. They are
// used to encode the value type, ...
const size_t PAD_BITS = static_cast<size_t>(8);
// Number of lower bits from prepare seq that can be skipped as they are
// implied by the index of the entry in the array
const size_t INDEX_BITS;
// Number of bits we use to encode the prepare seq
const size_t PREP_BITS;
// Number of bits we use to encode the commit seq.
const size_t COMMIT_BITS;
// Filter to encode/decode commit seq
const uint64_t COMMIT_FILTER;
// The value of commit_seq - prepare_seq + 1 must be less than this bound
const uint64_t DELTA_UPPERBOUND;
};
// Prepare Seq (64 bits) = PAD ... PAD PREP PREP ... PREP INDEX INDEX ...
// INDEX Detal Seq (64 bits) = 0 0 0 0 0 0 0 0 0 0 0 0 DELTA DELTA ...
// DELTA DELTA Encoded Value = PREP PREP .... PREP PREP DELTA DELTA
// ... DELTA DELTA PAD: first bits of a seq that is reserved for tagging and
// hence ignored PREP/INDEX: the used bits in a prepare seq number INDEX: the
// bits that do not have to be encoded (will be provided externally) DELTA:
// prep seq - commit seq + 1 Number of DELTA bits should be equal to number of
// index bits + PADs
struct CommitEntry64b {
constexpr CommitEntry64b() noexcept : rep_(0) {}
CommitEntry64b(const CommitEntry& entry, const CommitEntry64bFormat& format)
: CommitEntry64b(entry.prep_seq, entry.commit_seq, format) {}
CommitEntry64b(const uint64_t ps, const uint64_t cs,
const CommitEntry64bFormat& format) {
assert(ps < static_cast<uint64_t>(
(1ull << (format.PREP_BITS + format.INDEX_BITS))));
assert(ps <= cs);
uint64_t delta = cs - ps + 1; // make initialized delta always >= 1
// zero is reserved for uninitialized entries
assert(0 < delta);
assert(delta < format.DELTA_UPPERBOUND);
if (delta >= format.DELTA_UPPERBOUND) {
throw std::runtime_error(
"commit_seq >> prepare_seq. The allowed distance is " +
ToString(format.DELTA_UPPERBOUND) + " commit_seq is " +
ToString(cs) + " prepare_seq is " + ToString(ps));
}
rep_ = (ps << format.PAD_BITS) & ~format.COMMIT_FILTER;
rep_ = rep_ | delta;
}
// Return false if the entry is empty
bool Parse(const uint64_t indexed_seq, CommitEntry* entry,
const CommitEntry64bFormat& format) {
uint64_t delta = rep_ & format.COMMIT_FILTER;
// zero is reserved for uninitialized entries
assert(delta < static_cast<uint64_t>((1ull << format.COMMIT_BITS)));
if (delta == 0) {
return false; // initialized entry would have non-zero delta
}
assert(indexed_seq < static_cast<uint64_t>((1ull << format.INDEX_BITS)));
uint64_t prep_up = rep_ & ~format.COMMIT_FILTER;
prep_up >>= format.PAD_BITS;
const uint64_t& prep_low = indexed_seq;
entry->prep_seq = prep_up | prep_low;
entry->commit_seq = entry->prep_seq + delta - 1;
return true;
}
private:
uint64_t rep_;
};
// Struct to hold ownership of snapshot and read callback for cleanup.
struct IteratorState;
std::map<uint32_t, const Comparator*>* GetCFComparatorMap() {
return cf_map_.load();
}
void UpdateCFComparatorMap(
const std::vector<ColumnFamilyHandle*>& handles) override;
void UpdateCFComparatorMap(const ColumnFamilyHandle* handle) override;
protected:
virtual Status VerifyCFOptions(
const ColumnFamilyOptions& cf_options) override;
private:
friend class WritePreparedTransactionTest_IsInSnapshotTest_Test;
friend class WritePreparedTransactionTest_CheckAgainstSnapshotsTest_Test;
friend class WritePreparedTransactionTest_CommitMapTest_Test;
friend class
WritePreparedTransactionTest_ConflictDetectionAfterRecoveryTest_Test;
friend class SnapshotConcurrentAccessTest_SnapshotConcurrentAccessTest_Test;
friend class WritePreparedTransactionTestBase;
friend class PreparedHeap_BasicsTest_Test;
friend class PreparedHeap_EmptyAtTheEnd_Test;
friend class PreparedHeap_Concurrent_Test;
friend class WritePreparedTxnDBMock;
friend class WritePreparedTransactionTest_AdvanceMaxEvictedSeqBasicTest_Test;
friend class WritePreparedTransactionTest_BasicRecoveryTest_Test;
friend class WritePreparedTransactionTest_IsInSnapshotEmptyMapTest_Test;
friend class WritePreparedTransactionTest_OldCommitMapGC_Test;
friend class WritePreparedTransactionTest_RollbackTest_Test;
void Init(const TransactionDBOptions& /* unused */);
// A heap with the amortized O(1) complexity for erase. It uses one extra heap
// to keep track of erased entries that are not yet on top of the main heap.
class PreparedHeap {
std::priority_queue<uint64_t, std::vector<uint64_t>, std::greater<uint64_t>>
heap_;
std::priority_queue<uint64_t, std::vector<uint64_t>, std::greater<uint64_t>>
erased_heap_;
// True when testing crash recovery
bool TEST_CRASH_ = false;
friend class WritePreparedTxnDB;
public:
~PreparedHeap() {
if (!TEST_CRASH_) {
assert(heap_.empty());
assert(erased_heap_.empty());
}
}
bool empty() { return heap_.empty(); }
uint64_t top() { return heap_.top(); }
void push(uint64_t v) { heap_.push(v); }
void pop() {
heap_.pop();
while (!heap_.empty() && !erased_heap_.empty() &&
// heap_.top() > erased_heap_.top() could happen if we have erased
// a non-existent entry. Ideally the user should not do that but we
// should be resiliant againt it.
heap_.top() >= erased_heap_.top()) {
if (heap_.top() == erased_heap_.top()) {
heap_.pop();
}
auto erased __attribute__((__unused__)) = erased_heap_.top();
erased_heap_.pop();
// No duplicate prepare sequence numbers
assert(erased_heap_.empty() || erased_heap_.top() != erased);
}
while (heap_.empty() && !erased_heap_.empty()) {
erased_heap_.pop();
}
}
void erase(uint64_t seq) {
if (!heap_.empty()) {
if (seq < heap_.top()) {
// Already popped, ignore it.
} else if (heap_.top() == seq) {
pop();
assert(heap_.empty() || heap_.top() != seq);
} else { // (heap_.top() > seq)
// Down the heap, remember to pop it later
erased_heap_.push(seq);
}
}
}
};
void TEST_Crash() override { prepared_txns_.TEST_CRASH_ = true; }
// Get the commit entry with index indexed_seq from the commit table. It
// returns true if such entry exists.
bool GetCommitEntry(const uint64_t indexed_seq, CommitEntry64b* entry_64b,
CommitEntry* entry) const;
// Rewrite the entry with the index indexed_seq in the commit table with the
// commit entry <prep_seq, commit_seq>. If the rewrite results into eviction,
// sets the evicted_entry and returns true.
bool AddCommitEntry(const uint64_t indexed_seq, const CommitEntry& new_entry,
CommitEntry* evicted_entry);
// Rewrite the entry with the index indexed_seq in the commit table with the
// commit entry new_entry only if the existing entry matches the
// expected_entry. Returns false otherwise.
bool ExchangeCommitEntry(const uint64_t indexed_seq,
CommitEntry64b& expected_entry,
const CommitEntry& new_entry);
// Increase max_evicted_seq_ from the previous value prev_max to the new
// value. This also involves taking care of prepared txns that are not
// committed before new_max, as well as updating the list of live snapshots at
// the time of updating the max. Thread-safety: this function can be called
// concurrently. The concurrent invocations of this function is equivalent to
// a serial invocation in which the last invocation is the one with the
// largetst new_max value.
void AdvanceMaxEvictedSeq(const SequenceNumber& prev_max,
const SequenceNumber& new_max);
virtual const std::vector<SequenceNumber> GetSnapshotListFromDB(
SequenceNumber max);
// Will be called by the public ReleaseSnapshot method. Does the maintenance
// internal to WritePreparedTxnDB
void ReleaseSnapshotInternal(const SequenceNumber snap_seq);
// Update the list of snapshots corresponding to the soon-to-be-updated
// max_eviceted_seq_. Thread-safety: this function can be called concurrently.
// The concurrent invocations of this function is equivalent to a serial
// invocation in which the last invocation is the one with the largetst
// version value.
void UpdateSnapshots(const std::vector<SequenceNumber>& snapshots,
const SequenceNumber& version);
// Check an evicted entry against live snapshots to see if it should be kept
// around or it can be safely discarded (and hence assume committed for all
// snapshots). Thread-safety: this function can be called concurrently. If it
// is called concurrently with multiple UpdateSnapshots, the result is the
// same as checking the intersection of the snapshot list before updates with
// the snapshot list of all the concurrent updates.
void CheckAgainstSnapshots(const CommitEntry& evicted);
// Add a new entry to old_commit_map_ if prep_seq <= snapshot_seq <
// commit_seq. Return false if checking the next snapshot(s) is not needed.
// This is the case if none of the next snapshots could satisfy the condition.
// next_is_larger: the next snapshot will be a larger value
bool MaybeUpdateOldCommitMap(const uint64_t& prep_seq,
const uint64_t& commit_seq,
const uint64_t& snapshot_seq,
const bool next_is_larger);
// The list of live snapshots at the last time that max_evicted_seq_ advanced.
// The list stored into two data structures: in snapshot_cache_ that is
// efficient for concurrent reads, and in snapshots_ if the data does not fit
// into snapshot_cache_. The total number of snapshots in the two lists
std::atomic<size_t> snapshots_total_ = {};
// The list sorted in ascending order. Thread-safety for writes is provided
// with snapshots_mutex_ and concurrent reads are safe due to std::atomic for
// each entry. In x86_64 architecture such reads are compiled to simple read
// instructions. 128 entries
static const size_t DEF_SNAPSHOT_CACHE_BITS = static_cast<size_t>(7);
const size_t SNAPSHOT_CACHE_BITS;
const size_t SNAPSHOT_CACHE_SIZE;
unique_ptr<std::atomic<SequenceNumber>[]> snapshot_cache_;
// 2nd list for storing snapshots. The list sorted in ascending order.
// Thread-safety is provided with snapshots_mutex_.
std::vector<SequenceNumber> snapshots_;
// The version of the latest list of snapshots. This can be used to avoid
// rewrittiing a list that is concurrently updated with a more recent version.
SequenceNumber snapshots_version_ = 0;
// A heap of prepared transactions. Thread-safety is provided with
// prepared_mutex_.
PreparedHeap prepared_txns_;
// 2m entry, 16MB size
static const size_t DEF_COMMIT_CACHE_BITS = static_cast<size_t>(21);
const size_t COMMIT_CACHE_BITS;
const size_t COMMIT_CACHE_SIZE;
const CommitEntry64bFormat FORMAT;
// commit_cache_ must be initialized to zero to tell apart an empty index from
// a filled one. Thread-safety is provided with commit_cache_mutex_.
unique_ptr<std::atomic<CommitEntry64b>[]> commit_cache_;
// The largest evicted *commit* sequence number from the commit_cache_. If a
// seq is smaller than max_evicted_seq_ is might or might not be present in
// commit_cache_. So commit_cache_ must first be checked before consulting
// with max_evicted_seq_.
std::atomic<uint64_t> max_evicted_seq_ = {};
// Advance max_evicted_seq_ by this value each time it needs an update. The
// larger the value, the less frequent advances we would have. We do not want
// it to be too large either as it would cause stalls by doing too much
// maintenance work under the lock.
size_t INC_STEP_FOR_MAX_EVICTED = 1;
// A map from old snapshots (expected to be used by a few read-only txns) to
// prpared sequence number of the evicted entries from commit_cache_ that
// overlaps with such snapshot. These are the prepared sequence numbers that
// the snapshot, to which they are mapped, cannot assume to be committed just
// because it is no longer in the commit_cache_. The vector must be sorted
// after each update.
// Thread-safety is provided with old_commit_map_mutex_.
std::map<SequenceNumber, std::vector<SequenceNumber>> old_commit_map_;
// A set of long-running prepared transactions that are not finished by the
// time max_evicted_seq_ advances their sequence number. This is expected to
// be empty normally. Thread-safety is provided with prepared_mutex_.
std::set<uint64_t> delayed_prepared_;
// Update when delayed_prepared_.empty() changes. Expected to be true
// normally.
std::atomic<bool> delayed_prepared_empty_ = {true};
// Update when old_commit_map_.empty() changes. Expected to be true normally.
std::atomic<bool> old_commit_map_empty_ = {true};
mutable port::RWMutex prepared_mutex_;
mutable port::RWMutex old_commit_map_mutex_;
mutable port::RWMutex commit_cache_mutex_;
mutable port::RWMutex snapshots_mutex_;
// A cache of the cf comparators
std::atomic<std::map<uint32_t, const Comparator*>*> cf_map_;
// GC of the object above
std::unique_ptr<std::map<uint32_t, const Comparator*>> cf_map_gc_;
};
class WritePreparedTxnReadCallback : public ReadCallback {
public:
WritePreparedTxnReadCallback(WritePreparedTxnDB* db, SequenceNumber snapshot)
: db_(db), snapshot_(snapshot) {}
// Will be called to see if the seq number accepted; if not it moves on to the
// next seq number.
virtual bool IsCommitted(SequenceNumber seq) override {
return db_->IsInSnapshot(seq, snapshot_);
}
private:
WritePreparedTxnDB* db_;
SequenceNumber snapshot_;
};
class WritePreparedCommitEntryPreReleaseCallback : public PreReleaseCallback {
public:
// includes_data indicates that the commit also writes non-empty
// CommitTimeWriteBatch to memtable, which needs to be committed separately.
WritePreparedCommitEntryPreReleaseCallback(WritePreparedTxnDB* db,
DBImpl* db_impl,
SequenceNumber prep_seq,
size_t prep_batch_cnt,
size_t data_batch_cnt = 0,
bool prep_heap_skipped = false)
: db_(db),
db_impl_(db_impl),
prep_seq_(prep_seq),
prep_batch_cnt_(prep_batch_cnt),
data_batch_cnt_(data_batch_cnt),
prep_heap_skipped_(prep_heap_skipped),
includes_data_(data_batch_cnt_ > 0) {
assert((prep_batch_cnt_ > 0) != (prep_seq == kMaxSequenceNumber)); // xor
assert(prep_batch_cnt_ > 0 || data_batch_cnt_ > 0);
}
virtual Status Callback(SequenceNumber commit_seq) override {
assert(includes_data_ || prep_seq_ != kMaxSequenceNumber);
const uint64_t last_commit_seq = LIKELY(data_batch_cnt_ <= 1)
? commit_seq
: commit_seq + data_batch_cnt_ - 1;
if (prep_seq_ != kMaxSequenceNumber) {
for (size_t i = 0; i < prep_batch_cnt_; i++) {
db_->AddCommitted(prep_seq_ + i, last_commit_seq, prep_heap_skipped_);
}
} // else there was no prepare phase
if (includes_data_) {
assert(data_batch_cnt_);
// Commit the data that is accompnaied with the commit request
const bool PREPARE_SKIPPED = true;
for (size_t i = 0; i < data_batch_cnt_; i++) {
// For commit seq of each batch use the commit seq of the last batch.
// This would make debugging easier by having all the batches having
// the same sequence number.
db_->AddCommitted(commit_seq + i, last_commit_seq, PREPARE_SKIPPED);
}
}
if (db_impl_->immutable_db_options().two_write_queues) {
// Publish the sequence number. We can do that here assuming the callback
// is invoked only from one write queue, which would guarantee that the
// publish sequence numbers will be in order, i.e., once a seq is
// published all the seq prior to that are also publishable.
db_impl_->SetLastPublishedSequence(last_commit_seq);
}
// else SequenceNumber that is updated as part of the write already does the
// publishing
return Status::OK();
}
private:
WritePreparedTxnDB* db_;
DBImpl* db_impl_;
// kMaxSequenceNumber if there was no prepare phase
SequenceNumber prep_seq_;
size_t prep_batch_cnt_;
size_t data_batch_cnt_;
// An optimization that indicates that there is no need to update the prepare
// heap since the prepare sequence number was not added to it.
bool prep_heap_skipped_;
// Either because it is commit without prepare or it has a
// CommitTimeWriteBatch
bool includes_data_;
};
// A wrapper around Comparator to make it usable in std::set
struct SetComparator {
explicit SetComparator() : user_comparator_(BytewiseComparator()) {}
explicit SetComparator(const Comparator* user_comparator)
: user_comparator_(user_comparator ? user_comparator
: BytewiseComparator()) {}
bool operator()(const Slice& lhs, const Slice& rhs) const {
return user_comparator_->Compare(lhs, rhs) < 0;
}
private:
const Comparator* user_comparator_;
};
// Count the number of sub-batches inside a batch. A sub-batch does not have
// duplicate keys.
struct SubBatchCounter : public WriteBatch::Handler {
explicit SubBatchCounter(std::map<uint32_t, const Comparator*>& comparators)
: comparators_(comparators), batches_(1) {}
std::map<uint32_t, const Comparator*>& comparators_;
using CFKeys = std::set<Slice, SetComparator>;
std::map<uint32_t, CFKeys> keys_;
size_t batches_;
size_t BatchCount() { return batches_; }
void AddKey(const uint32_t cf, const Slice& key);
void InitWithComp(const uint32_t cf);
Status MarkNoop(bool) override { return Status::OK(); }
Status MarkEndPrepare(const Slice&) override { return Status::OK(); }
Status MarkCommit(const Slice&) override { return Status::OK(); }
Status PutCF(uint32_t cf, const Slice& key, const Slice&) override {
AddKey(cf, key);
return Status::OK();
}
Status DeleteCF(uint32_t cf, const Slice& key) override {
AddKey(cf, key);
return Status::OK();
}
Status SingleDeleteCF(uint32_t cf, const Slice& key) override {
AddKey(cf, key);
return Status::OK();
}
Status MergeCF(uint32_t cf, const Slice& key, const Slice&) override {
AddKey(cf, key);
return Status::OK();
}
Status MarkBeginPrepare() override { return Status::OK(); }
Status MarkRollback(const Slice&) override { return Status::OK(); }
bool WriteAfterCommit() const override { return false; }
};
} // namespace rocksdb
#endif // ROCKSDB_LITE