rocksdb/table/table_test.cc

969 lines
27 KiB
C++

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <map>
#include <string>
#include <memory>
#include "db/dbformat.h"
#include "db/memtable.h"
#include "db/skiplistrep.h"
#include "db/write_batch_internal.h"
#include "leveldb/db.h"
#include "leveldb/env.h"
#include "leveldb/iterator.h"
#include "leveldb/table_builder.h"
#include "table/block.h"
#include "table/block_builder.h"
#include "table/format.h"
#include "table/table.h"
#include "util/random.h"
#include "util/testharness.h"
#include "util/testutil.h"
namespace leveldb {
// Return reverse of "key".
// Used to test non-lexicographic comparators.
static std::string Reverse(const Slice& key) {
std::string str(key.ToString());
std::string rev("");
for (std::string::reverse_iterator rit = str.rbegin();
rit != str.rend(); ++rit) {
rev.push_back(*rit);
}
return rev;
}
namespace {
class ReverseKeyComparator : public Comparator {
public:
virtual const char* Name() const {
return "leveldb.ReverseBytewiseComparator";
}
virtual int Compare(const Slice& a, const Slice& b) const {
return BytewiseComparator()->Compare(Reverse(a), Reverse(b));
}
virtual void FindShortestSeparator(
std::string* start,
const Slice& limit) const {
std::string s = Reverse(*start);
std::string l = Reverse(limit);
BytewiseComparator()->FindShortestSeparator(&s, l);
*start = Reverse(s);
}
virtual void FindShortSuccessor(std::string* key) const {
std::string s = Reverse(*key);
BytewiseComparator()->FindShortSuccessor(&s);
*key = Reverse(s);
}
};
} // namespace
static ReverseKeyComparator reverse_key_comparator;
static void Increment(const Comparator* cmp, std::string* key) {
if (cmp == BytewiseComparator()) {
key->push_back('\0');
} else {
assert(cmp == &reverse_key_comparator);
std::string rev = Reverse(*key);
rev.push_back('\0');
*key = Reverse(rev);
}
}
// An STL comparator that uses a Comparator
namespace anon {
struct STLLessThan {
const Comparator* cmp;
STLLessThan() : cmp(BytewiseComparator()) { }
explicit STLLessThan(const Comparator* c) : cmp(c) { }
bool operator()(const std::string& a, const std::string& b) const {
return cmp->Compare(Slice(a), Slice(b)) < 0;
}
};
} // namespace
class StringSink: public WritableFile {
public:
~StringSink() { }
const std::string& contents() const { return contents_; }
virtual Status Close() { return Status::OK(); }
virtual Status Flush() { return Status::OK(); }
virtual Status Sync() { return Status::OK(); }
virtual Status Append(const Slice& data) {
contents_.append(data.data(), data.size());
return Status::OK();
}
private:
std::string contents_;
};
class StringSource: public RandomAccessFile {
public:
StringSource(const Slice& contents, uint64_t uniq_id)
: contents_(contents.data(), contents.size()), uniq_id_(uniq_id) {
}
virtual ~StringSource() { }
uint64_t Size() const { return contents_.size(); }
virtual Status Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const {
if (offset > contents_.size()) {
return Status::InvalidArgument("invalid Read offset");
}
if (offset + n > contents_.size()) {
n = contents_.size() - offset;
}
memcpy(scratch, &contents_[offset], n);
*result = Slice(scratch, n);
return Status::OK();
}
virtual size_t GetUniqueId(char* id, size_t max_size) const {
if (max_size < 20) {
return 0;
}
char* rid = id;
rid = EncodeVarint64(rid, uniq_id_);
rid = EncodeVarint64(rid, 0);
return static_cast<size_t>(rid-id);
}
private:
std::string contents_;
uint64_t uniq_id_;
};
typedef std::map<std::string, std::string, anon::STLLessThan> KVMap;
// Helper class for tests to unify the interface between
// BlockBuilder/TableBuilder and Block/Table.
class Constructor {
public:
explicit Constructor(const Comparator* cmp) : data_(anon::STLLessThan(cmp)) { }
virtual ~Constructor() { }
void Add(const std::string& key, const Slice& value) {
data_[key] = value.ToString();
}
// Finish constructing the data structure with all the keys that have
// been added so far. Returns the keys in sorted order in "*keys"
// and stores the key/value pairs in "*kvmap"
void Finish(const Options& options,
std::vector<std::string>* keys,
KVMap* kvmap) {
*kvmap = data_;
keys->clear();
for (KVMap::const_iterator it = data_.begin();
it != data_.end();
++it) {
keys->push_back(it->first);
}
data_.clear();
Status s = FinishImpl(options, *kvmap);
ASSERT_TRUE(s.ok()) << s.ToString();
}
// Construct the data structure from the data in "data"
virtual Status FinishImpl(const Options& options, const KVMap& data) = 0;
virtual Iterator* NewIterator() const = 0;
virtual const KVMap& data() { return data_; }
virtual DB* db() const { return nullptr; } // Overridden in DBConstructor
private:
KVMap data_;
};
class BlockConstructor: public Constructor {
public:
explicit BlockConstructor(const Comparator* cmp)
: Constructor(cmp),
comparator_(cmp),
block_(nullptr) { }
~BlockConstructor() {
delete block_;
}
virtual Status FinishImpl(const Options& options, const KVMap& data) {
delete block_;
block_ = nullptr;
BlockBuilder builder(&options);
for (KVMap::const_iterator it = data.begin();
it != data.end();
++it) {
builder.Add(it->first, it->second);
}
// Open the block
data_ = builder.Finish().ToString();
BlockContents contents;
contents.data = data_;
contents.cachable = false;
contents.heap_allocated = false;
block_ = new Block(contents);
return Status::OK();
}
virtual Iterator* NewIterator() const {
return block_->NewIterator(comparator_);
}
private:
const Comparator* comparator_;
std::string data_;
Block* block_;
BlockConstructor();
};
class TableConstructor: public Constructor {
public:
explicit TableConstructor(const Comparator* cmp)
: Constructor(cmp) {
}
~TableConstructor() {
Reset();
}
virtual Status FinishImpl(const Options& options, const KVMap& data) {
Reset();
sink_.reset(new StringSink());
TableBuilder builder(options, sink_.get());
for (KVMap::const_iterator it = data.begin();
it != data.end();
++it) {
builder.Add(it->first, it->second);
ASSERT_TRUE(builder.status().ok());
}
Status s = builder.Finish();
ASSERT_TRUE(s.ok()) << s.ToString();
ASSERT_EQ(sink_->contents().size(), builder.FileSize());
// Open the table
uniq_id_ = cur_uniq_id_++;
source_.reset(new StringSource(sink_->contents(), uniq_id_));
return Table::Open(options, soptions, std::move(source_),
sink_->contents().size(), &table_);
}
virtual Iterator* NewIterator() const {
return table_->NewIterator(ReadOptions());
}
uint64_t ApproximateOffsetOf(const Slice& key) const {
return table_->ApproximateOffsetOf(key);
}
virtual Status Reopen(const Options& options) {
source_.reset(new StringSource(sink_->contents(), uniq_id_));
return Table::Open(options, soptions, std::move(source_),
sink_->contents().size(), &table_);
}
virtual Table* table() {
return table_.get();
}
private:
void Reset() {
uniq_id_ = 0;
table_.reset();
sink_.reset();
source_.reset();
}
uint64_t uniq_id_;
unique_ptr<StringSink> sink_;
unique_ptr<StringSource> source_;
unique_ptr<Table> table_;
TableConstructor();
static uint64_t cur_uniq_id_;
const EnvOptions soptions;
};
uint64_t TableConstructor::cur_uniq_id_ = 1;
// A helper class that converts internal format keys into user keys
class KeyConvertingIterator: public Iterator {
public:
explicit KeyConvertingIterator(Iterator* iter) : iter_(iter) { }
virtual ~KeyConvertingIterator() { delete iter_; }
virtual bool Valid() const { return iter_->Valid(); }
virtual void Seek(const Slice& target) {
ParsedInternalKey ikey(target, kMaxSequenceNumber, kTypeValue);
std::string encoded;
AppendInternalKey(&encoded, ikey);
iter_->Seek(encoded);
}
virtual void SeekToFirst() { iter_->SeekToFirst(); }
virtual void SeekToLast() { iter_->SeekToLast(); }
virtual void Next() { iter_->Next(); }
virtual void Prev() { iter_->Prev(); }
virtual Slice key() const {
assert(Valid());
ParsedInternalKey key;
if (!ParseInternalKey(iter_->key(), &key)) {
status_ = Status::Corruption("malformed internal key");
return Slice("corrupted key");
}
return key.user_key;
}
virtual Slice value() const { return iter_->value(); }
virtual Status status() const {
return status_.ok() ? iter_->status() : status_;
}
private:
mutable Status status_;
Iterator* iter_;
// No copying allowed
KeyConvertingIterator(const KeyConvertingIterator&);
void operator=(const KeyConvertingIterator&);
};
class MemTableConstructor: public Constructor {
public:
explicit MemTableConstructor(const Comparator* cmp)
: Constructor(cmp),
internal_comparator_(cmp),
table_factory_(new SkipListFactory) {
memtable_ = new MemTable(internal_comparator_, table_factory_);
memtable_->Ref();
}
~MemTableConstructor() {
memtable_->Unref();
}
virtual Status FinishImpl(const Options& options, const KVMap& data) {
memtable_->Unref();
memtable_ = new MemTable(internal_comparator_, table_factory_);
memtable_->Ref();
int seq = 1;
for (KVMap::const_iterator it = data.begin();
it != data.end();
++it) {
memtable_->Add(seq, kTypeValue, it->first, it->second);
seq++;
}
return Status::OK();
}
virtual Iterator* NewIterator() const {
return new KeyConvertingIterator(memtable_->NewIterator());
}
private:
InternalKeyComparator internal_comparator_;
MemTable* memtable_;
std::shared_ptr<SkipListFactory> table_factory_;
};
class DBConstructor: public Constructor {
public:
explicit DBConstructor(const Comparator* cmp)
: Constructor(cmp),
comparator_(cmp) {
db_ = nullptr;
NewDB();
}
~DBConstructor() {
delete db_;
}
virtual Status FinishImpl(const Options& options, const KVMap& data) {
delete db_;
db_ = nullptr;
NewDB();
for (KVMap::const_iterator it = data.begin();
it != data.end();
++it) {
WriteBatch batch;
batch.Put(it->first, it->second);
ASSERT_TRUE(db_->Write(WriteOptions(), &batch).ok());
}
return Status::OK();
}
virtual Iterator* NewIterator() const {
return db_->NewIterator(ReadOptions());
}
virtual DB* db() const { return db_; }
private:
void NewDB() {
std::string name = test::TmpDir() + "/table_testdb";
Options options;
options.comparator = comparator_;
Status status = DestroyDB(name, options);
ASSERT_TRUE(status.ok()) << status.ToString();
options.create_if_missing = true;
options.error_if_exists = true;
options.write_buffer_size = 10000; // Something small to force merging
status = DB::Open(options, name, &db_);
ASSERT_TRUE(status.ok()) << status.ToString();
}
const Comparator* comparator_;
DB* db_;
};
static bool SnappyCompressionSupported() {
std::string out;
Slice in = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";
return port::Snappy_Compress(Options().compression_opts, in.data(), in.size(),
&out);
}
static bool ZlibCompressionSupported() {
std::string out;
Slice in = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";
return port::Zlib_Compress(Options().compression_opts, in.data(), in.size(),
&out);
}
#ifdef BZIP2
static bool BZip2CompressionSupported() {
std::string out;
Slice in = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";
return port::BZip2_Compress(Options().compression_opts, in.data(), in.size(),
&out);
}
#endif
enum TestType {
TABLE_TEST,
BLOCK_TEST,
MEMTABLE_TEST,
DB_TEST
};
struct TestArgs {
TestType type;
bool reverse_compare;
int restart_interval;
CompressionType compression;
};
static std::vector<TestArgs> Generate_Arg_List()
{
std::vector<TestArgs> ret;
TestType test_type[4] = {TABLE_TEST, BLOCK_TEST, MEMTABLE_TEST, DB_TEST};
int test_type_len = 4;
bool reverse_compare[2] = {false, true};
int reverse_compare_len = 2;
int restart_interval[3] = {16, 1, 1024};
int restart_interval_len = 3;
// Only add compression if it is supported
std::vector<CompressionType> compression_types;
compression_types.push_back(kNoCompression);
#ifdef SNAPPY
if (SnappyCompressionSupported())
compression_types.push_back(kSnappyCompression);
#endif
#ifdef ZLIB
if (ZlibCompressionSupported())
compression_types.push_back(kZlibCompression);
#endif
#ifdef BZIP2
if (BZip2CompressionSupported())
compression_types.push_back(kBZip2Compression);
#endif
for(int i =0; i < test_type_len; i++)
for (int j =0; j < reverse_compare_len; j++)
for (int k =0; k < restart_interval_len; k++)
for (unsigned int n =0; n < compression_types.size(); n++) {
TestArgs one_arg;
one_arg.type = test_type[i];
one_arg.reverse_compare = reverse_compare[j];
one_arg.restart_interval = restart_interval[k];
one_arg.compression = compression_types[n];
ret.push_back(one_arg);
}
return ret;
}
class Harness {
public:
Harness() : constructor_(nullptr) { }
void Init(const TestArgs& args) {
delete constructor_;
constructor_ = nullptr;
options_ = Options();
options_.block_restart_interval = args.restart_interval;
options_.compression = args.compression;
// Use shorter block size for tests to exercise block boundary
// conditions more.
options_.block_size = 256;
if (args.reverse_compare) {
options_.comparator = &reverse_key_comparator;
}
switch (args.type) {
case TABLE_TEST:
constructor_ = new TableConstructor(options_.comparator);
break;
case BLOCK_TEST:
constructor_ = new BlockConstructor(options_.comparator);
break;
case MEMTABLE_TEST:
constructor_ = new MemTableConstructor(options_.comparator);
break;
case DB_TEST:
constructor_ = new DBConstructor(options_.comparator);
break;
}
}
~Harness() {
delete constructor_;
}
void Add(const std::string& key, const std::string& value) {
constructor_->Add(key, value);
}
void Test(Random* rnd) {
std::vector<std::string> keys;
KVMap data;
constructor_->Finish(options_, &keys, &data);
TestForwardScan(keys, data);
TestBackwardScan(keys, data);
TestRandomAccess(rnd, keys, data);
}
void TestForwardScan(const std::vector<std::string>& keys,
const KVMap& data) {
Iterator* iter = constructor_->NewIterator();
ASSERT_TRUE(!iter->Valid());
iter->SeekToFirst();
for (KVMap::const_iterator model_iter = data.begin();
model_iter != data.end();
++model_iter) {
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
iter->Next();
}
ASSERT_TRUE(!iter->Valid());
delete iter;
}
void TestBackwardScan(const std::vector<std::string>& keys,
const KVMap& data) {
Iterator* iter = constructor_->NewIterator();
ASSERT_TRUE(!iter->Valid());
iter->SeekToLast();
for (KVMap::const_reverse_iterator model_iter = data.rbegin();
model_iter != data.rend();
++model_iter) {
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
iter->Prev();
}
ASSERT_TRUE(!iter->Valid());
delete iter;
}
void TestRandomAccess(Random* rnd,
const std::vector<std::string>& keys,
const KVMap& data) {
static const bool kVerbose = false;
Iterator* iter = constructor_->NewIterator();
ASSERT_TRUE(!iter->Valid());
KVMap::const_iterator model_iter = data.begin();
if (kVerbose) fprintf(stderr, "---\n");
for (int i = 0; i < 200; i++) {
const int toss = rnd->Uniform(5);
switch (toss) {
case 0: {
if (iter->Valid()) {
if (kVerbose) fprintf(stderr, "Next\n");
iter->Next();
++model_iter;
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
}
break;
}
case 1: {
if (kVerbose) fprintf(stderr, "SeekToFirst\n");
iter->SeekToFirst();
model_iter = data.begin();
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
break;
}
case 2: {
std::string key = PickRandomKey(rnd, keys);
model_iter = data.lower_bound(key);
if (kVerbose) fprintf(stderr, "Seek '%s'\n",
EscapeString(key).c_str());
iter->Seek(Slice(key));
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
break;
}
case 3: {
if (iter->Valid()) {
if (kVerbose) fprintf(stderr, "Prev\n");
iter->Prev();
if (model_iter == data.begin()) {
model_iter = data.end(); // Wrap around to invalid value
} else {
--model_iter;
}
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
}
break;
}
case 4: {
if (kVerbose) fprintf(stderr, "SeekToLast\n");
iter->SeekToLast();
if (keys.empty()) {
model_iter = data.end();
} else {
std::string last = data.rbegin()->first;
model_iter = data.lower_bound(last);
}
ASSERT_EQ(ToString(data, model_iter), ToString(iter));
break;
}
}
}
delete iter;
}
std::string ToString(const KVMap& data, const KVMap::const_iterator& it) {
if (it == data.end()) {
return "END";
} else {
return "'" + it->first + "->" + it->second + "'";
}
}
std::string ToString(const KVMap& data,
const KVMap::const_reverse_iterator& it) {
if (it == data.rend()) {
return "END";
} else {
return "'" + it->first + "->" + it->second + "'";
}
}
std::string ToString(const Iterator* it) {
if (!it->Valid()) {
return "END";
} else {
return "'" + it->key().ToString() + "->" + it->value().ToString() + "'";
}
}
std::string PickRandomKey(Random* rnd, const std::vector<std::string>& keys) {
if (keys.empty()) {
return "foo";
} else {
const int index = rnd->Uniform(keys.size());
std::string result = keys[index];
switch (rnd->Uniform(3)) {
case 0:
// Return an existing key
break;
case 1: {
// Attempt to return something smaller than an existing key
if (result.size() > 0 && result[result.size()-1] > '\0') {
result[result.size()-1]--;
}
break;
}
case 2: {
// Return something larger than an existing key
Increment(options_.comparator, &result);
break;
}
}
return result;
}
}
// Returns nullptr if not running against a DB
DB* db() const { return constructor_->db(); }
private:
Options options_;
Constructor* constructor_;
};
// Test the empty key
TEST(Harness, SimpleEmptyKey) {
std::vector<TestArgs> args = Generate_Arg_List();
for (unsigned int i = 0; i < args.size(); i++) {
Init(args[i]);
Random rnd(test::RandomSeed() + 1);
Add("", "v");
Test(&rnd);
}
}
TEST(Harness, SimpleSingle) {
std::vector<TestArgs> args = Generate_Arg_List();
for (unsigned int i = 0; i < args.size(); i++) {
Init(args[i]);
Random rnd(test::RandomSeed() + 2);
Add("abc", "v");
Test(&rnd);
}
}
TEST(Harness, SimpleMulti) {
std::vector<TestArgs> args = Generate_Arg_List();
for (unsigned int i = 0; i < args.size(); i++) {
Init(args[i]);
Random rnd(test::RandomSeed() + 3);
Add("abc", "v");
Add("abcd", "v");
Add("ac", "v2");
Test(&rnd);
}
}
TEST(Harness, SimpleSpecialKey) {
std::vector<TestArgs> args = Generate_Arg_List();
for (unsigned int i = 0; i < args.size(); i++) {
Init(args[i]);
Random rnd(test::RandomSeed() + 4);
Add("\xff\xff", "v3");
Test(&rnd);
}
}
TEST(Harness, Randomized) {
std::vector<TestArgs> args = Generate_Arg_List();
for (unsigned int i = 0; i < args.size(); i++) {
Init(args[i]);
Random rnd(test::RandomSeed() + 5);
for (int num_entries = 0; num_entries < 2000;
num_entries += (num_entries < 50 ? 1 : 200)) {
if ((num_entries % 10) == 0) {
fprintf(stderr, "case %d of %d: num_entries = %d\n",
(i + 1), int(args.size()), num_entries);
}
for (int e = 0; e < num_entries; e++) {
std::string v;
Add(test::RandomKey(&rnd, rnd.Skewed(4)),
test::RandomString(&rnd, rnd.Skewed(5), &v).ToString());
}
Test(&rnd);
}
}
}
TEST(Harness, RandomizedLongDB) {
Random rnd(test::RandomSeed());
TestArgs args = { DB_TEST, false, 16, kNoCompression };
Init(args);
int num_entries = 100000;
for (int e = 0; e < num_entries; e++) {
std::string v;
Add(test::RandomKey(&rnd, rnd.Skewed(4)),
test::RandomString(&rnd, rnd.Skewed(5), &v).ToString());
}
Test(&rnd);
// We must have created enough data to force merging
int files = 0;
for (int level = 0; level < db()->NumberLevels(); level++) {
std::string value;
char name[100];
snprintf(name, sizeof(name), "leveldb.num-files-at-level%d", level);
ASSERT_TRUE(db()->GetProperty(name, &value));
files += atoi(value.c_str());
}
ASSERT_GT(files, 0);
}
class MemTableTest { };
TEST(MemTableTest, Simple) {
InternalKeyComparator cmp(BytewiseComparator());
auto table_factory = std::make_shared<SkipListFactory>();
MemTable* memtable = new MemTable(cmp, table_factory);
memtable->Ref();
WriteBatch batch;
WriteBatchInternal::SetSequence(&batch, 100);
batch.Put(std::string("k1"), std::string("v1"));
batch.Put(std::string("k2"), std::string("v2"));
batch.Put(std::string("k3"), std::string("v3"));
batch.Put(std::string("largekey"), std::string("vlarge"));
ASSERT_TRUE(WriteBatchInternal::InsertInto(&batch, memtable).ok());
Iterator* iter = memtable->NewIterator();
iter->SeekToFirst();
while (iter->Valid()) {
fprintf(stderr, "key: '%s' -> '%s'\n",
iter->key().ToString().c_str(),
iter->value().ToString().c_str());
iter->Next();
}
delete iter;
memtable->Unref();
}
static bool Between(uint64_t val, uint64_t low, uint64_t high) {
bool result = (val >= low) && (val <= high);
if (!result) {
fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n",
(unsigned long long)(val),
(unsigned long long)(low),
(unsigned long long)(high));
}
return result;
}
class TableTest { };
TEST(TableTest, ApproximateOffsetOfPlain) {
TableConstructor c(BytewiseComparator());
c.Add("k01", "hello");
c.Add("k02", "hello2");
c.Add("k03", std::string(10000, 'x'));
c.Add("k04", std::string(200000, 'x'));
c.Add("k05", std::string(300000, 'x'));
c.Add("k06", "hello3");
c.Add("k07", std::string(100000, 'x'));
std::vector<std::string> keys;
KVMap kvmap;
Options options;
options.block_size = 1024;
options.compression = kNoCompression;
c.Finish(options, &keys, &kvmap);
ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01a"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 10000, 11000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04a"), 210000, 211000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k05"), 210000, 211000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k06"), 510000, 511000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k07"), 510000, 511000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 610000, 612000));
}
static void Do_Compression_Test(CompressionType comp) {
Random rnd(301);
TableConstructor c(BytewiseComparator());
std::string tmp;
c.Add("k01", "hello");
c.Add("k02", test::CompressibleString(&rnd, 0.25, 10000, &tmp));
c.Add("k03", "hello3");
c.Add("k04", test::CompressibleString(&rnd, 0.25, 10000, &tmp));
std::vector<std::string> keys;
KVMap kvmap;
Options options;
options.block_size = 1024;
options.compression = comp;
c.Finish(options, &keys, &kvmap);
ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k01"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k02"), 0, 0));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k03"), 2000, 3000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("k04"), 2000, 3000));
ASSERT_TRUE(Between(c.ApproximateOffsetOf("xyz"), 4000, 6000));
}
TEST(TableTest, ApproximateOffsetOfCompressed) {
CompressionType compression_state[2];
int valid = 0;
if (!SnappyCompressionSupported()) {
fprintf(stderr, "skipping snappy compression tests\n");
} else {
compression_state[valid] = kSnappyCompression;
valid++;
}
if (!ZlibCompressionSupported()) {
fprintf(stderr, "skipping zlib compression tests\n");
} else {
compression_state[valid] = kZlibCompression;
valid++;
}
for(int i =0; i < valid; i++)
{
Do_Compression_Test(compression_state[i]);
}
}
TEST(TableTest, BlockCacheLeak) {
// Check that when we reopen a table we don't lose access to blocks already
// in the cache. This test checks whether the Table actually makes use of the
// unique ID from the file.
Options opt;
opt.block_size = 1024;
opt.compression = kNoCompression;
opt.block_cache = NewLRUCache(16*1024*1024); // big enough so we don't ever
// lose cached values.
TableConstructor c(BytewiseComparator());
c.Add("k01", "hello");
c.Add("k02", "hello2");
c.Add("k03", std::string(10000, 'x'));
c.Add("k04", std::string(200000, 'x'));
c.Add("k05", std::string(300000, 'x'));
c.Add("k06", "hello3");
c.Add("k07", std::string(100000, 'x'));
std::vector<std::string> keys;
KVMap kvmap;
c.Finish(opt, &keys, &kvmap);
unique_ptr<Iterator> iter(c.NewIterator());
iter->SeekToFirst();
while (iter->Valid()) {
iter->key();
iter->value();
iter->Next();
}
ASSERT_OK(iter->status());
ASSERT_OK(c.Reopen(opt));
for (const std::string& key: keys) {
ASSERT_TRUE(c.table()->TEST_KeyInCache(ReadOptions(), key));
}
}
} // namespace leveldb
int main(int argc, char** argv) {
return leveldb::test::RunAllTests();
}