rocksdb/db/compaction/compaction_iterator.cc
Hui Xiao 151242ce46 Group rocksdb.sst.read.micros stat by IOActivity flush and compaction (#11288)
Summary:
**Context:**
The existing stat rocksdb.sst.read.micros does not reflect each of compaction and flush cases but aggregate them, which is not so helpful for us to understand IO read behavior of each of them.

**Summary**
- Update `StopWatch` and `RandomAccessFileReader` to record `rocksdb.sst.read.micros` and `rocksdb.file.{flush/compaction}.read.micros`
   - Fixed the default histogram in `RandomAccessFileReader`
- New field `ReadOptions/IOOptions::io_activity`; Pass `ReadOptions` through paths under db open, flush and compaction to where we can prepare `IOOptions` and pass it to `RandomAccessFileReader`
- Use `thread_status_util` for assertion in `DbStressFSWrapper` for continuous testing on we are passing correct `io_activity` under db open, flush and compaction

Pull Request resolved: https://github.com/facebook/rocksdb/pull/11288

Test Plan:
- **Stress test**
- **Db bench 1: rocksdb.sst.read.micros COUNT ≈ sum of rocksdb.file.read.flush.micros's and rocksdb.file.read.compaction.micros's.**  (without blob)
     - May not be exactly the same due to `HistogramStat::Add` only guarantees atomic not accuracy across threads.
```
./db_bench -db=/dev/shm/testdb/ -statistics=true -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655 -target_file_size_base=655 -disable_auto_compactions=false -compression_type=none -bloom_bits=3 (-use_plain_table=1 -prefix_size=10)
```
```
// BlockBasedTable
rocksdb.sst.read.micros P50 : 2.009374 P95 : 4.968548 P99 : 8.110362 P100 : 43.000000 COUNT : 40456 SUM : 114805
rocksdb.file.read.flush.micros P50 : 1.871841 P95 : 3.872407 P99 : 5.540541 P100 : 43.000000 COUNT : 2250 SUM : 6116
rocksdb.file.read.compaction.micros P50 : 2.023109 P95 : 5.029149 P99 : 8.196910 P100 : 26.000000 COUNT : 38206 SUM : 108689

// PlainTable
Does not apply
```
- **Db bench 2: performance**

**Read**

SETUP: db with 900 files
```
./db_bench -db=/dev/shm/testdb/ -benchmarks="fillseq" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655  -disable_auto_compactions=true -target_file_size_base=655 -compression_type=none
```run till convergence
```
./db_bench -seed=1678564177044286 -use_existing_db=true -db=/dev/shm/testdb -benchmarks=readrandom[-X60] -statistics=true -num=1000000 -disable_auto_compactions=true -compression_type=none -bloom_bits=3
```
Pre-change
`readrandom [AVG 60 runs] : 21568 (± 248) ops/sec`
Post-change (no regression, -0.3%)
`readrandom [AVG 60 runs] : 21486 (± 236) ops/sec`

**Compaction/Flush**run till convergence
```
./db_bench -db=/dev/shm/testdb2/ -seed=1678564177044286 -benchmarks="fillseq[-X60]" -key_size=32 -value_size=512 -num=50000 -write_buffer_size=655  -disable_auto_compactions=false -target_file_size_base=655 -compression_type=none

rocksdb.sst.read.micros  COUNT : 33820
rocksdb.sst.read.flush.micros COUNT : 1800
rocksdb.sst.read.compaction.micros COUNT : 32020
```
Pre-change
`fillseq [AVG 46 runs] : 1391 (± 214) ops/sec;    0.7 (± 0.1) MB/sec`

Post-change (no regression, ~-0.4%)
`fillseq [AVG 46 runs] : 1385 (± 216) ops/sec;    0.7 (± 0.1) MB/sec`

Reviewed By: ajkr

Differential Revision: D44007011

Pulled By: hx235

fbshipit-source-id: a54c89e4846dfc9a135389edf3f3eedfea257132
2023-04-21 09:07:18 -07:00

1446 lines
57 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "db/compaction/compaction_iterator.h"
#include <iterator>
#include <limits>
#include "db/blob/blob_fetcher.h"
#include "db/blob/blob_file_builder.h"
#include "db/blob/blob_index.h"
#include "db/blob/prefetch_buffer_collection.h"
#include "db/snapshot_checker.h"
#include "db/wide/wide_column_serialization.h"
#include "logging/logging.h"
#include "port/likely.h"
#include "rocksdb/listener.h"
#include "table/internal_iterator.h"
#include "test_util/sync_point.h"
namespace ROCKSDB_NAMESPACE {
CompactionIterator::CompactionIterator(
InternalIterator* input, const Comparator* cmp, MergeHelper* merge_helper,
SequenceNumber last_sequence, std::vector<SequenceNumber>* snapshots,
SequenceNumber earliest_write_conflict_snapshot,
SequenceNumber job_snapshot, const SnapshotChecker* snapshot_checker,
Env* env, bool report_detailed_time, bool expect_valid_internal_key,
CompactionRangeDelAggregator* range_del_agg,
BlobFileBuilder* blob_file_builder, bool allow_data_in_errors,
bool enforce_single_del_contracts,
const std::atomic<bool>& manual_compaction_canceled,
const Compaction* compaction, const CompactionFilter* compaction_filter,
const std::atomic<bool>* shutting_down,
const std::shared_ptr<Logger> info_log,
const std::string* full_history_ts_low,
const SequenceNumber preserve_time_min_seqno,
const SequenceNumber preclude_last_level_min_seqno)
: CompactionIterator(
input, cmp, merge_helper, last_sequence, snapshots,
earliest_write_conflict_snapshot, job_snapshot, snapshot_checker, env,
report_detailed_time, expect_valid_internal_key, range_del_agg,
blob_file_builder, allow_data_in_errors, enforce_single_del_contracts,
manual_compaction_canceled,
std::unique_ptr<CompactionProxy>(
compaction ? new RealCompaction(compaction) : nullptr),
compaction_filter, shutting_down, info_log, full_history_ts_low,
preserve_time_min_seqno, preclude_last_level_min_seqno) {}
CompactionIterator::CompactionIterator(
InternalIterator* input, const Comparator* cmp, MergeHelper* merge_helper,
SequenceNumber /*last_sequence*/, std::vector<SequenceNumber>* snapshots,
SequenceNumber earliest_write_conflict_snapshot,
SequenceNumber job_snapshot, const SnapshotChecker* snapshot_checker,
Env* env, bool report_detailed_time, bool expect_valid_internal_key,
CompactionRangeDelAggregator* range_del_agg,
BlobFileBuilder* blob_file_builder, bool allow_data_in_errors,
bool enforce_single_del_contracts,
const std::atomic<bool>& manual_compaction_canceled,
std::unique_ptr<CompactionProxy> compaction,
const CompactionFilter* compaction_filter,
const std::atomic<bool>* shutting_down,
const std::shared_ptr<Logger> info_log,
const std::string* full_history_ts_low,
const SequenceNumber preserve_time_min_seqno,
const SequenceNumber preclude_last_level_min_seqno)
: input_(input, cmp,
!compaction || compaction->DoesInputReferenceBlobFiles()),
cmp_(cmp),
merge_helper_(merge_helper),
snapshots_(snapshots),
earliest_write_conflict_snapshot_(earliest_write_conflict_snapshot),
job_snapshot_(job_snapshot),
snapshot_checker_(snapshot_checker),
env_(env),
clock_(env_->GetSystemClock().get()),
report_detailed_time_(report_detailed_time),
expect_valid_internal_key_(expect_valid_internal_key),
range_del_agg_(range_del_agg),
blob_file_builder_(blob_file_builder),
compaction_(std::move(compaction)),
compaction_filter_(compaction_filter),
shutting_down_(shutting_down),
manual_compaction_canceled_(manual_compaction_canceled),
bottommost_level_(!compaction_ ? false
: compaction_->bottommost_level() &&
!compaction_->allow_ingest_behind()),
// snapshots_ cannot be nullptr, but we will assert later in the body of
// the constructor.
visible_at_tip_(snapshots_ ? snapshots_->empty() : false),
earliest_snapshot_(!snapshots_ || snapshots_->empty()
? kMaxSequenceNumber
: snapshots_->at(0)),
info_log_(info_log),
allow_data_in_errors_(allow_data_in_errors),
enforce_single_del_contracts_(enforce_single_del_contracts),
timestamp_size_(cmp_ ? cmp_->timestamp_size() : 0),
full_history_ts_low_(full_history_ts_low),
current_user_key_sequence_(0),
current_user_key_snapshot_(0),
merge_out_iter_(merge_helper_),
blob_garbage_collection_cutoff_file_number_(
ComputeBlobGarbageCollectionCutoffFileNumber(compaction_.get())),
blob_fetcher_(CreateBlobFetcherIfNeeded(compaction_.get())),
prefetch_buffers_(
CreatePrefetchBufferCollectionIfNeeded(compaction_.get())),
current_key_committed_(false),
cmp_with_history_ts_low_(0),
level_(compaction_ == nullptr ? 0 : compaction_->level()),
preserve_time_min_seqno_(preserve_time_min_seqno),
preclude_last_level_min_seqno_(preclude_last_level_min_seqno) {
assert(snapshots_ != nullptr);
assert(preserve_time_min_seqno_ <= preclude_last_level_min_seqno_);
if (compaction_ != nullptr) {
level_ptrs_ = std::vector<size_t>(compaction_->number_levels(), 0);
}
#ifndef NDEBUG
// findEarliestVisibleSnapshot assumes this ordering.
for (size_t i = 1; i < snapshots_->size(); ++i) {
assert(snapshots_->at(i - 1) < snapshots_->at(i));
}
assert(timestamp_size_ == 0 || !full_history_ts_low_ ||
timestamp_size_ == full_history_ts_low_->size());
#endif
input_.SetPinnedItersMgr(&pinned_iters_mgr_);
// The default `merge_until_status_` does not need to be checked since it is
// overwritten as soon as `MergeUntil()` is called
merge_until_status_.PermitUncheckedError();
TEST_SYNC_POINT_CALLBACK("CompactionIterator:AfterInit", compaction_.get());
}
CompactionIterator::~CompactionIterator() {
// input_ Iterator lifetime is longer than pinned_iters_mgr_ lifetime
input_.SetPinnedItersMgr(nullptr);
}
void CompactionIterator::ResetRecordCounts() {
iter_stats_.num_record_drop_user = 0;
iter_stats_.num_record_drop_hidden = 0;
iter_stats_.num_record_drop_obsolete = 0;
iter_stats_.num_record_drop_range_del = 0;
iter_stats_.num_range_del_drop_obsolete = 0;
iter_stats_.num_optimized_del_drop_obsolete = 0;
}
void CompactionIterator::SeekToFirst() {
NextFromInput();
PrepareOutput();
}
void CompactionIterator::Next() {
// If there is a merge output, return it before continuing to process the
// input.
if (merge_out_iter_.Valid()) {
merge_out_iter_.Next();
// Check if we returned all records of the merge output.
if (merge_out_iter_.Valid()) {
key_ = merge_out_iter_.key();
value_ = merge_out_iter_.value();
Status s = ParseInternalKey(key_, &ikey_, allow_data_in_errors_);
// MergeUntil stops when it encounters a corrupt key and does not
// include them in the result, so we expect the keys here to be valid.
if (!s.ok()) {
ROCKS_LOG_FATAL(
info_log_, "Invalid ikey %s in compaction. %s",
allow_data_in_errors_ ? key_.ToString(true).c_str() : "hidden",
s.getState());
assert(false);
}
// Keep current_key_ in sync.
if (0 == timestamp_size_) {
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
} else {
Slice ts = ikey_.GetTimestamp(timestamp_size_);
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type, &ts);
}
key_ = current_key_.GetInternalKey();
ikey_.user_key = current_key_.GetUserKey();
validity_info_.SetValid(ValidContext::kMerge1);
} else {
if (merge_until_status_.IsMergeInProgress()) {
// `Status::MergeInProgress()` tells us that the previous `MergeUntil()`
// produced only merge operands. Those merge operands were accessed and
// written out using `merge_out_iter_`. Since `merge_out_iter_` is
// exhausted at this point, all merge operands have been written out.
//
// Still, there may be a base value (PUT, DELETE, SINGLEDEL, etc.) that
// needs to be written out. Normally, `CompactionIterator` would skip it
// on the basis that it has already output something in the same
// snapshot stripe. To prevent this, we reset `has_current_user_key_` to
// trick the future iteration from finding out the snapshot stripe is
// unchanged.
has_current_user_key_ = false;
}
// We consumed all pinned merge operands, release pinned iterators
pinned_iters_mgr_.ReleasePinnedData();
// MergeHelper moves the iterator to the first record after the merged
// records, so even though we reached the end of the merge output, we do
// not want to advance the iterator.
NextFromInput();
}
} else {
// Only advance the input iterator if there is no merge output and the
// iterator is not already at the next record.
if (!at_next_) {
AdvanceInputIter();
}
NextFromInput();
}
if (Valid()) {
// Record that we've outputted a record for the current key.
has_outputted_key_ = true;
}
PrepareOutput();
}
bool CompactionIterator::InvokeFilterIfNeeded(bool* need_skip,
Slice* skip_until) {
if (!compaction_filter_) {
return true;
}
if (ikey_.type != kTypeValue && ikey_.type != kTypeBlobIndex &&
ikey_.type != kTypeWideColumnEntity) {
return true;
}
CompactionFilter::Decision decision =
CompactionFilter::Decision::kUndetermined;
CompactionFilter::ValueType value_type =
ikey_.type == kTypeValue ? CompactionFilter::ValueType::kValue
: ikey_.type == kTypeBlobIndex
? CompactionFilter::ValueType::kBlobIndex
: CompactionFilter::ValueType::kWideColumnEntity;
// Hack: pass internal key to BlobIndexCompactionFilter since it needs
// to get sequence number.
assert(compaction_filter_);
const Slice& filter_key =
(ikey_.type != kTypeBlobIndex ||
!compaction_filter_->IsStackedBlobDbInternalCompactionFilter())
? ikey_.user_key
: key_;
compaction_filter_value_.clear();
compaction_filter_skip_until_.Clear();
std::vector<std::pair<std::string, std::string>> new_columns;
{
StopWatchNano timer(clock_, report_detailed_time_);
if (ikey_.type == kTypeBlobIndex) {
decision = compaction_filter_->FilterBlobByKey(
level_, filter_key, &compaction_filter_value_,
compaction_filter_skip_until_.rep());
if (decision == CompactionFilter::Decision::kUndetermined &&
!compaction_filter_->IsStackedBlobDbInternalCompactionFilter()) {
if (!compaction_) {
status_ =
Status::Corruption("Unexpected blob index outside of compaction");
validity_info_.Invalidate();
return false;
}
TEST_SYNC_POINT_CALLBACK(
"CompactionIterator::InvokeFilterIfNeeded::TamperWithBlobIndex",
&value_);
// For integrated BlobDB impl, CompactionIterator reads blob value.
// For Stacked BlobDB impl, the corresponding CompactionFilter's
// FilterV2 method should read the blob value.
BlobIndex blob_index;
Status s = blob_index.DecodeFrom(value_);
if (!s.ok()) {
status_ = s;
validity_info_.Invalidate();
return false;
}
FilePrefetchBuffer* prefetch_buffer =
prefetch_buffers_ ? prefetch_buffers_->GetOrCreatePrefetchBuffer(
blob_index.file_number())
: nullptr;
uint64_t bytes_read = 0;
assert(blob_fetcher_);
s = blob_fetcher_->FetchBlob(ikey_.user_key, blob_index,
prefetch_buffer, &blob_value_,
&bytes_read);
if (!s.ok()) {
status_ = s;
validity_info_.Invalidate();
return false;
}
++iter_stats_.num_blobs_read;
iter_stats_.total_blob_bytes_read += bytes_read;
value_type = CompactionFilter::ValueType::kValue;
}
}
if (decision == CompactionFilter::Decision::kUndetermined) {
const Slice* existing_val = nullptr;
const WideColumns* existing_col = nullptr;
WideColumns existing_columns;
if (ikey_.type != kTypeWideColumnEntity) {
if (!blob_value_.empty()) {
existing_val = &blob_value_;
} else {
existing_val = &value_;
}
} else {
Slice value_copy = value_;
const Status s =
WideColumnSerialization::Deserialize(value_copy, existing_columns);
if (!s.ok()) {
status_ = s;
validity_info_.Invalidate();
return false;
}
existing_col = &existing_columns;
}
decision = compaction_filter_->FilterV3(
level_, filter_key, value_type, existing_val, existing_col,
&compaction_filter_value_, &new_columns,
compaction_filter_skip_until_.rep());
}
iter_stats_.total_filter_time +=
env_ != nullptr && report_detailed_time_ ? timer.ElapsedNanos() : 0;
}
if (decision == CompactionFilter::Decision::kUndetermined) {
// Should not reach here, since FilterV2/FilterV3 should never return
// kUndetermined.
status_ = Status::NotSupported(
"FilterV2/FilterV3 should never return kUndetermined");
validity_info_.Invalidate();
return false;
}
if (decision == CompactionFilter::Decision::kRemoveAndSkipUntil &&
cmp_->Compare(*compaction_filter_skip_until_.rep(), ikey_.user_key) <=
0) {
// Can't skip to a key smaller than the current one.
// Keep the key as per FilterV2/FilterV3 documentation.
decision = CompactionFilter::Decision::kKeep;
}
if (decision == CompactionFilter::Decision::kRemove) {
// convert the current key to a delete; key_ is pointing into
// current_key_ at this point, so updating current_key_ updates key()
ikey_.type = kTypeDeletion;
current_key_.UpdateInternalKey(ikey_.sequence, kTypeDeletion);
// no value associated with delete
value_.clear();
iter_stats_.num_record_drop_user++;
} else if (decision == CompactionFilter::Decision::kPurge) {
// convert the current key to a single delete; key_ is pointing into
// current_key_ at this point, so updating current_key_ updates key()
ikey_.type = kTypeSingleDeletion;
current_key_.UpdateInternalKey(ikey_.sequence, kTypeSingleDeletion);
// no value associated with single delete
value_.clear();
iter_stats_.num_record_drop_user++;
} else if (decision == CompactionFilter::Decision::kChangeValue) {
if (ikey_.type != kTypeValue) {
ikey_.type = kTypeValue;
current_key_.UpdateInternalKey(ikey_.sequence, kTypeValue);
}
value_ = compaction_filter_value_;
} else if (decision == CompactionFilter::Decision::kRemoveAndSkipUntil) {
*need_skip = true;
compaction_filter_skip_until_.ConvertFromUserKey(kMaxSequenceNumber,
kValueTypeForSeek);
*skip_until = compaction_filter_skip_until_.Encode();
} else if (decision == CompactionFilter::Decision::kChangeBlobIndex) {
// Only the StackableDB-based BlobDB impl's compaction filter should return
// kChangeBlobIndex. Decision about rewriting blob and changing blob index
// in the integrated BlobDB impl is made in subsequent call to
// PrepareOutput() and its callees.
if (!compaction_filter_->IsStackedBlobDbInternalCompactionFilter()) {
status_ = Status::NotSupported(
"Only stacked BlobDB's internal compaction filter can return "
"kChangeBlobIndex.");
validity_info_.Invalidate();
return false;
}
if (ikey_.type != kTypeBlobIndex) {
ikey_.type = kTypeBlobIndex;
current_key_.UpdateInternalKey(ikey_.sequence, kTypeBlobIndex);
}
value_ = compaction_filter_value_;
} else if (decision == CompactionFilter::Decision::kIOError) {
if (!compaction_filter_->IsStackedBlobDbInternalCompactionFilter()) {
status_ = Status::NotSupported(
"CompactionFilter for integrated BlobDB should not return kIOError");
validity_info_.Invalidate();
return false;
}
status_ = Status::IOError("Failed to access blob during compaction filter");
validity_info_.Invalidate();
return false;
} else if (decision == CompactionFilter::Decision::kChangeWideColumnEntity) {
WideColumns sorted_columns;
sorted_columns.reserve(new_columns.size());
for (const auto& column : new_columns) {
sorted_columns.emplace_back(column.first, column.second);
}
std::sort(sorted_columns.begin(), sorted_columns.end(),
[](const WideColumn& lhs, const WideColumn& rhs) {
return lhs.name().compare(rhs.name()) < 0;
});
{
const Status s = WideColumnSerialization::Serialize(
sorted_columns, compaction_filter_value_);
if (!s.ok()) {
status_ = s;
validity_info_.Invalidate();
return false;
}
}
if (ikey_.type != kTypeWideColumnEntity) {
ikey_.type = kTypeWideColumnEntity;
current_key_.UpdateInternalKey(ikey_.sequence, kTypeWideColumnEntity);
}
value_ = compaction_filter_value_;
}
return true;
}
void CompactionIterator::NextFromInput() {
at_next_ = false;
validity_info_.Invalidate();
while (!Valid() && input_.Valid() && !IsPausingManualCompaction() &&
!IsShuttingDown()) {
key_ = input_.key();
value_ = input_.value();
blob_value_.Reset();
iter_stats_.num_input_records++;
is_range_del_ = input_.IsDeleteRangeSentinelKey();
Status pik_status = ParseInternalKey(key_, &ikey_, allow_data_in_errors_);
if (!pik_status.ok()) {
iter_stats_.num_input_corrupt_records++;
// If `expect_valid_internal_key_` is false, return the corrupted key
// and let the caller decide what to do with it.
if (expect_valid_internal_key_) {
status_ = pik_status;
return;
}
key_ = current_key_.SetInternalKey(key_);
has_current_user_key_ = false;
current_user_key_sequence_ = kMaxSequenceNumber;
current_user_key_snapshot_ = 0;
validity_info_.SetValid(ValidContext::kParseKeyError);
break;
}
TEST_SYNC_POINT_CALLBACK("CompactionIterator:ProcessKV", &ikey_);
if (is_range_del_) {
validity_info_.SetValid(kRangeDeletion);
break;
}
// Update input statistics
if (ikey_.type == kTypeDeletion || ikey_.type == kTypeSingleDeletion ||
ikey_.type == kTypeDeletionWithTimestamp) {
iter_stats_.num_input_deletion_records++;
}
iter_stats_.total_input_raw_key_bytes += key_.size();
iter_stats_.total_input_raw_value_bytes += value_.size();
// If need_skip is true, we should seek the input iterator
// to internal key skip_until and continue from there.
bool need_skip = false;
// Points either into compaction_filter_skip_until_ or into
// merge_helper_->compaction_filter_skip_until_.
Slice skip_until;
bool user_key_equal_without_ts = false;
int cmp_ts = 0;
if (has_current_user_key_) {
user_key_equal_without_ts =
cmp_->EqualWithoutTimestamp(ikey_.user_key, current_user_key_);
// if timestamp_size_ > 0, then curr_ts_ has been initialized by a
// previous key.
cmp_ts = timestamp_size_ ? cmp_->CompareTimestamp(
ExtractTimestampFromUserKey(
ikey_.user_key, timestamp_size_),
curr_ts_)
: 0;
}
// Check whether the user key changed. After this if statement current_key_
// is a copy of the current input key (maybe converted to a delete by the
// compaction filter). ikey_.user_key is pointing to the copy.
if (!has_current_user_key_ || !user_key_equal_without_ts || cmp_ts != 0) {
// First occurrence of this user key
// Copy key for output
key_ = current_key_.SetInternalKey(key_, &ikey_);
int prev_cmp_with_ts_low =
!full_history_ts_low_ ? 0
: curr_ts_.empty()
? 0
: cmp_->CompareTimestamp(curr_ts_, *full_history_ts_low_);
// If timestamp_size_ > 0, then copy from ikey_ to curr_ts_ for the use
// in next iteration to compare with the timestamp of next key.
UpdateTimestampAndCompareWithFullHistoryLow();
// If
// (1) !has_current_user_key_, OR
// (2) timestamp is disabled, OR
// (3) all history will be preserved, OR
// (4) user key (excluding timestamp) is different from previous key, OR
// (5) timestamp is NO older than *full_history_ts_low_, OR
// (6) timestamp is the largest one older than full_history_ts_low_,
// then current_user_key_ must be treated as a different user key.
// This means, if a user key (excluding ts) is the same as the previous
// user key, and its ts is older than *full_history_ts_low_, then we
// consider this key for GC, e.g. it may be dropped if certain conditions
// match.
if (!has_current_user_key_ || !timestamp_size_ || !full_history_ts_low_ ||
!user_key_equal_without_ts || cmp_with_history_ts_low_ >= 0 ||
prev_cmp_with_ts_low >= 0) {
// Initialize for future comparison for rule (A) and etc.
current_user_key_sequence_ = kMaxSequenceNumber;
current_user_key_snapshot_ = 0;
has_current_user_key_ = true;
}
current_user_key_ = ikey_.user_key;
has_outputted_key_ = false;
last_key_seq_zeroed_ = false;
current_key_committed_ = KeyCommitted(ikey_.sequence);
// Apply the compaction filter to the first committed version of the user
// key.
if (current_key_committed_ &&
!InvokeFilterIfNeeded(&need_skip, &skip_until)) {
break;
}
} else {
// Update the current key to reflect the new sequence number/type without
// copying the user key.
// TODO(rven): Compaction filter does not process keys in this path
// Need to have the compaction filter process multiple versions
// if we have versions on both sides of a snapshot
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
key_ = current_key_.GetInternalKey();
ikey_.user_key = current_key_.GetUserKey();
// Note that newer version of a key is ordered before older versions. If a
// newer version of a key is committed, so as the older version. No need
// to query snapshot_checker_ in that case.
if (UNLIKELY(!current_key_committed_)) {
assert(snapshot_checker_ != nullptr);
current_key_committed_ = KeyCommitted(ikey_.sequence);
// Apply the compaction filter to the first committed version of the
// user key.
if (current_key_committed_ &&
!InvokeFilterIfNeeded(&need_skip, &skip_until)) {
break;
}
}
}
if (UNLIKELY(!current_key_committed_)) {
assert(snapshot_checker_ != nullptr);
validity_info_.SetValid(ValidContext::kCurrentKeyUncommitted);
break;
}
// If there are no snapshots, then this kv affect visibility at tip.
// Otherwise, search though all existing snapshots to find the earliest
// snapshot that is affected by this kv.
SequenceNumber last_sequence = current_user_key_sequence_;
current_user_key_sequence_ = ikey_.sequence;
SequenceNumber last_snapshot = current_user_key_snapshot_;
SequenceNumber prev_snapshot = 0; // 0 means no previous snapshot
current_user_key_snapshot_ =
visible_at_tip_
? earliest_snapshot_
: findEarliestVisibleSnapshot(ikey_.sequence, &prev_snapshot);
if (need_skip) {
// This case is handled below.
} else if (clear_and_output_next_key_) {
// In the previous iteration we encountered a single delete that we could
// not compact out. We will keep this Put, but can drop it's data.
// (See Optimization 3, below.)
if (ikey_.type != kTypeValue && ikey_.type != kTypeBlobIndex &&
ikey_.type != kTypeWideColumnEntity) {
ROCKS_LOG_FATAL(info_log_, "Unexpected key %s for compaction output",
ikey_.DebugString(allow_data_in_errors_, true).c_str());
assert(false);
}
if (current_user_key_snapshot_ < last_snapshot) {
ROCKS_LOG_FATAL(info_log_,
"key %s, current_user_key_snapshot_ (%" PRIu64
") < last_snapshot (%" PRIu64 ")",
ikey_.DebugString(allow_data_in_errors_, true).c_str(),
current_user_key_snapshot_, last_snapshot);
assert(false);
}
if (ikey_.type == kTypeBlobIndex || ikey_.type == kTypeWideColumnEntity) {
ikey_.type = kTypeValue;
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
}
value_.clear();
validity_info_.SetValid(ValidContext::kKeepSDAndClearPut);
clear_and_output_next_key_ = false;
} else if (ikey_.type == kTypeSingleDeletion) {
// We can compact out a SingleDelete if:
// 1) We encounter the corresponding PUT -OR- we know that this key
// doesn't appear past this output level
// =AND=
// 2) We've already returned a record in this snapshot -OR-
// there are no earlier earliest_write_conflict_snapshot.
//
// A note about 2) above:
// we try to determine whether there is any earlier write conflict
// checking snapshot by calling DefinitelyInSnapshot() with seq and
// earliest_write_conflict_snapshot as arguments. For write-prepared
// and write-unprepared transactions, if earliest_write_conflict_snapshot
// is evicted from WritePreparedTxnDB::commit_cache, then
// DefinitelyInSnapshot(seq, earliest_write_conflict_snapshot) returns
// false, even if the seq is actually visible within
// earliest_write_conflict_snapshot. Consequently, CompactionIterator
// may try to zero out its sequence number, thus hitting assertion error
// in debug mode or cause incorrect DBIter return result.
// We observe that earliest_write_conflict_snapshot >= earliest_snapshot,
// and the seq zeroing logic depends on
// DefinitelyInSnapshot(seq, earliest_snapshot). Therefore, if we cannot
// determine whether seq is **definitely** in
// earliest_write_conflict_snapshot, then we can additionally check if
// seq is definitely in earliest_snapshot. If the latter holds, then the
// former holds too.
//
// Rule 1 is needed for SingleDelete correctness. Rule 2 is needed to
// allow Transactions to do write-conflict checking (if we compacted away
// all keys, then we wouldn't know that a write happened in this
// snapshot). If there is no earlier snapshot, then we know that there
// are no active transactions that need to know about any writes.
//
// Optimization 3:
// If we encounter a SingleDelete followed by a PUT and Rule 2 is NOT
// true, then we must output a SingleDelete. In this case, we will decide
// to also output the PUT. While we are compacting less by outputting the
// PUT now, hopefully this will lead to better compaction in the future
// when Rule 2 is later true (Ie, We are hoping we can later compact out
// both the SingleDelete and the Put, while we couldn't if we only
// outputted the SingleDelete now).
// In this case, we can save space by removing the PUT's value as it will
// never be read.
//
// Deletes and Merges are not supported on the same key that has a
// SingleDelete as it is not possible to correctly do any partial
// compaction of such a combination of operations. The result of mixing
// those operations for a given key is documented as being undefined. So
// we can choose how to handle such a combinations of operations. We will
// try to compact out as much as we can in these cases.
// We will report counts on these anomalous cases.
//
// Note: If timestamp is enabled, then record will be eligible for
// deletion, only if, along with above conditions (Rule 1 and Rule 2)
// full_history_ts_low_ is specified and timestamp for that key is less
// than *full_history_ts_low_. If it's not eligible for deletion, then we
// will output the SingleDelete. For Optimization 3 also, if
// full_history_ts_low_ is specified and timestamp for the key is less
// than *full_history_ts_low_ then only optimization will be applied.
// The easiest way to process a SingleDelete during iteration is to peek
// ahead at the next key.
const bool is_timestamp_eligible_for_gc =
(timestamp_size_ == 0 ||
(full_history_ts_low_ && cmp_with_history_ts_low_ < 0));
ParsedInternalKey next_ikey;
AdvanceInputIter();
while (input_.Valid() && input_.IsDeleteRangeSentinelKey() &&
ParseInternalKey(input_.key(), &next_ikey, allow_data_in_errors_)
.ok() &&
cmp_->EqualWithoutTimestamp(ikey_.user_key, next_ikey.user_key)) {
// skip range tombstone start keys with the same user key
// since they are not "real" point keys.
AdvanceInputIter();
}
// Check whether the next key exists, is not corrupt, and is the same key
// as the single delete.
if (input_.Valid() &&
ParseInternalKey(input_.key(), &next_ikey, allow_data_in_errors_)
.ok() &&
cmp_->EqualWithoutTimestamp(ikey_.user_key, next_ikey.user_key)) {
assert(!input_.IsDeleteRangeSentinelKey());
#ifndef NDEBUG
const Compaction* c =
compaction_ ? compaction_->real_compaction() : nullptr;
#endif
TEST_SYNC_POINT_CALLBACK(
"CompactionIterator::NextFromInput:SingleDelete:1",
const_cast<Compaction*>(c));
if (last_key_seq_zeroed_) {
++iter_stats_.num_record_drop_hidden;
++iter_stats_.num_record_drop_obsolete;
assert(bottommost_level_);
AdvanceInputIter();
} else if (prev_snapshot == 0 ||
DefinitelyNotInSnapshot(next_ikey.sequence, prev_snapshot)) {
// Check whether the next key belongs to the same snapshot as the
// SingleDelete.
TEST_SYNC_POINT_CALLBACK(
"CompactionIterator::NextFromInput:SingleDelete:2", nullptr);
if (next_ikey.type == kTypeSingleDeletion) {
// We encountered two SingleDeletes for same key in a row. This
// could be due to unexpected user input. If write-(un)prepared
// transaction is used, this could also be due to releasing an old
// snapshot between a Put and its matching SingleDelete.
// Skip the first SingleDelete and let the next iteration decide
// how to handle the second SingleDelete.
// First SingleDelete has been skipped since we already called
// input_.Next().
++iter_stats_.num_record_drop_obsolete;
++iter_stats_.num_single_del_mismatch;
} else if (next_ikey.type == kTypeDeletion) {
std::ostringstream oss;
oss << "Found SD and type: " << static_cast<int>(next_ikey.type)
<< " on the same key, violating the contract "
"of SingleDelete. Check your application to make sure the "
"application does not mix SingleDelete and Delete for "
"the same key. If you are using "
"write-prepared/write-unprepared transactions, and use "
"SingleDelete to delete certain keys, then make sure "
"TransactionDBOptions::rollback_deletion_type_callback is "
"configured properly. Mixing SD and DEL can lead to "
"undefined behaviors";
++iter_stats_.num_record_drop_obsolete;
++iter_stats_.num_single_del_mismatch;
if (enforce_single_del_contracts_) {
ROCKS_LOG_ERROR(info_log_, "%s", oss.str().c_str());
validity_info_.Invalidate();
status_ = Status::Corruption(oss.str());
return;
}
ROCKS_LOG_WARN(info_log_, "%s", oss.str().c_str());
} else if (!is_timestamp_eligible_for_gc) {
// We cannot drop the SingleDelete as timestamp is enabled, and
// timestamp of this key is greater than or equal to
// *full_history_ts_low_. We will output the SingleDelete.
validity_info_.SetValid(ValidContext::kKeepTsHistory);
} else if (has_outputted_key_ ||
DefinitelyInSnapshot(ikey_.sequence,
earliest_write_conflict_snapshot_) ||
(earliest_snapshot_ < earliest_write_conflict_snapshot_ &&
DefinitelyInSnapshot(ikey_.sequence,
earliest_snapshot_))) {
// Found a matching value, we can drop the single delete and the
// value. It is safe to drop both records since we've already
// outputted a key in this snapshot, or there is no earlier
// snapshot (Rule 2 above).
// Note: it doesn't matter whether the second key is a Put or if it
// is an unexpected Merge or Delete. We will compact it out
// either way. We will maintain counts of how many mismatches
// happened
if (next_ikey.type != kTypeValue &&
next_ikey.type != kTypeBlobIndex &&
next_ikey.type != kTypeWideColumnEntity) {
++iter_stats_.num_single_del_mismatch;
}
++iter_stats_.num_record_drop_hidden;
++iter_stats_.num_record_drop_obsolete;
// Already called input_.Next() once. Call it a second time to
// skip past the second key.
AdvanceInputIter();
} else {
// Found a matching value, but we cannot drop both keys since
// there is an earlier snapshot and we need to leave behind a record
// to know that a write happened in this snapshot (Rule 2 above).
// Clear the value and output the SingleDelete. (The value will be
// outputted on the next iteration.)
// Setting valid_ to true will output the current SingleDelete
validity_info_.SetValid(ValidContext::kKeepSDForConflictCheck);
// Set up the Put to be outputted in the next iteration.
// (Optimization 3).
clear_and_output_next_key_ = true;
TEST_SYNC_POINT_CALLBACK(
"CompactionIterator::NextFromInput:KeepSDForWW",
/*arg=*/nullptr);
}
} else {
// We hit the next snapshot without hitting a put, so the iterator
// returns the single delete.
validity_info_.SetValid(ValidContext::kKeepSDForSnapshot);
TEST_SYNC_POINT_CALLBACK(
"CompactionIterator::NextFromInput:SingleDelete:3",
const_cast<Compaction*>(c));
}
} else {
// We are at the end of the input, could not parse the next key, or hit
// a different key. The iterator returns the single delete if the key
// possibly exists beyond the current output level. We set
// has_current_user_key to false so that if the iterator is at the next
// key, we do not compare it again against the previous key at the next
// iteration. If the next key is corrupt, we return before the
// comparison, so the value of has_current_user_key does not matter.
has_current_user_key_ = false;
if (compaction_ != nullptr &&
DefinitelyInSnapshot(ikey_.sequence, earliest_snapshot_) &&
compaction_->KeyNotExistsBeyondOutputLevel(ikey_.user_key,
&level_ptrs_) &&
is_timestamp_eligible_for_gc) {
// Key doesn't exist outside of this range.
// Can compact out this SingleDelete.
++iter_stats_.num_record_drop_obsolete;
++iter_stats_.num_single_del_fallthru;
if (!bottommost_level_) {
++iter_stats_.num_optimized_del_drop_obsolete;
}
} else if (last_key_seq_zeroed_) {
// Skip.
++iter_stats_.num_record_drop_hidden;
++iter_stats_.num_record_drop_obsolete;
assert(bottommost_level_);
} else {
// Output SingleDelete
validity_info_.SetValid(ValidContext::kKeepSD);
}
}
if (Valid()) {
at_next_ = true;
}
} else if (last_snapshot == current_user_key_snapshot_ ||
(last_snapshot > 0 &&
last_snapshot < current_user_key_snapshot_)) {
// If the earliest snapshot is which this key is visible in
// is the same as the visibility of a previous instance of the
// same key, then this kv is not visible in any snapshot.
// Hidden by an newer entry for same user key
//
// Note: Dropping this key will not affect TransactionDB write-conflict
// checking since there has already been a record returned for this key
// in this snapshot.
if (last_sequence < current_user_key_sequence_) {
ROCKS_LOG_FATAL(info_log_,
"key %s, last_sequence (%" PRIu64
") < current_user_key_sequence_ (%" PRIu64 ")",
ikey_.DebugString(allow_data_in_errors_, true).c_str(),
last_sequence, current_user_key_sequence_);
assert(false);
}
++iter_stats_.num_record_drop_hidden; // rule (A)
AdvanceInputIter();
} else if (compaction_ != nullptr &&
(ikey_.type == kTypeDeletion ||
(ikey_.type == kTypeDeletionWithTimestamp &&
cmp_with_history_ts_low_ < 0)) &&
DefinitelyInSnapshot(ikey_.sequence, earliest_snapshot_) &&
compaction_->KeyNotExistsBeyondOutputLevel(ikey_.user_key,
&level_ptrs_)) {
// TODO(noetzli): This is the only place where we use compaction_
// (besides the constructor). We should probably get rid of this
// dependency and find a way to do similar filtering during flushes.
//
// For this user key:
// (1) there is no data in higher levels
// (2) data in lower levels will have larger sequence numbers
// (3) data in layers that are being compacted here and have
// smaller sequence numbers will be dropped in the next
// few iterations of this loop (by rule (A) above).
// Therefore this deletion marker is obsolete and can be dropped.
//
// Note: Dropping this Delete will not affect TransactionDB
// write-conflict checking since it is earlier than any snapshot.
//
// It seems that we can also drop deletion later than earliest snapshot
// given that:
// (1) The deletion is earlier than earliest_write_conflict_snapshot, and
// (2) No value exist earlier than the deletion.
//
// Note also that a deletion marker of type kTypeDeletionWithTimestamp
// will be treated as a different user key unless the timestamp is older
// than *full_history_ts_low_.
++iter_stats_.num_record_drop_obsolete;
if (!bottommost_level_) {
++iter_stats_.num_optimized_del_drop_obsolete;
}
AdvanceInputIter();
} else if ((ikey_.type == kTypeDeletion ||
(ikey_.type == kTypeDeletionWithTimestamp &&
cmp_with_history_ts_low_ < 0)) &&
bottommost_level_) {
// Handle the case where we have a delete key at the bottom most level
// We can skip outputting the key iff there are no subsequent puts for
// this key
assert(!compaction_ || compaction_->KeyNotExistsBeyondOutputLevel(
ikey_.user_key, &level_ptrs_));
ParsedInternalKey next_ikey;
AdvanceInputIter();
#ifndef NDEBUG
const Compaction* c =
compaction_ ? compaction_->real_compaction() : nullptr;
#endif
TEST_SYNC_POINT_CALLBACK(
"CompactionIterator::NextFromInput:BottommostDelete:1",
const_cast<Compaction*>(c));
// Skip over all versions of this key that happen to occur in the same
// snapshot range as the delete.
//
// Note that a deletion marker of type kTypeDeletionWithTimestamp will be
// considered to have a different user key unless the timestamp is older
// than *full_history_ts_low_.
//
// Range tombstone start keys are skipped as they are not "real" keys.
while (!IsPausingManualCompaction() && !IsShuttingDown() &&
input_.Valid() &&
(ParseInternalKey(input_.key(), &next_ikey, allow_data_in_errors_)
.ok()) &&
cmp_->EqualWithoutTimestamp(ikey_.user_key, next_ikey.user_key) &&
(prev_snapshot == 0 || input_.IsDeleteRangeSentinelKey() ||
DefinitelyNotInSnapshot(next_ikey.sequence, prev_snapshot))) {
AdvanceInputIter();
}
// If you find you still need to output a row with this key, we need to
// output the delete too
if (input_.Valid() &&
(ParseInternalKey(input_.key(), &next_ikey, allow_data_in_errors_)
.ok()) &&
cmp_->EqualWithoutTimestamp(ikey_.user_key, next_ikey.user_key)) {
validity_info_.SetValid(ValidContext::kKeepDel);
at_next_ = true;
}
} else if (ikey_.type == kTypeMerge) {
if (!merge_helper_->HasOperator()) {
status_ = Status::InvalidArgument(
"merge_operator is not properly initialized.");
return;
}
pinned_iters_mgr_.StartPinning();
// We know the merge type entry is not hidden, otherwise we would
// have hit (A)
// We encapsulate the merge related state machine in a different
// object to minimize change to the existing flow.
merge_until_status_ = merge_helper_->MergeUntil(
&input_, range_del_agg_, prev_snapshot, bottommost_level_,
allow_data_in_errors_, blob_fetcher_.get(), full_history_ts_low_,
prefetch_buffers_.get(), &iter_stats_);
merge_out_iter_.SeekToFirst();
if (!merge_until_status_.ok() &&
!merge_until_status_.IsMergeInProgress()) {
status_ = merge_until_status_;
return;
} else if (merge_out_iter_.Valid()) {
// NOTE: key, value, and ikey_ refer to old entries.
// These will be correctly set below.
key_ = merge_out_iter_.key();
value_ = merge_out_iter_.value();
pik_status = ParseInternalKey(key_, &ikey_, allow_data_in_errors_);
// MergeUntil stops when it encounters a corrupt key and does not
// include them in the result, so we expect the keys here to valid.
if (!pik_status.ok()) {
ROCKS_LOG_FATAL(
info_log_, "Invalid key %s in compaction. %s",
allow_data_in_errors_ ? key_.ToString(true).c_str() : "hidden",
pik_status.getState());
assert(false);
}
// Keep current_key_ in sync.
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
key_ = current_key_.GetInternalKey();
ikey_.user_key = current_key_.GetUserKey();
validity_info_.SetValid(ValidContext::kMerge2);
} else {
// all merge operands were filtered out. reset the user key, since the
// batch consumed by the merge operator should not shadow any keys
// coming after the merges
has_current_user_key_ = false;
pinned_iters_mgr_.ReleasePinnedData();
if (merge_helper_->FilteredUntil(&skip_until)) {
need_skip = true;
}
}
} else {
// 1. new user key -OR-
// 2. different snapshot stripe
// If user-defined timestamp is enabled, we consider keys for GC if they
// are below history_ts_low_. CompactionRangeDelAggregator::ShouldDelete()
// only considers range deletions that are at or below history_ts_low_ and
// trim_ts_. We drop keys here that are below history_ts_low_ and are
// covered by a range tombstone that is at or below history_ts_low_ and
// trim_ts.
bool should_delete = false;
if (!timestamp_size_ || cmp_with_history_ts_low_ < 0) {
should_delete = range_del_agg_->ShouldDelete(
key_, RangeDelPositioningMode::kForwardTraversal);
}
if (should_delete) {
++iter_stats_.num_record_drop_hidden;
++iter_stats_.num_record_drop_range_del;
AdvanceInputIter();
} else {
validity_info_.SetValid(ValidContext::kNewUserKey);
}
}
if (need_skip) {
SkipUntil(skip_until);
}
}
if (!Valid() && IsShuttingDown()) {
status_ = Status::ShutdownInProgress();
}
if (IsPausingManualCompaction()) {
status_ = Status::Incomplete(Status::SubCode::kManualCompactionPaused);
}
// Propagate corruption status from memtable itereator
if (!input_.Valid() && input_.status().IsCorruption()) {
status_ = input_.status();
}
}
bool CompactionIterator::ExtractLargeValueIfNeededImpl() {
if (!blob_file_builder_) {
return false;
}
blob_index_.clear();
const Status s = blob_file_builder_->Add(user_key(), value_, &blob_index_);
if (!s.ok()) {
status_ = s;
validity_info_.Invalidate();
return false;
}
if (blob_index_.empty()) {
return false;
}
value_ = blob_index_;
return true;
}
void CompactionIterator::ExtractLargeValueIfNeeded() {
assert(ikey_.type == kTypeValue);
if (!ExtractLargeValueIfNeededImpl()) {
return;
}
ikey_.type = kTypeBlobIndex;
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
}
void CompactionIterator::GarbageCollectBlobIfNeeded() {
assert(ikey_.type == kTypeBlobIndex);
if (!compaction_) {
return;
}
// GC for integrated BlobDB
if (compaction_->enable_blob_garbage_collection()) {
TEST_SYNC_POINT_CALLBACK(
"CompactionIterator::GarbageCollectBlobIfNeeded::TamperWithBlobIndex",
&value_);
BlobIndex blob_index;
{
const Status s = blob_index.DecodeFrom(value_);
if (!s.ok()) {
status_ = s;
validity_info_.Invalidate();
return;
}
}
if (blob_index.file_number() >=
blob_garbage_collection_cutoff_file_number_) {
return;
}
FilePrefetchBuffer* prefetch_buffer =
prefetch_buffers_ ? prefetch_buffers_->GetOrCreatePrefetchBuffer(
blob_index.file_number())
: nullptr;
uint64_t bytes_read = 0;
{
assert(blob_fetcher_);
const Status s = blob_fetcher_->FetchBlob(
user_key(), blob_index, prefetch_buffer, &blob_value_, &bytes_read);
if (!s.ok()) {
status_ = s;
validity_info_.Invalidate();
return;
}
}
++iter_stats_.num_blobs_read;
iter_stats_.total_blob_bytes_read += bytes_read;
++iter_stats_.num_blobs_relocated;
iter_stats_.total_blob_bytes_relocated += blob_index.size();
value_ = blob_value_;
if (ExtractLargeValueIfNeededImpl()) {
return;
}
ikey_.type = kTypeValue;
current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
return;
}
// GC for stacked BlobDB
if (compaction_filter_ &&
compaction_filter_->IsStackedBlobDbInternalCompactionFilter()) {
const auto blob_decision = compaction_filter_->PrepareBlobOutput(
user_key(), value_, &compaction_filter_value_);
if (blob_decision == CompactionFilter::BlobDecision::kCorruption) {
status_ =
Status::Corruption("Corrupted blob reference encountered during GC");
validity_info_.Invalidate();
return;
}
if (blob_decision == CompactionFilter::BlobDecision::kIOError) {
status_ = Status::IOError("Could not relocate blob during GC");
validity_info_.Invalidate();
return;
}
if (blob_decision == CompactionFilter::BlobDecision::kChangeValue) {
value_ = compaction_filter_value_;
return;
}
}
}
void CompactionIterator::DecideOutputLevel() {
assert(compaction_->SupportsPerKeyPlacement());
output_to_penultimate_level_ = false;
// if the key is newer than the cutoff sequence or within the earliest
// snapshot, it should output to the penultimate level.
if (ikey_.sequence > preclude_last_level_min_seqno_ ||
ikey_.sequence > earliest_snapshot_) {
output_to_penultimate_level_ = true;
}
#ifndef NDEBUG
// Could be overridden by unittest
PerKeyPlacementContext context(level_, ikey_.user_key, value_, ikey_.sequence,
output_to_penultimate_level_);
TEST_SYNC_POINT_CALLBACK("CompactionIterator::PrepareOutput.context",
&context);
if (ikey_.sequence > earliest_snapshot_) {
output_to_penultimate_level_ = true;
}
#endif // NDEBUG
if (output_to_penultimate_level_) {
// If it's decided to output to the penultimate level, but unsafe to do so,
// still output to the last level. For example, moving the data from a lower
// level to a higher level outside of the higher-level input key range is
// considered unsafe, because the key may conflict with higher-level SSTs
// not from this compaction.
// TODO: add statistic for declined output_to_penultimate_level
bool safe_to_penultimate_level =
compaction_->WithinPenultimateLevelOutputRange(ikey_.user_key);
if (!safe_to_penultimate_level) {
output_to_penultimate_level_ = false;
// It could happen when disable/enable `last_level_temperature` while
// holding a snapshot. When `last_level_temperature` is not set
// (==kUnknown), the data newer than any snapshot is pushed to the last
// level, but when the per_key_placement feature is enabled on the fly,
// the data later than the snapshot has to be moved to the penultimate
// level, which may or may not be safe. So the user needs to make sure all
// snapshot is released before enabling `last_level_temperature` feature
// We will migrate the feature to `last_level_temperature` and maybe make
// it not dynamically changeable.
if (ikey_.sequence > earliest_snapshot_) {
status_ = Status::Corruption(
"Unsafe to store Seq later than snapshot in the last level if "
"per_key_placement is enabled");
}
}
}
}
void CompactionIterator::PrepareOutput() {
if (Valid()) {
if (LIKELY(!is_range_del_)) {
if (ikey_.type == kTypeValue) {
ExtractLargeValueIfNeeded();
} else if (ikey_.type == kTypeBlobIndex) {
GarbageCollectBlobIfNeeded();
}
}
if (compaction_ != nullptr && compaction_->SupportsPerKeyPlacement()) {
DecideOutputLevel();
}
// Zeroing out the sequence number leads to better compression.
// If this is the bottommost level (no files in lower levels)
// and the earliest snapshot is larger than this seqno
// and the userkey differs from the last userkey in compaction
// then we can squash the seqno to zero.
//
// This is safe for TransactionDB write-conflict checking since transactions
// only care about sequence number larger than any active snapshots.
//
// Can we do the same for levels above bottom level as long as
// KeyNotExistsBeyondOutputLevel() return true?
if (Valid() && compaction_ != nullptr &&
!compaction_->allow_ingest_behind() && bottommost_level_ &&
DefinitelyInSnapshot(ikey_.sequence, earliest_snapshot_) &&
ikey_.type != kTypeMerge && current_key_committed_ &&
!output_to_penultimate_level_ &&
ikey_.sequence < preserve_time_min_seqno_ && !is_range_del_) {
if (ikey_.type == kTypeDeletion ||
(ikey_.type == kTypeSingleDeletion && timestamp_size_ == 0)) {
ROCKS_LOG_FATAL(
info_log_,
"Unexpected key %s for seq-zero optimization. "
"earliest_snapshot %" PRIu64
", earliest_write_conflict_snapshot %" PRIu64
" job_snapshot %" PRIu64
". timestamp_size: %d full_history_ts_low_ %s. validity %x",
ikey_.DebugString(allow_data_in_errors_, true).c_str(),
earliest_snapshot_, earliest_write_conflict_snapshot_,
job_snapshot_, static_cast<int>(timestamp_size_),
full_history_ts_low_ != nullptr
? Slice(*full_history_ts_low_).ToString(true).c_str()
: "null",
validity_info_.rep);
assert(false);
}
ikey_.sequence = 0;
last_key_seq_zeroed_ = true;
TEST_SYNC_POINT_CALLBACK("CompactionIterator::PrepareOutput:ZeroingSeq",
&ikey_);
if (!timestamp_size_) {
current_key_.UpdateInternalKey(0, ikey_.type);
} else if (full_history_ts_low_ && cmp_with_history_ts_low_ < 0) {
// We can also zero out timestamp for better compression.
// For the same user key (excluding timestamp), the timestamp-based
// history can be collapsed to save some space if the timestamp is
// older than *full_history_ts_low_.
const std::string kTsMin(timestamp_size_, static_cast<char>(0));
const Slice ts_slice = kTsMin;
ikey_.SetTimestamp(ts_slice);
current_key_.UpdateInternalKey(0, ikey_.type, &ts_slice);
}
}
}
}
inline SequenceNumber CompactionIterator::findEarliestVisibleSnapshot(
SequenceNumber in, SequenceNumber* prev_snapshot) {
assert(snapshots_->size());
if (snapshots_->size() == 0) {
ROCKS_LOG_FATAL(info_log_,
"No snapshot left in findEarliestVisibleSnapshot");
}
auto snapshots_iter =
std::lower_bound(snapshots_->begin(), snapshots_->end(), in);
assert(prev_snapshot != nullptr);
if (snapshots_iter == snapshots_->begin()) {
*prev_snapshot = 0;
} else {
*prev_snapshot = *std::prev(snapshots_iter);
if (*prev_snapshot >= in) {
ROCKS_LOG_FATAL(info_log_,
"*prev_snapshot (%" PRIu64 ") >= in (%" PRIu64
") in findEarliestVisibleSnapshot",
*prev_snapshot, in);
assert(false);
}
}
if (snapshot_checker_ == nullptr) {
return snapshots_iter != snapshots_->end() ? *snapshots_iter
: kMaxSequenceNumber;
}
bool has_released_snapshot = !released_snapshots_.empty();
for (; snapshots_iter != snapshots_->end(); ++snapshots_iter) {
auto cur = *snapshots_iter;
if (in > cur) {
ROCKS_LOG_FATAL(info_log_,
"in (%" PRIu64 ") > cur (%" PRIu64
") in findEarliestVisibleSnapshot",
in, cur);
assert(false);
}
// Skip if cur is in released_snapshots.
if (has_released_snapshot && released_snapshots_.count(cur) > 0) {
continue;
}
auto res = snapshot_checker_->CheckInSnapshot(in, cur);
if (res == SnapshotCheckerResult::kInSnapshot) {
return cur;
} else if (res == SnapshotCheckerResult::kSnapshotReleased) {
released_snapshots_.insert(cur);
}
*prev_snapshot = cur;
}
return kMaxSequenceNumber;
}
uint64_t CompactionIterator::ComputeBlobGarbageCollectionCutoffFileNumber(
const CompactionProxy* compaction) {
if (!compaction) {
return 0;
}
if (!compaction->enable_blob_garbage_collection()) {
return 0;
}
const Version* const version = compaction->input_version();
assert(version);
const VersionStorageInfo* const storage_info = version->storage_info();
assert(storage_info);
const auto& blob_files = storage_info->GetBlobFiles();
const size_t cutoff_index = static_cast<size_t>(
compaction->blob_garbage_collection_age_cutoff() * blob_files.size());
if (cutoff_index >= blob_files.size()) {
return std::numeric_limits<uint64_t>::max();
}
const auto& meta = blob_files[cutoff_index];
assert(meta);
return meta->GetBlobFileNumber();
}
std::unique_ptr<BlobFetcher> CompactionIterator::CreateBlobFetcherIfNeeded(
const CompactionProxy* compaction) {
if (!compaction) {
return nullptr;
}
const Version* const version = compaction->input_version();
if (!version) {
return nullptr;
}
ReadOptions read_options;
read_options.io_activity = Env::IOActivity::kCompaction;
read_options.fill_cache = false;
return std::unique_ptr<BlobFetcher>(new BlobFetcher(version, read_options));
}
std::unique_ptr<PrefetchBufferCollection>
CompactionIterator::CreatePrefetchBufferCollectionIfNeeded(
const CompactionProxy* compaction) {
if (!compaction) {
return nullptr;
}
if (!compaction->input_version()) {
return nullptr;
}
if (compaction->allow_mmap_reads()) {
return nullptr;
}
const uint64_t readahead_size = compaction->blob_compaction_readahead_size();
if (!readahead_size) {
return nullptr;
}
return std::unique_ptr<PrefetchBufferCollection>(
new PrefetchBufferCollection(readahead_size));
}
} // namespace ROCKSDB_NAMESPACE