rocksdb/utilities/fault_injection_fs.cc

1508 lines
51 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright 2014 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
// This test uses a custom FileSystem to keep track of the state of a file
// system the last "Sync". The data being written is cached in a "buffer".
// Only when "Sync" is called, the data will be persistent. It can simulate
// file data loss (or entire files) not protected by a "Sync". For any of the
// FileSystem related operations, by specify the "IOStatus Error", a specific
// error can be returned when file system is not activated.
#include "utilities/fault_injection_fs.h"
#include <algorithm>
#include <cstdio>
#include <functional>
#include <utility>
#include "env/composite_env_wrapper.h"
#include "port/lang.h"
#include "port/stack_trace.h"
#include "rocksdb/env.h"
#include "rocksdb/io_status.h"
#include "rocksdb/types.h"
#include "test_util/sync_point.h"
#include "util/coding.h"
#include "util/crc32c.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/string_util.h"
#include "util/xxhash.h"
namespace ROCKSDB_NAMESPACE {
const std::string kNewFileNoOverwrite;
// Assume a filename, and not a directory name like "/foo/bar/"
std::string TestFSGetDirName(const std::string filename) {
size_t found = filename.find_last_of("/\\");
if (found == std::string::npos) {
return "";
} else {
return filename.substr(0, found);
}
}
// Trim the tailing "/" in the end of `str`
std::string TestFSTrimDirname(const std::string& str) {
size_t found = str.find_last_not_of('/');
if (found == std::string::npos) {
return str;
}
return str.substr(0, found + 1);
}
// Return pair <parent directory name, file name> of a full path.
std::pair<std::string, std::string> TestFSGetDirAndName(
const std::string& name) {
std::string dirname = TestFSGetDirName(name);
std::string fname = name.substr(dirname.size() + 1);
return std::make_pair(dirname, fname);
}
// Calculate the checksum of the data with corresponding checksum
// type. If name does not match, no checksum is returned.
void CalculateTypedChecksum(const ChecksumType& checksum_type, const char* data,
size_t size, std::string* checksum) {
if (checksum_type == ChecksumType::kCRC32c) {
uint32_t v_crc32c = crc32c::Extend(0, data, size);
PutFixed32(checksum, v_crc32c);
return;
} else if (checksum_type == ChecksumType::kxxHash) {
uint32_t v = XXH32(data, size, 0);
PutFixed32(checksum, v);
}
}
IOStatus FSFileState::DropUnsyncedData() {
buffer_.resize(0);
return IOStatus::OK();
}
IOStatus FSFileState::DropRandomUnsyncedData(Random* rand) {
int range = static_cast<int>(buffer_.size());
size_t truncated_size = static_cast<size_t>(rand->Uniform(range));
buffer_.resize(truncated_size);
return IOStatus::OK();
}
IOStatus TestFSDirectory::Fsync(const IOOptions& options, IODebugContext* dbg) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
IOStatus s = fs_->MaybeInjectThreadLocalError(
FaultInjectionIOType::kMetadataWrite, options);
if (!s.ok()) {
return s;
}
fs_->SyncDir(dirname_);
s = dir_->Fsync(options, dbg);
return s;
}
IOStatus TestFSDirectory::Close(const IOOptions& options, IODebugContext* dbg) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
IOStatus s = fs_->MaybeInjectThreadLocalError(
FaultInjectionIOType::kMetadataWrite, options);
if (!s.ok()) {
return s;
}
s = dir_->Close(options, dbg);
return s;
}
IOStatus TestFSDirectory::FsyncWithDirOptions(
const IOOptions& options, IODebugContext* dbg,
const DirFsyncOptions& dir_fsync_options) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
IOStatus s = fs_->MaybeInjectThreadLocalError(
FaultInjectionIOType::kMetadataWrite, options);
if (!s.ok()) {
return s;
}
fs_->SyncDir(dirname_);
s = dir_->FsyncWithDirOptions(options, dbg, dir_fsync_options);
return s;
}
TestFSWritableFile::TestFSWritableFile(const std::string& fname,
const FileOptions& file_opts,
std::unique_ptr<FSWritableFile>&& f,
FaultInjectionTestFS* fs)
: state_(fname),
file_opts_(file_opts),
target_(std::move(f)),
writable_file_opened_(true),
fs_(fs),
unsync_data_loss_(fs_->InjectUnsyncedDataLoss()) {
assert(target_ != nullptr);
assert(state_.pos_at_last_append_ == 0);
assert(state_.pos_at_last_sync_ == 0);
}
TestFSWritableFile::~TestFSWritableFile() {
if (writable_file_opened_) {
Close(IOOptions(), nullptr).PermitUncheckedError();
}
}
IOStatus TestFSWritableFile::Append(const Slice& data, const IOOptions& options,
IODebugContext* dbg) {
MutexLock l(&mutex_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
IOStatus s = fs_->MaybeInjectThreadLocalError(
FaultInjectionIOType::kWrite, options, state_.filename_,
FaultInjectionTestFS::ErrorOperation::kAppend);
if (!s.ok()) {
return s;
}
if (target_->use_direct_io() || !unsync_data_loss_) {
// TODO(hx235): buffer data for direct IO write to simulate data loss like
// non-direct IO write
s = target_->Append(data, options, dbg);
} else {
state_.buffer_.append(data.data(), data.size());
}
if (s.ok()) {
state_.pos_at_last_append_ += data.size();
fs_->WritableFileAppended(state_);
}
return s;
}
// By setting the IngestDataCorruptionBeforeWrite(), the data corruption is
// simulated.
IOStatus TestFSWritableFile::Append(
const Slice& data, const IOOptions& options,
const DataVerificationInfo& verification_info, IODebugContext* dbg) {
MutexLock l(&mutex_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
if (fs_->ShouldDataCorruptionBeforeWrite()) {
return IOStatus::Corruption("Data is corrupted!");
}
IOStatus s = fs_->MaybeInjectThreadLocalError(
FaultInjectionIOType::kWrite, options, state_.filename_,
FaultInjectionTestFS::ErrorOperation::kAppend);
if (!s.ok()) {
return s;
}
// Calculate the checksum
std::string checksum;
CalculateTypedChecksum(fs_->GetChecksumHandoffFuncType(), data.data(),
data.size(), &checksum);
if (fs_->GetChecksumHandoffFuncType() != ChecksumType::kNoChecksum &&
checksum != verification_info.checksum.ToString()) {
std::string msg =
"Data is corrupted! Origin data checksum: " +
verification_info.checksum.ToString(true) +
"current data checksum: " + Slice(checksum).ToString(true);
return IOStatus::Corruption(msg);
}
if (target_->use_direct_io() || !unsync_data_loss_) {
// TODO(hx235): buffer data for direct IO write to simulate data loss like
// non-direct IO write
s = target_->Append(data, options, dbg);
} else {
state_.buffer_.append(data.data(), data.size());
}
if (s.ok()) {
state_.pos_at_last_append_ += data.size();
fs_->WritableFileAppended(state_);
}
return s;
}
IOStatus TestFSWritableFile::Truncate(uint64_t size, const IOOptions& options,
IODebugContext* dbg) {
MutexLock l(&mutex_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
IOStatus s = fs_->MaybeInjectThreadLocalError(FaultInjectionIOType::kWrite,
options, state_.filename_);
if (!s.ok()) {
return s;
}
s = target_->Truncate(size, options, dbg);
if (s.ok()) {
state_.pos_at_last_append_ = size;
}
return s;
}
IOStatus TestFSWritableFile::PositionedAppend(const Slice& data,
uint64_t offset,
const IOOptions& options,
IODebugContext* dbg) {
MutexLock l(&mutex_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
if (fs_->ShouldDataCorruptionBeforeWrite()) {
return IOStatus::Corruption("Data is corrupted!");
}
IOStatus s = fs_->MaybeInjectThreadLocalError(
FaultInjectionIOType::kWrite, options, state_.filename_,
FaultInjectionTestFS::ErrorOperation::kPositionedAppend);
if (!s.ok()) {
return s;
}
// TODO(hx235): buffer data for direct IO write to simulate data loss like
// non-direct IO write
s = target_->PositionedAppend(data, offset, options, dbg);
if (s.ok()) {
state_.pos_at_last_append_ = offset + data.size();
fs_->WritableFileAppended(state_);
}
return s;
}
IOStatus TestFSWritableFile::PositionedAppend(
const Slice& data, uint64_t offset, const IOOptions& options,
const DataVerificationInfo& verification_info, IODebugContext* dbg) {
MutexLock l(&mutex_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
if (fs_->ShouldDataCorruptionBeforeWrite()) {
return IOStatus::Corruption("Data is corrupted!");
}
IOStatus s = fs_->MaybeInjectThreadLocalError(
FaultInjectionIOType::kWrite, options, state_.filename_,
FaultInjectionTestFS::ErrorOperation::kPositionedAppend);
if (!s.ok()) {
return s;
}
// Calculate the checksum
std::string checksum;
CalculateTypedChecksum(fs_->GetChecksumHandoffFuncType(), data.data(),
data.size(), &checksum);
if (fs_->GetChecksumHandoffFuncType() != ChecksumType::kNoChecksum &&
checksum != verification_info.checksum.ToString()) {
std::string msg =
"Data is corrupted! Origin data checksum: " +
verification_info.checksum.ToString(true) +
"current data checksum: " + Slice(checksum).ToString(true);
return IOStatus::Corruption(msg);
}
// TODO(hx235): buffer data for direct IO write to simulate data loss like
// non-direct IO write
s = target_->PositionedAppend(data, offset, options, dbg);
if (s.ok()) {
state_.pos_at_last_append_ = offset + data.size();
fs_->WritableFileAppended(state_);
}
return s;
}
IOStatus TestFSWritableFile::Close(const IOOptions& options,
IODebugContext* dbg) {
MutexLock l(&mutex_);
fs_->WritableFileClosed(state_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
IOStatus io_s = fs_->MaybeInjectThreadLocalError(
FaultInjectionIOType::kMetadataWrite, options);
if (!io_s.ok()) {
return io_s;
}
writable_file_opened_ = false;
// Drop buffered data that was never synced because close is not a syncing
// mechanism in POSIX file semantics.
state_.buffer_.resize(0);
io_s = target_->Close(options, dbg);
return io_s;
}
IOStatus TestFSWritableFile::Flush(const IOOptions&, IODebugContext*) {
MutexLock l(&mutex_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
return IOStatus::OK();
}
IOStatus TestFSWritableFile::Sync(const IOOptions& options,
IODebugContext* dbg) {
MutexLock l(&mutex_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
if (target_->use_direct_io()) {
// For Direct IO mode, we don't buffer anything in TestFSWritableFile.
// So just return
return IOStatus::OK();
}
IOStatus io_s = target_->Append(state_.buffer_, options, dbg);
state_.buffer_.resize(0);
// Ignore sync errors
target_->Sync(options, dbg).PermitUncheckedError();
state_.pos_at_last_sync_ = state_.pos_at_last_append_;
fs_->WritableFileSynced(state_);
return io_s;
}
IOStatus TestFSWritableFile::RangeSync(uint64_t offset, uint64_t nbytes,
const IOOptions& options,
IODebugContext* dbg) {
MutexLock l(&mutex_);
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
// Assumes caller passes consecutive byte ranges.
uint64_t sync_limit = offset + nbytes;
IOStatus io_s;
if (sync_limit < state_.pos_at_last_sync_) {
return io_s;
}
uint64_t num_to_sync = std::min(static_cast<uint64_t>(state_.buffer_.size()),
sync_limit - state_.pos_at_last_sync_);
Slice buf_to_sync(state_.buffer_.data(), num_to_sync);
io_s = target_->Append(buf_to_sync, options, dbg);
state_.buffer_ = state_.buffer_.substr(num_to_sync);
// Ignore sync errors
target_->RangeSync(offset, nbytes, options, dbg).PermitUncheckedError();
state_.pos_at_last_sync_ = offset + num_to_sync;
fs_->WritableFileSynced(state_);
return io_s;
}
TestFSRandomRWFile::TestFSRandomRWFile(const std::string& /*fname*/,
std::unique_ptr<FSRandomRWFile>&& f,
FaultInjectionTestFS* fs)
: target_(std::move(f)), file_opened_(true), fs_(fs) {
assert(target_ != nullptr);
}
TestFSRandomRWFile::~TestFSRandomRWFile() {
if (file_opened_) {
Close(IOOptions(), nullptr).PermitUncheckedError();
}
}
IOStatus TestFSRandomRWFile::Write(uint64_t offset, const Slice& data,
const IOOptions& options,
IODebugContext* dbg) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
return target_->Write(offset, data, options, dbg);
}
IOStatus TestFSRandomRWFile::Read(uint64_t offset, size_t n,
const IOOptions& options, Slice* result,
char* scratch, IODebugContext* dbg) const {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
// TODO (low priority): fs_->ReadUnsyncedData()
return target_->Read(offset, n, options, result, scratch, dbg);
}
IOStatus TestFSRandomRWFile::Close(const IOOptions& options,
IODebugContext* dbg) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
file_opened_ = false;
return target_->Close(options, dbg);
}
IOStatus TestFSRandomRWFile::Flush(const IOOptions& options,
IODebugContext* dbg) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
return target_->Flush(options, dbg);
}
IOStatus TestFSRandomRWFile::Sync(const IOOptions& options,
IODebugContext* dbg) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
return target_->Sync(options, dbg);
}
TestFSRandomAccessFile::TestFSRandomAccessFile(
const std::string& /*fname*/, std::unique_ptr<FSRandomAccessFile>&& f,
FaultInjectionTestFS* fs)
: target_(std::move(f)), fs_(fs) {
assert(target_ != nullptr);
}
IOStatus TestFSRandomAccessFile::Read(uint64_t offset, size_t n,
const IOOptions& options, Slice* result,
char* scratch,
IODebugContext* dbg) const {
TEST_SYNC_POINT("FaultInjectionTestFS::RandomRead");
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
IOStatus s = fs_->MaybeInjectThreadLocalError(
FaultInjectionIOType::kRead, options, "",
FaultInjectionTestFS::ErrorOperation::kRead, result, use_direct_io(),
scratch, /*need_count_increase=*/true,
/*fault_injected=*/nullptr);
if (!s.ok()) {
return s;
}
s = target_->Read(offset, n, options, result, scratch, dbg);
// TODO (low priority): fs_->ReadUnsyncedData()
return s;
}
IOStatus TestFSRandomAccessFile::ReadAsync(
FSReadRequest& req, const IOOptions& opts,
std::function<void(FSReadRequest&, void*)> cb, void* cb_arg,
void** io_handle, IOHandleDeleter* del_fn, IODebugContext* /*dbg*/) {
IOStatus res_status;
FSReadRequest res;
IOStatus s;
if (!fs_->IsFilesystemActive()) {
res_status = fs_->GetError();
}
if (res_status.ok()) {
res_status = fs_->MaybeInjectThreadLocalError(
FaultInjectionIOType::kRead, opts, "",
FaultInjectionTestFS::ErrorOperation::kRead, &res.result,
use_direct_io(), req.scratch, /*need_count_increase=*/true,
/*fault_injected=*/nullptr);
}
if (res_status.ok()) {
s = target_->ReadAsync(req, opts, cb, cb_arg, io_handle, del_fn, nullptr);
// TODO (low priority): fs_->ReadUnsyncedData()
} else {
// If there's no injected error, then cb will be called asynchronously when
// target_ actually finishes the read. But if there's an injected error, it
// needs to immediately call cb(res, cb_arg) s since target_->ReadAsync()
// isn't invoked at all.
res.status = res_status;
cb(res, cb_arg);
}
// We return ReadAsync()'s status intead of injected error status here since
// the return status is not supposed to be the status of the actual IO (i.e,
// the actual async read). The actual status of the IO will be passed to cb()
// callback upon the actual read finishes or like above when injected error
// happens.
return s;
}
IOStatus TestFSRandomAccessFile::MultiRead(FSReadRequest* reqs, size_t num_reqs,
const IOOptions& options,
IODebugContext* dbg) {
if (!fs_->IsFilesystemActive()) {
return fs_->GetError();
}
IOStatus s = target_->MultiRead(reqs, num_reqs, options, dbg);
// TODO (low priority): fs_->ReadUnsyncedData()
bool injected_error = false;
for (size_t i = 0; i < num_reqs; i++) {
if (!reqs[i].status.ok()) {
// Already seeing an error.
break;
}
bool this_injected_error;
reqs[i].status = fs_->MaybeInjectThreadLocalError(
FaultInjectionIOType::kRead, options, "",
FaultInjectionTestFS::ErrorOperation::kRead, &(reqs[i].result),
use_direct_io(), reqs[i].scratch,
/*need_count_increase=*/true,
/*fault_injected=*/&this_injected_error);
injected_error |= this_injected_error;
}
if (s.ok()) {
s = fs_->MaybeInjectThreadLocalError(
FaultInjectionIOType::kRead, options, "",
FaultInjectionTestFS::ErrorOperation::kMultiRead, nullptr,
use_direct_io(), nullptr, /*need_count_increase=*/!injected_error,
/*fault_injected=*/nullptr);
}
return s;
}
size_t TestFSRandomAccessFile::GetUniqueId(char* id, size_t max_size) const {
if (fs_->ShouldFailGetUniqueId()) {
return 0;
} else {
return target_->GetUniqueId(id, max_size);
}
}
namespace {
// Modifies `result` to start at the beginning of `scratch` if not already,
// copying data there if needed.
void MoveToScratchIfNeeded(Slice* result, char* scratch) {
if (result->data() != scratch) {
// NOTE: might overlap, where result is later in scratch
std::copy(result->data(), result->data() + result->size(), scratch);
*result = Slice(scratch, result->size());
}
}
} // namespace
void FaultInjectionTestFS::ReadUnsynced(const std::string& fname,
uint64_t offset, size_t n,
Slice* result, char* scratch,
int64_t* pos_at_last_sync) {
*result = Slice(scratch, 0); // default empty result
assert(*pos_at_last_sync == -1); // default "unknown"
MutexLock l(&mutex_);
auto it = db_file_state_.find(fname);
if (it != db_file_state_.end()) {
auto& st = it->second;
*pos_at_last_sync = static_cast<int64_t>(st.pos_at_last_sync_);
// Find overlap between [offset, offset + n) and
// [*pos_at_last_sync, *pos_at_last_sync + st.buffer_.size())
int64_t begin = std::max(static_cast<int64_t>(offset), *pos_at_last_sync);
int64_t end =
std::min(static_cast<int64_t>(offset + n),
*pos_at_last_sync + static_cast<int64_t>(st.buffer_.size()));
// Copy and return overlap if there is any
if (begin < end) {
size_t offset_in_buffer = static_cast<size_t>(begin - *pos_at_last_sync);
size_t offset_in_scratch = static_cast<size_t>(begin - offset);
std::copy_n(st.buffer_.data() + offset_in_buffer, end - begin,
scratch + offset_in_scratch);
*result = Slice(scratch + offset_in_scratch, end - begin);
}
}
}
IOStatus TestFSSequentialFile::Read(size_t n, const IOOptions& options,
Slice* result, char* scratch,
IODebugContext* dbg) {
IOStatus s = fs_->MaybeInjectThreadLocalError(
FaultInjectionIOType::kRead, options, "",
FaultInjectionTestFS::ErrorOperation::kRead, result, use_direct_io(),
scratch, true /*need_count_increase=*/, nullptr /* fault_injected*/);
if (!s.ok()) {
return s;
}
// Some complex logic is needed to deal with concurrent write to the same
// file, while keeping good performance (e.g. not holding FS mutex during
// I/O op), especially in common cases.
if (read_pos_ == target_read_pos_) {
// Normal case: start by reading from underlying file
s = target()->Read(n, options, result, scratch, dbg);
if (!s.ok()) {
return s;
}
target_read_pos_ += result->size();
} else {
// We must have previously read buffered data (unsynced) not written to
// target. Deal with this case (and more) below.
*result = {};
}
if (fs_->ReadUnsyncedData() && result->size() < n) {
// We need to check if there's unsynced data to fill out the rest of the
// read.
// First, ensure target read data is in scratch for easy handling.
MoveToScratchIfNeeded(result, scratch);
assert(result->data() == scratch);
// If we just did a target Read, we only want unsynced data after it
// (target_read_pos_). Otherwise (e.g. if target is behind because of
// unsynced data) we want unsynced data starting at the current read pos
// (read_pos_, not yet updated).
const uint64_t unsynced_read_pos = std::max(target_read_pos_, read_pos_);
const size_t offset_from_read_pos =
static_cast<size_t>(unsynced_read_pos - read_pos_);
Slice unsynced_result;
int64_t pos_at_last_sync = -1;
fs_->ReadUnsynced(fname_, unsynced_read_pos, n - offset_from_read_pos,
&unsynced_result, scratch + offset_from_read_pos,
&pos_at_last_sync);
assert(unsynced_result.data() >= scratch + offset_from_read_pos);
assert(unsynced_result.data() < scratch + n);
// Now, there are several cases to consider (some grouped together):
if (pos_at_last_sync <= static_cast<int64_t>(unsynced_read_pos)) {
// 1. We didn't get any unsynced data because nothing has been written
// to the file beyond unsynced_read_pos (including untracked
// pos_at_last_sync == -1)
// 2. We got some unsynced data starting at unsynced_read_pos (possibly
// on top of some synced data from target). We don't need to try reading
// any more from target because we established a "point in time" for
// completing this Read in which we read as much tail data (unsynced) as
// we could.
// We got pos_at_last_sync info if we got any unsynced data.
assert(pos_at_last_sync >= 0 || unsynced_result.size() == 0);
// Combined data is already lined up in scratch.
assert(result->data() + result->size() == unsynced_result.data());
assert(result->size() + unsynced_result.size() <= n);
// Combine results
*result = Slice(result->data(), result->size() + unsynced_result.size());
} else {
// 3. Any unsynced data we got was after unsynced_read_pos because the
// file was synced some time since our last target Read (either from this
// Read or a prior Read). We need to read more data from target to ensure
// this Read is filled out, even though we might have already read some
// (but not all due to a race). This code handles:
//
// * Catching up target after prior read(s) of unsynced data
// * Racing Sync in another thread since we called target Read above
//
// And merging potentially three results together for this Read:
// * The original target Read above
// * The following (non-throw-away) target Read
// * The ReadUnsynced above, which is always last if it returned data,
// so that we have a "point in time" for completing this Read in which we
// read as much tail data (unsynced) as we could.
//
// Deeper note about the race: we cannot just treat the original target
// Read as a "point in time" view of available data in the file, because
// there might have been unsynced data at that time, which became synced
// data by the time we read unsynced data. That is the race we are
// resolving with this "double check"-style code.
const size_t supplemental_read_pos = unsynced_read_pos;
// First, if there's any data from target that we know we would need to
// throw away to catch up, try to do it.
if (target_read_pos_ < supplemental_read_pos) {
Slice throw_away_result;
size_t throw_away_n = supplemental_read_pos - target_read_pos_;
std::unique_ptr<char[]> throw_away_scratch{new char[throw_away_n]};
s = target()->Read(throw_away_n, options, &throw_away_result,
throw_away_scratch.get(), dbg);
if (!s.ok()) {
read_pos_ += result->size();
return s;
}
target_read_pos_ += throw_away_result.size();
if (target_read_pos_ < supplemental_read_pos) {
// Because of pos_at_last_sync > supplemental_read_pos, we should
// have been able to catch up
read_pos_ += result->size();
return IOStatus::IOError(
"Unexpected truncation or short read of file " + fname_);
}
}
// Now we can do a productive supplemental Read from target
assert(target_read_pos_ == supplemental_read_pos);
Slice supplemental_result;
size_t supplemental_n =
unsynced_result.size() == 0
? n - offset_from_read_pos
: unsynced_result.data() - (scratch + offset_from_read_pos);
s = target()->Read(supplemental_n, options, &supplemental_result,
scratch + offset_from_read_pos, dbg);
if (!s.ok()) {
read_pos_ += result->size();
return s;
}
target_read_pos_ += supplemental_result.size();
MoveToScratchIfNeeded(&supplemental_result,
scratch + offset_from_read_pos);
// Combined data is already lined up in scratch.
assert(result->data() + result->size() == supplemental_result.data());
assert(unsynced_result.size() == 0 ||
supplemental_result.data() + supplemental_result.size() ==
unsynced_result.data());
assert(result->size() + supplemental_result.size() +
unsynced_result.size() <=
n);
// Combine results
*result =
Slice(result->data(), result->size() + supplemental_result.size() +
unsynced_result.size());
}
}
read_pos_ += result->size();
return s;
}
IOStatus TestFSSequentialFile::PositionedRead(uint64_t offset, size_t n,
const IOOptions& options,
Slice* result, char* scratch,
IODebugContext* dbg) {
IOStatus s = fs_->MaybeInjectThreadLocalError(
FaultInjectionIOType::kRead, options, "",
FaultInjectionTestFS::ErrorOperation::kRead, result, use_direct_io(),
scratch, true /*need_count_increase=*/, nullptr /* fault_injected */);
if (!s.ok()) {
return s;
}
s = target()->PositionedRead(offset, n, options, result, scratch, dbg);
// TODO (low priority): fs_->ReadUnsyncedData()
return s;
}
IOStatus FaultInjectionTestFS::NewDirectory(
const std::string& name, const IOOptions& options,
std::unique_ptr<FSDirectory>* result, IODebugContext* dbg) {
std::unique_ptr<FSDirectory> r;
IOStatus io_s = target()->NewDirectory(name, options, &r, dbg);
if (!io_s.ok()) {
return io_s;
}
result->reset(
new TestFSDirectory(this, TestFSTrimDirname(name), r.release()));
return IOStatus::OK();
}
IOStatus FaultInjectionTestFS::FileExists(const std::string& fname,
const IOOptions& options,
IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
IOStatus io_s =
MaybeInjectThreadLocalError(FaultInjectionIOType::kMetadataRead, options);
if (!io_s.ok()) {
return io_s;
}
io_s = target()->FileExists(fname, options, dbg);
return io_s;
}
IOStatus FaultInjectionTestFS::GetChildren(const std::string& dir,
const IOOptions& options,
std::vector<std::string>* result,
IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
IOStatus io_s =
MaybeInjectThreadLocalError(FaultInjectionIOType::kMetadataRead, options);
if (!io_s.ok()) {
return io_s;
}
io_s = target()->GetChildren(dir, options, result, dbg);
return io_s;
}
IOStatus FaultInjectionTestFS::GetChildrenFileAttributes(
const std::string& dir, const IOOptions& options,
std::vector<FileAttributes>* result, IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
IOStatus io_s =
MaybeInjectThreadLocalError(FaultInjectionIOType::kMetadataRead, options);
if (!io_s.ok()) {
return io_s;
}
io_s = target()->GetChildrenFileAttributes(dir, options, result, dbg);
return io_s;
}
IOStatus FaultInjectionTestFS::NewWritableFile(
const std::string& fname, const FileOptions& file_opts,
std::unique_ptr<FSWritableFile>* result, IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
if (IsFilesystemDirectWritable()) {
return target()->NewWritableFile(fname, file_opts, result, dbg);
}
IOStatus io_s = MaybeInjectThreadLocalError(
FaultInjectionIOType::kWrite, file_opts.io_options, fname,
FaultInjectionTestFS::ErrorOperation::kOpen);
if (!io_s.ok()) {
return io_s;
}
io_s = target()->NewWritableFile(fname, file_opts, result, dbg);
if (io_s.ok()) {
result->reset(
new TestFSWritableFile(fname, file_opts, std::move(*result), this));
// WritableFileWriter* file is opened
// again then it will be truncated - so forget our saved state.
UntrackFile(fname);
{
MutexLock l(&mutex_);
open_managed_files_.insert(fname);
auto dir_and_name = TestFSGetDirAndName(fname);
auto& list = dir_to_new_files_since_last_sync_[dir_and_name.first];
// The new file could overwrite an old one. Here we simplify
// the implementation by assuming no file of this name after
// dropping unsynced files.
list[dir_and_name.second] = kNewFileNoOverwrite;
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::ReopenWritableFile(
const std::string& fname, const FileOptions& file_opts,
std::unique_ptr<FSWritableFile>* result, IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
if (IsFilesystemDirectWritable()) {
return target()->ReopenWritableFile(fname, file_opts, result, dbg);
}
IOStatus io_s = MaybeInjectThreadLocalError(FaultInjectionIOType::kWrite,
file_opts.io_options, fname);
if (!io_s.ok()) {
return io_s;
}
bool exists;
IOStatus exists_s =
target()->FileExists(fname, IOOptions(), nullptr /* dbg */);
if (exists_s.IsNotFound()) {
exists = false;
} else if (exists_s.ok()) {
exists = true;
} else {
io_s = exists_s;
exists = false;
}
if (!io_s.ok()) {
return io_s;
}
io_s = target()->ReopenWritableFile(fname, file_opts, result, dbg);
// Only track files we created. Files created outside of this
// `FaultInjectionTestFS` are not eligible for tracking/data dropping
// (for example, they may contain data a previous db_stress run expects to
// be recovered). This could be extended to track/drop data appended once
// the file is under `FaultInjectionTestFS`'s control.
if (io_s.ok()) {
bool should_track;
{
MutexLock l(&mutex_);
if (db_file_state_.find(fname) != db_file_state_.end()) {
// It was written by this `FileSystem` earlier.
assert(exists);
should_track = true;
} else if (!exists) {
// It was created by this `FileSystem` just now.
should_track = true;
open_managed_files_.insert(fname);
auto dir_and_name = TestFSGetDirAndName(fname);
auto& list = dir_to_new_files_since_last_sync_[dir_and_name.first];
list[dir_and_name.second] = kNewFileNoOverwrite;
} else {
should_track = false;
}
}
if (should_track) {
result->reset(
new TestFSWritableFile(fname, file_opts, std::move(*result), this));
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::ReuseWritableFile(
const std::string& fname, const std::string& old_fname,
const FileOptions& file_opts, std::unique_ptr<FSWritableFile>* result,
IODebugContext* dbg) {
IOStatus s = RenameFile(old_fname, fname, file_opts.io_options, dbg);
if (!s.ok()) {
return s;
}
return NewWritableFile(fname, file_opts, result, dbg);
}
IOStatus FaultInjectionTestFS::NewRandomRWFile(
const std::string& fname, const FileOptions& file_opts,
std::unique_ptr<FSRandomRWFile>* result, IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
if (IsFilesystemDirectWritable()) {
return target()->NewRandomRWFile(fname, file_opts, result, dbg);
}
IOStatus io_s = MaybeInjectThreadLocalError(FaultInjectionIOType::kWrite,
file_opts.io_options, fname);
if (!io_s.ok()) {
return io_s;
}
io_s = target()->NewRandomRWFile(fname, file_opts, result, dbg);
if (io_s.ok()) {
result->reset(new TestFSRandomRWFile(fname, std::move(*result), this));
// WritableFileWriter* file is opened
// again then it will be truncated - so forget our saved state.
UntrackFile(fname);
{
MutexLock l(&mutex_);
open_managed_files_.insert(fname);
auto dir_and_name = TestFSGetDirAndName(fname);
auto& list = dir_to_new_files_since_last_sync_[dir_and_name.first];
// It could be overwriting an old file, but we simplify the
// implementation by ignoring it.
list[dir_and_name.second] = kNewFileNoOverwrite;
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::NewRandomAccessFile(
const std::string& fname, const FileOptions& file_opts,
std::unique_ptr<FSRandomAccessFile>* result, IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
IOStatus io_s = MaybeInjectThreadLocalError(
FaultInjectionIOType::kRead, file_opts.io_options, fname,
ErrorOperation::kOpen, nullptr /* result */, false /* direct_io */,
nullptr /* scratch */, true /*need_count_increase*/,
nullptr /*fault_injected*/);
if (!io_s.ok()) {
return io_s;
}
io_s = target()->NewRandomAccessFile(fname, file_opts, result, dbg);
if (io_s.ok()) {
result->reset(new TestFSRandomAccessFile(fname, std::move(*result), this));
}
return io_s;
}
IOStatus FaultInjectionTestFS::NewSequentialFile(
const std::string& fname, const FileOptions& file_opts,
std::unique_ptr<FSSequentialFile>* result, IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
IOStatus io_s = MaybeInjectThreadLocalError(
FaultInjectionIOType::kRead, file_opts.io_options, fname,
ErrorOperation::kOpen, nullptr /* result */, false /* direct_io */,
nullptr /* scratch */, true /*need_count_increase*/,
nullptr /*fault_injected*/);
if (!io_s.ok()) {
return io_s;
}
io_s = target()->NewSequentialFile(fname, file_opts, result, dbg);
if (io_s.ok()) {
result->reset(new TestFSSequentialFile(std::move(*result), this, fname));
}
return io_s;
}
IOStatus FaultInjectionTestFS::DeleteFile(const std::string& f,
const IOOptions& options,
IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
IOStatus io_s = MaybeInjectThreadLocalError(
FaultInjectionIOType::kMetadataWrite, options);
if (!io_s.ok()) {
return io_s;
}
io_s = FileSystemWrapper::DeleteFile(f, options, dbg);
if (io_s.ok()) {
UntrackFile(f);
}
return io_s;
}
IOStatus FaultInjectionTestFS::GetFileSize(const std::string& f,
const IOOptions& options,
uint64_t* file_size,
IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
IOStatus io_s =
MaybeInjectThreadLocalError(FaultInjectionIOType::kMetadataRead, options);
if (!io_s.ok()) {
return io_s;
}
io_s = target()->GetFileSize(f, options, file_size, dbg);
if (!io_s.ok()) {
return io_s;
}
if (ReadUnsyncedData()) {
// Need to report flushed size, not synced size
MutexLock l(&mutex_);
auto it = db_file_state_.find(f);
if (it != db_file_state_.end()) {
*file_size = it->second.pos_at_last_append_;
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::GetFileModificationTime(const std::string& fname,
const IOOptions& options,
uint64_t* file_mtime,
IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
IOStatus io_s =
MaybeInjectThreadLocalError(FaultInjectionIOType::kMetadataRead, options);
if (!io_s.ok()) {
return io_s;
}
io_s = target()->GetFileModificationTime(fname, options, file_mtime, dbg);
return io_s;
}
IOStatus FaultInjectionTestFS::RenameFile(const std::string& s,
const std::string& t,
const IOOptions& options,
IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
IOStatus io_s = MaybeInjectThreadLocalError(
FaultInjectionIOType::kMetadataWrite, options);
if (!io_s.ok()) {
return io_s;
}
// We preserve contents of overwritten files up to a size threshold.
// We could keep previous file in another name, but we need to worry about
// garbage collect the those files. We do it if it is needed later.
// We ignore I/O errors here for simplicity.
std::string previous_contents = kNewFileNoOverwrite;
if (target()->FileExists(t, IOOptions(), nullptr).ok()) {
uint64_t file_size;
if (target()->GetFileSize(t, IOOptions(), &file_size, nullptr).ok() &&
file_size < 1024) {
ReadFileToString(target(), t, &previous_contents).PermitUncheckedError();
}
}
io_s = FileSystemWrapper::RenameFile(s, t, options, dbg);
if (io_s.ok()) {
{
MutexLock l(&mutex_);
if (db_file_state_.find(s) != db_file_state_.end()) {
db_file_state_[t] = db_file_state_[s];
db_file_state_.erase(s);
}
auto sdn = TestFSGetDirAndName(s);
auto tdn = TestFSGetDirAndName(t);
if (dir_to_new_files_since_last_sync_[sdn.first].erase(sdn.second) != 0) {
auto& tlist = dir_to_new_files_since_last_sync_[tdn.first];
tlist[tdn.second] = previous_contents;
}
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::LinkFile(const std::string& s,
const std::string& t,
const IOOptions& options,
IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
IOStatus io_s = MaybeInjectThreadLocalError(
FaultInjectionIOType::kMetadataWrite, options);
if (!io_s.ok()) {
return io_s;
}
// Using the value in `dir_to_new_files_since_last_sync_` for the source file
// may be a more reasonable choice.
std::string previous_contents = kNewFileNoOverwrite;
io_s = FileSystemWrapper::LinkFile(s, t, options, dbg);
if (io_s.ok()) {
{
MutexLock l(&mutex_);
if (!allow_link_open_file_ &&
open_managed_files_.find(s) != open_managed_files_.end()) {
fprintf(stderr, "Attempt to LinkFile while open for write: %s\n",
s.c_str());
abort();
}
if (db_file_state_.find(s) != db_file_state_.end()) {
db_file_state_[t] = db_file_state_[s];
}
auto sdn = TestFSGetDirAndName(s);
auto tdn = TestFSGetDirAndName(t);
if (dir_to_new_files_since_last_sync_[sdn.first].find(sdn.second) !=
dir_to_new_files_since_last_sync_[sdn.first].end()) {
auto& tlist = dir_to_new_files_since_last_sync_[tdn.first];
assert(tlist.find(tdn.second) == tlist.end());
tlist[tdn.second] = previous_contents;
}
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::NumFileLinks(const std::string& fname,
const IOOptions& options,
uint64_t* count,
IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
IOStatus io_s =
MaybeInjectThreadLocalError(FaultInjectionIOType::kMetadataRead, options);
if (!io_s.ok()) {
return io_s;
}
io_s = target()->NumFileLinks(fname, options, count, dbg);
return io_s;
}
IOStatus FaultInjectionTestFS::AreFilesSame(const std::string& first,
const std::string& second,
const IOOptions& options, bool* res,
IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
IOStatus io_s =
MaybeInjectThreadLocalError(FaultInjectionIOType::kMetadataRead, options);
if (!io_s.ok()) {
return io_s;
}
io_s = target()->AreFilesSame(first, second, options, res, dbg);
return io_s;
}
IOStatus FaultInjectionTestFS::GetAbsolutePath(const std::string& db_path,
const IOOptions& options,
std::string* output_path,
IODebugContext* dbg) {
if (!IsFilesystemActive()) {
return GetError();
}
IOStatus io_s =
MaybeInjectThreadLocalError(FaultInjectionIOType::kMetadataRead, options);
if (!io_s.ok()) {
return io_s;
}
io_s = target()->GetAbsolutePath(db_path, options, output_path, dbg);
return io_s;
}
IOStatus FaultInjectionTestFS::IsDirectory(const std::string& path,
const IOOptions& options,
bool* is_dir, IODebugContext* dgb) {
if (!IsFilesystemActive()) {
return GetError();
}
IOStatus io_s =
MaybeInjectThreadLocalError(FaultInjectionIOType::kMetadataRead, options);
if (!io_s.ok()) {
return io_s;
}
io_s = target()->IsDirectory(path, options, is_dir, dgb);
return io_s;
}
IOStatus FaultInjectionTestFS::Poll(std::vector<void*>& io_handles,
size_t min_completions) {
return target()->Poll(io_handles, min_completions);
}
IOStatus FaultInjectionTestFS::AbortIO(std::vector<void*>& io_handles) {
return target()->AbortIO(io_handles);
}
void FaultInjectionTestFS::WritableFileClosed(const FSFileState& state) {
MutexLock l(&mutex_);
if (open_managed_files_.find(state.filename_) != open_managed_files_.end()) {
db_file_state_[state.filename_] = state;
open_managed_files_.erase(state.filename_);
}
}
void FaultInjectionTestFS::WritableFileSynced(const FSFileState& state) {
MutexLock l(&mutex_);
if (open_managed_files_.find(state.filename_) != open_managed_files_.end()) {
if (db_file_state_.find(state.filename_) == db_file_state_.end()) {
db_file_state_.insert(std::make_pair(state.filename_, state));
} else {
db_file_state_[state.filename_] = state;
}
}
}
void FaultInjectionTestFS::WritableFileAppended(const FSFileState& state) {
MutexLock l(&mutex_);
if (open_managed_files_.find(state.filename_) != open_managed_files_.end()) {
if (db_file_state_.find(state.filename_) == db_file_state_.end()) {
db_file_state_.insert(std::make_pair(state.filename_, state));
} else {
db_file_state_[state.filename_] = state;
}
}
}
IOStatus FaultInjectionTestFS::DropUnsyncedFileData() {
IOStatus io_s;
MutexLock l(&mutex_);
for (std::map<std::string, FSFileState>::iterator it = db_file_state_.begin();
io_s.ok() && it != db_file_state_.end(); ++it) {
FSFileState& fs_state = it->second;
if (!fs_state.IsFullySynced()) {
io_s = fs_state.DropUnsyncedData();
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::DropRandomUnsyncedFileData(Random* rnd) {
IOStatus io_s;
MutexLock l(&mutex_);
for (std::map<std::string, FSFileState>::iterator it = db_file_state_.begin();
io_s.ok() && it != db_file_state_.end(); ++it) {
FSFileState& fs_state = it->second;
if (!fs_state.IsFullySynced()) {
io_s = fs_state.DropRandomUnsyncedData(rnd);
}
}
return io_s;
}
IOStatus FaultInjectionTestFS::DeleteFilesCreatedAfterLastDirSync(
const IOOptions& options, IODebugContext* dbg) {
// Because DeleteFile access this container make a copy to avoid deadlock
std::map<std::string, std::map<std::string, std::string>> map_copy;
{
MutexLock l(&mutex_);
map_copy.insert(dir_to_new_files_since_last_sync_.begin(),
dir_to_new_files_since_last_sync_.end());
}
for (auto& pair : map_copy) {
for (auto& file_pair : pair.second) {
if (file_pair.second == kNewFileNoOverwrite) {
IOStatus io_s =
DeleteFile(pair.first + "/" + file_pair.first, options, dbg);
if (!io_s.ok()) {
return io_s;
}
} else {
IOOptions opts;
IOStatus io_s =
WriteStringToFile(target(), file_pair.second,
pair.first + "/" + file_pair.first, true, opts);
if (!io_s.ok()) {
return io_s;
}
}
}
}
return IOStatus::OK();
}
void FaultInjectionTestFS::ResetState() {
MutexLock l(&mutex_);
db_file_state_.clear();
dir_to_new_files_since_last_sync_.clear();
SetFilesystemActiveNoLock(true);
}
void FaultInjectionTestFS::UntrackFile(const std::string& f) {
MutexLock l(&mutex_);
auto dir_and_name = TestFSGetDirAndName(f);
dir_to_new_files_since_last_sync_[dir_and_name.first].erase(
dir_and_name.second);
db_file_state_.erase(f);
open_managed_files_.erase(f);
}
IOStatus FaultInjectionTestFS::MaybeInjectThreadLocalReadError(
const IOOptions& io_options, ErrorOperation op, Slice* result,
bool direct_io, char* scratch, bool need_count_increase,
bool* fault_injected) {
bool dummy_bool;
bool& ret_fault_injected = fault_injected ? *fault_injected : dummy_bool;
ret_fault_injected = false;
ErrorContext* ctx =
static_cast<ErrorContext*>(injected_thread_local_read_error_.Get());
if (ctx == nullptr || !ctx->enable_error_injection || !ctx->one_in ||
ShouldIOActivtiesExcludedFromFaultInjection(io_options.io_activity)) {
return IOStatus::OK();
}
IOStatus ret;
if (ctx->rand.OneIn(ctx->one_in)) {
if (ctx->count == 0) {
ctx->message = "";
}
if (need_count_increase) {
ctx->count++;
}
if (ctx->callstack) {
free(ctx->callstack);
}
ctx->callstack = port::SaveStack(&ctx->frames);
std::stringstream msg;
msg << FaultInjectionTestFS::kInjected << " ";
if (op != ErrorOperation::kMultiReadSingleReq) {
// Likely non-per read status code for MultiRead
msg << "read error";
ctx->message = msg.str();
ret_fault_injected = true;
ret = IOStatus::IOError(ctx->message);
} else if (Random::GetTLSInstance()->OneIn(8)) {
assert(result);
// For a small chance, set the failure to status but turn the
// result to be empty, which is supposed to be caught for a check.
*result = Slice();
msg << "empty result";
ctx->message = msg.str();
ret_fault_injected = true;
} else if (!direct_io && Random::GetTLSInstance()->OneIn(7) &&
scratch != nullptr && result->data() == scratch) {
assert(result);
// With direct I/O, many extra bytes might be read so corrupting
// one byte might not cause checksum mismatch. Skip checksum
// corruption injection.
// We only corrupt data if the result is filled to `scratch`. For other
// cases, the data might not be able to be modified (e.g mmaped files)
// or has unintended side effects.
// For a small chance, set the failure to status but corrupt the
// result in a way that checksum checking is supposed to fail.
// Corrupt the last byte, which is supposed to be a checksum byte
// It would work for CRC. Not 100% sure for xxhash and will adjust
// if it is not the case.
const_cast<char*>(result->data())[result->size() - 1]++;
msg << "corrupt last byte";
ctx->message = msg.str();
ret_fault_injected = true;
} else {
msg << "error result multiget single";
ctx->message = msg.str();
ret_fault_injected = true;
ret = IOStatus::IOError(ctx->message);
}
}
ret.SetRetryable(ctx->retryable);
ret.SetDataLoss(ctx->has_data_loss);
return ret;
}
bool FaultInjectionTestFS::TryParseFileName(const std::string& file_name,
uint64_t* number, FileType* type) {
std::size_t found = file_name.find_last_of('/');
std::string file = file_name.substr(found);
return ParseFileName(file, number, type);
}
IOStatus FaultInjectionTestFS::MaybeInjectThreadLocalError(
FaultInjectionIOType type, const IOOptions& io_options,
const std::string& file_name, ErrorOperation op, Slice* result,
bool direct_io, char* scratch, bool need_count_increase,
bool* fault_injected) {
if (type == FaultInjectionIOType::kRead) {
return MaybeInjectThreadLocalReadError(io_options, op, result, direct_io,
scratch, need_count_increase,
fault_injected);
}
ErrorContext* ctx = GetErrorContextFromFaultInjectionIOType(type);
if (ctx == nullptr || !ctx->enable_error_injection || !ctx->one_in ||
ShouldIOActivtiesExcludedFromFaultInjection(io_options.io_activity) ||
(type == FaultInjectionIOType::kWrite &&
ShouldExcludeFromWriteFaultInjection(file_name))) {
return IOStatus::OK();
}
IOStatus ret;
if (ctx->rand.OneIn(ctx->one_in)) {
ctx->count++;
if (ctx->callstack) {
free(ctx->callstack);
}
ctx->callstack = port::SaveStack(&ctx->frames);
ctx->message = GetErrorMessage(type, file_name, op);
ret = IOStatus::IOError(ctx->message);
ret.SetRetryable(ctx->retryable);
ret.SetDataLoss(ctx->has_data_loss);
if (type == FaultInjectionIOType::kWrite) {
TEST_SYNC_POINT(
"FaultInjectionTestFS::InjectMetadataWriteError:Injected");
}
}
return ret;
}
void FaultInjectionTestFS::PrintInjectedThreadLocalErrorBacktrace(
FaultInjectionIOType type) {
#if defined(OS_LINUX)
ErrorContext* ctx = GetErrorContextFromFaultInjectionIOType(type);
if (ctx) {
if (type == FaultInjectionIOType::kRead) {
fprintf(stderr, "Injected read error type = %d\n", ctx->type);
}
fprintf(stderr, "Message: %s\n", ctx->message.c_str());
port::PrintAndFreeStack(ctx->callstack, ctx->frames);
ctx->callstack = nullptr;
}
#else
(void)type;
#endif
}
} // namespace ROCKSDB_NAMESPACE