mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-25 22:44:05 +00:00
a1a1dc6659
Summary: Complements https://github.com/facebook/rocksdb/issues/10867 with some manual edits to avoid weird formatting or to avoid massive reformatting third party code. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10870 Test Plan: `make check` etc Reviewed By: riversand963 Differential Revision: D40686526 Pulled By: pdillinger fbshipit-source-id: 6af988fe4b0a8ae4a5992ec2c3c37fe67584226e
1765 lines
72 KiB
C
1765 lines
72 KiB
C
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
/*
|
|
xxHash - Extremely Fast Hash algorithm
|
|
Header File
|
|
Copyright (C) 2012-2016, Yann Collet.
|
|
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- xxHash source repository : https://github.com/Cyan4973/xxHash
|
|
*/
|
|
|
|
// This is a fork of a preview version of xxHash, as RocksDB depends on
|
|
// this preview version of XXH3. To allow this to coexist with the
|
|
// standard xxHash, including in the "unity" build where all source files
|
|
// and headers go into a single translation unit, here "XXH" has been
|
|
// replaced with "XXPH" for XX Preview Hash.
|
|
|
|
#ifndef XXPHASH_H_5627135585666179
|
|
#define XXPHASH_H_5627135585666179 1
|
|
|
|
/* BEGIN RocksDB customizations */
|
|
#ifndef XXPH_STATIC_LINKING_ONLY
|
|
// Access experimental APIs
|
|
#define XXPH_STATIC_LINKING_ONLY 1
|
|
#endif
|
|
#define XXPH_NAMESPACE ROCKSDB_
|
|
#define XXPH_INLINE_ALL
|
|
#include <cstring>
|
|
/* END RocksDB customizations */
|
|
|
|
// clang-format off
|
|
#if defined (__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
|
|
/* ****************************
|
|
* Definitions
|
|
******************************/
|
|
#include <stddef.h> /* size_t */
|
|
typedef enum { XXPH_OK=0, XXPH_ERROR } XXPH_errorcode;
|
|
|
|
|
|
/* ****************************
|
|
* API modifier
|
|
******************************/
|
|
/** XXPH_INLINE_ALL (and XXPH_PRIVATE_API)
|
|
* This build macro includes xxhash functions in `static` mode
|
|
* in order to inline them, and remove their symbol from the public list.
|
|
* Inlining offers great performance improvement on small keys,
|
|
* and dramatic ones when length is expressed as a compile-time constant.
|
|
* See https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html .
|
|
* Methodology :
|
|
* #define XXPH_INLINE_ALL
|
|
* #include "xxhash.h"
|
|
* `xxhash.c` is automatically included.
|
|
* It's not useful to compile and link it as a separate object.
|
|
*/
|
|
#if defined(XXPH_INLINE_ALL) || defined(XXPH_PRIVATE_API)
|
|
# ifndef XXPH_STATIC_LINKING_ONLY
|
|
# define XXPH_STATIC_LINKING_ONLY
|
|
# endif
|
|
# if defined(__GNUC__)
|
|
# define XXPH_PUBLIC_API static __inline __attribute__((unused))
|
|
# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
|
|
# define XXPH_PUBLIC_API static inline
|
|
# elif defined(_MSC_VER)
|
|
# define XXPH_PUBLIC_API static __inline
|
|
# else
|
|
/* this version may generate warnings for unused static functions */
|
|
# define XXPH_PUBLIC_API static
|
|
# endif
|
|
#else
|
|
# if defined(WIN32) && defined(_MSC_VER) && (defined(XXPH_IMPORT) || defined(XXPH_EXPORT))
|
|
# ifdef XXPH_EXPORT
|
|
# define XXPH_PUBLIC_API __declspec(dllexport)
|
|
# elif XXPH_IMPORT
|
|
# define XXPH_PUBLIC_API __declspec(dllimport)
|
|
# endif
|
|
# else
|
|
# define XXPH_PUBLIC_API /* do nothing */
|
|
# endif
|
|
#endif /* XXPH_INLINE_ALL || XXPH_PRIVATE_API */
|
|
|
|
/*! XXPH_NAMESPACE, aka Namespace Emulation :
|
|
*
|
|
* If you want to include _and expose_ xxHash functions from within your own library,
|
|
* but also want to avoid symbol collisions with other libraries which may also include xxHash,
|
|
*
|
|
* you can use XXPH_NAMESPACE, to automatically prefix any public symbol from xxhash library
|
|
* with the value of XXPH_NAMESPACE (therefore, avoid NULL and numeric values).
|
|
*
|
|
* Note that no change is required within the calling program as long as it includes `xxhash.h` :
|
|
* regular symbol name will be automatically translated by this header.
|
|
*/
|
|
#ifdef XXPH_NAMESPACE
|
|
# define XXPH_CAT(A,B) A##B
|
|
# define XXPH_NAME2(A,B) XXPH_CAT(A,B)
|
|
# define XXPH_versionNumber XXPH_NAME2(XXPH_NAMESPACE, XXPH_versionNumber)
|
|
#endif
|
|
|
|
|
|
/* *************************************
|
|
* Version
|
|
***************************************/
|
|
#define XXPH_VERSION_MAJOR 0
|
|
#define XXPH_VERSION_MINOR 7
|
|
#define XXPH_VERSION_RELEASE 2
|
|
#define XXPH_VERSION_NUMBER (XXPH_VERSION_MAJOR *100*100 + XXPH_VERSION_MINOR *100 + XXPH_VERSION_RELEASE)
|
|
XXPH_PUBLIC_API unsigned XXPH_versionNumber (void);
|
|
|
|
|
|
/*-**********************************************************************
|
|
* 32-bit hash
|
|
************************************************************************/
|
|
#if !defined (__VMS) \
|
|
&& (defined (__cplusplus) \
|
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
|
# include <stdint.h>
|
|
typedef uint32_t XXPH32_hash_t;
|
|
#else
|
|
# include <limits.h>
|
|
# if UINT_MAX == 0xFFFFFFFFUL
|
|
typedef unsigned int XXPH32_hash_t;
|
|
# else
|
|
# if ULONG_MAX == 0xFFFFFFFFUL
|
|
typedef unsigned long XXPH32_hash_t;
|
|
# else
|
|
# error "unsupported platform : need a 32-bit type"
|
|
# endif
|
|
# endif
|
|
#endif
|
|
|
|
#ifndef XXPH_NO_LONG_LONG
|
|
/*-**********************************************************************
|
|
* 64-bit hash
|
|
************************************************************************/
|
|
#if !defined (__VMS) \
|
|
&& (defined (__cplusplus) \
|
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
|
# include <stdint.h>
|
|
typedef uint64_t XXPH64_hash_t;
|
|
#else
|
|
/* the following type must have a width of 64-bit */
|
|
typedef unsigned long long XXPH64_hash_t;
|
|
#endif
|
|
|
|
#endif /* XXPH_NO_LONG_LONG */
|
|
|
|
|
|
|
|
#ifdef XXPH_STATIC_LINKING_ONLY
|
|
|
|
/* ================================================================================================
|
|
This section contains declarations which are not guaranteed to remain stable.
|
|
They may change in future versions, becoming incompatible with a different version of the library.
|
|
These declarations should only be used with static linking.
|
|
Never use them in association with dynamic linking !
|
|
=================================================================================================== */
|
|
|
|
|
|
/*-**********************************************************************
|
|
* XXPH3
|
|
* New experimental hash
|
|
************************************************************************/
|
|
#ifndef XXPH_NO_LONG_LONG
|
|
|
|
|
|
/* ============================================
|
|
* XXPH3 is a new hash algorithm,
|
|
* featuring improved speed performance for both small and large inputs.
|
|
* See full speed analysis at : http://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
|
|
* In general, expect XXPH3 to run about ~2x faster on large inputs,
|
|
* and >3x faster on small ones, though exact differences depend on platform.
|
|
*
|
|
* The algorithm is portable, will generate the same hash on all platforms.
|
|
* It benefits greatly from vectorization units, but does not require it.
|
|
*
|
|
* XXPH3 offers 2 variants, _64bits and _128bits.
|
|
* When only 64 bits are needed, prefer calling the _64bits variant :
|
|
* it reduces the amount of mixing, resulting in faster speed on small inputs.
|
|
* It's also generally simpler to manipulate a scalar return type than a struct.
|
|
*
|
|
* The XXPH3 algorithm is still considered experimental.
|
|
* Produced results can still change between versions.
|
|
* Results produced by v0.7.x are not comparable with results from v0.7.y .
|
|
* It's nonetheless possible to use XXPH3 for ephemeral data (local sessions),
|
|
* but avoid storing values in long-term storage for later reads.
|
|
*
|
|
* The API supports one-shot hashing, streaming mode, and custom secrets.
|
|
*
|
|
* There are still a number of opened questions that community can influence during the experimental period.
|
|
* I'm trying to list a few of them below, though don't consider this list as complete.
|
|
*
|
|
* - 128-bits output type : currently defined as a structure of two 64-bits fields.
|
|
* That's because 128-bit values do not exist in C standard.
|
|
* Note that it means that, at byte level, result is not identical depending on endianess.
|
|
* However, at field level, they are identical on all platforms.
|
|
* The canonical representation solves the issue of identical byte-level representation across platforms,
|
|
* which is necessary for serialization.
|
|
* Q1 : Would there be a better representation for a 128-bit hash result ?
|
|
* Q2 : Are the names of the inner 64-bit fields important ? Should they be changed ?
|
|
*
|
|
* - Prototype XXPH128() : XXPH128() uses the same arguments as XXPH64(), for consistency.
|
|
* It means it maps to XXPH3_128bits_withSeed().
|
|
* This variant is slightly slower than XXPH3_128bits(),
|
|
* because the seed is now part of the algorithm, and can't be simplified.
|
|
* Is that a good idea ?
|
|
*
|
|
* - Seed type for XXPH128() : currently, it's a single 64-bit value, like the 64-bit variant.
|
|
* It could be argued that it's more logical to offer a 128-bit seed input parameter for a 128-bit hash.
|
|
* But 128-bit seed is more difficult to use, since it requires to pass a structure instead of a scalar value.
|
|
* Such a variant could either replace current one, or become an additional one.
|
|
* Farmhash, for example, offers both variants (the 128-bits seed variant is called `doubleSeed`).
|
|
* Follow up question : if both 64-bit and 128-bit seeds are allowed, which variant should be called XXPH128 ?
|
|
*
|
|
* - Result for len==0 : Currently, the result of hashing a zero-length input is always `0`.
|
|
* It seems okay as a return value when using "default" secret and seed.
|
|
* But is it still fine to return `0` when secret or seed are non-default ?
|
|
* Are there use cases which could depend on generating a different hash result for zero-length input when the secret is different ?
|
|
*
|
|
* - Consistency (1) : Streaming XXPH128 uses an XXPH3 state, which is the same state as XXPH3_64bits().
|
|
* It means a 128bit streaming loop must invoke the following symbols :
|
|
* XXPH3_createState(), XXPH3_128bits_reset(), XXPH3_128bits_update() (loop), XXPH3_128bits_digest(), XXPH3_freeState().
|
|
* Is that consistent enough ?
|
|
*
|
|
* - Consistency (2) : The canonical representation of `XXPH3_64bits` is provided by existing functions
|
|
* XXPH64_canonicalFromHash(), and reverse operation XXPH64_hashFromCanonical().
|
|
* As a mirror, canonical functions for XXPH128_hash_t results generated by `XXPH3_128bits`
|
|
* are XXPH128_canonicalFromHash() and XXPH128_hashFromCanonical().
|
|
* Which means, `XXPH3` doesn't appear in the names, because canonical functions operate on a type,
|
|
* independently of which algorithm was used to generate that type.
|
|
* Is that consistent enough ?
|
|
*/
|
|
|
|
#ifdef XXPH_NAMESPACE
|
|
# define XXPH3_64bits XXPH_NAME2(XXPH_NAMESPACE, XXPH3_64bits)
|
|
# define XXPH3_64bits_withSecret XXPH_NAME2(XXPH_NAMESPACE, XXPH3_64bits_withSecret)
|
|
# define XXPH3_64bits_withSeed XXPH_NAME2(XXPH_NAMESPACE, XXPH3_64bits_withSeed)
|
|
#endif
|
|
|
|
/* XXPH3_64bits() :
|
|
* default 64-bit variant, using default secret and default seed of 0.
|
|
* It's the fastest variant. */
|
|
XXPH_PUBLIC_API XXPH64_hash_t XXPH3_64bits(const void* data, size_t len);
|
|
|
|
/* XXPH3_64bits_withSecret() :
|
|
* It's possible to provide any blob of bytes as a "secret" to generate the hash.
|
|
* This makes it more difficult for an external actor to prepare an intentional collision.
|
|
* The secret *must* be large enough (>= XXPH3_SECRET_SIZE_MIN).
|
|
* It should consist of random bytes.
|
|
* Avoid repeating same character, or sequences of bytes,
|
|
* and especially avoid swathes of \0.
|
|
* Failure to respect these conditions will result in a poor quality hash.
|
|
*/
|
|
#define XXPH3_SECRET_SIZE_MIN 136
|
|
XXPH_PUBLIC_API XXPH64_hash_t XXPH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
|
|
|
|
/* XXPH3_64bits_withSeed() :
|
|
* This variant generates on the fly a custom secret,
|
|
* based on the default secret, altered using the `seed` value.
|
|
* While this operation is decently fast, note that it's not completely free.
|
|
* note : seed==0 produces same results as XXPH3_64bits() */
|
|
XXPH_PUBLIC_API XXPH64_hash_t XXPH3_64bits_withSeed(const void* data, size_t len, XXPH64_hash_t seed);
|
|
|
|
#if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */
|
|
# include <stdalign.h>
|
|
# define XXPH_ALIGN(n) alignas(n)
|
|
#elif defined(__GNUC__)
|
|
# define XXPH_ALIGN(n) __attribute__ ((aligned(n)))
|
|
#elif defined(_MSC_VER)
|
|
# define XXPH_ALIGN(n) __declspec(align(n))
|
|
#else
|
|
# define XXPH_ALIGN(n) /* disabled */
|
|
#endif
|
|
|
|
#define XXPH3_SECRET_DEFAULT_SIZE 192 /* minimum XXPH3_SECRET_SIZE_MIN */
|
|
|
|
#endif /* XXPH_NO_LONG_LONG */
|
|
|
|
|
|
/*-**********************************************************************
|
|
* XXPH_INLINE_ALL
|
|
************************************************************************/
|
|
#if defined(XXPH_INLINE_ALL) || defined(XXPH_PRIVATE_API)
|
|
|
|
/* === RocksDB modification: was #include here but permanently inlining === */
|
|
|
|
typedef struct {
|
|
XXPH64_hash_t low64;
|
|
XXPH64_hash_t high64;
|
|
} XXPH128_hash_t;
|
|
|
|
/* *************************************
|
|
* Tuning parameters
|
|
***************************************/
|
|
/*!XXPH_FORCE_MEMORY_ACCESS :
|
|
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
|
|
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
|
|
* The below switch allow to select different access method for improved performance.
|
|
* Method 0 (default) : use `memcpy()`. Safe and portable.
|
|
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
|
|
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
|
|
* Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
|
|
* It can generate buggy code on targets which do not support unaligned memory accesses.
|
|
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
|
|
* See http://stackoverflow.com/a/32095106/646947 for details.
|
|
* Prefer these methods in priority order (0 > 1 > 2)
|
|
*/
|
|
#ifndef XXPH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
|
|
# if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6)
|
|
# define XXPH_FORCE_MEMORY_ACCESS 2
|
|
# elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
|
|
(defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7)))
|
|
# define XXPH_FORCE_MEMORY_ACCESS 1
|
|
# endif
|
|
#endif
|
|
|
|
/*!XXPH_ACCEPT_NULL_INPUT_POINTER :
|
|
* If input pointer is NULL, xxHash default behavior is to dereference it, triggering a segfault.
|
|
* When this macro is enabled, xxHash actively checks input for null pointer.
|
|
* It it is, result for null input pointers is the same as a null-length input.
|
|
*/
|
|
#ifndef XXPH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */
|
|
# define XXPH_ACCEPT_NULL_INPUT_POINTER 0
|
|
#endif
|
|
|
|
/*!XXPH_FORCE_ALIGN_CHECK :
|
|
* This is a minor performance trick, only useful with lots of very small keys.
|
|
* It means : check for aligned/unaligned input.
|
|
* The check costs one initial branch per hash;
|
|
* set it to 0 when the input is guaranteed to be aligned,
|
|
* or when alignment doesn't matter for performance.
|
|
*/
|
|
#ifndef XXPH_FORCE_ALIGN_CHECK /* can be defined externally */
|
|
# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
|
|
# define XXPH_FORCE_ALIGN_CHECK 0
|
|
# else
|
|
# define XXPH_FORCE_ALIGN_CHECK 1
|
|
# endif
|
|
#endif
|
|
|
|
/*!XXPH_REROLL:
|
|
* Whether to reroll XXPH32_finalize, and XXPH64_finalize,
|
|
* instead of using an unrolled jump table/if statement loop.
|
|
*
|
|
* This is automatically defined on -Os/-Oz on GCC and Clang. */
|
|
#ifndef XXPH_REROLL
|
|
# if defined(__OPTIMIZE_SIZE__)
|
|
# define XXPH_REROLL 1
|
|
# else
|
|
# define XXPH_REROLL 0
|
|
# endif
|
|
#endif
|
|
|
|
#include <limits.h> /* ULLONG_MAX */
|
|
|
|
#ifndef XXPH_STATIC_LINKING_ONLY
|
|
#define XXPH_STATIC_LINKING_ONLY
|
|
#endif
|
|
|
|
/* BEGIN RocksDB customizations */
|
|
#include "port/lang.h" /* for FALLTHROUGH_INTENDED, inserted as appropriate */
|
|
/* END RocksDB customizations */
|
|
|
|
/* *************************************
|
|
* Compiler Specific Options
|
|
***************************************/
|
|
#ifdef _MSC_VER /* Visual Studio */
|
|
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
|
|
# define XXPH_FORCE_INLINE static __forceinline
|
|
# define XXPH_NO_INLINE static __declspec(noinline)
|
|
#else
|
|
# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
|
|
# ifdef __GNUC__
|
|
# define XXPH_FORCE_INLINE static inline __attribute__((always_inline))
|
|
# define XXPH_NO_INLINE static __attribute__((noinline))
|
|
# else
|
|
# define XXPH_FORCE_INLINE static inline
|
|
# define XXPH_NO_INLINE static
|
|
# endif
|
|
# else
|
|
# define XXPH_FORCE_INLINE static
|
|
# define XXPH_NO_INLINE static
|
|
# endif /* __STDC_VERSION__ */
|
|
#endif
|
|
|
|
|
|
|
|
/* *************************************
|
|
* Debug
|
|
***************************************/
|
|
/* DEBUGLEVEL is expected to be defined externally,
|
|
* typically through compiler command line.
|
|
* Value must be a number. */
|
|
#ifndef DEBUGLEVEL
|
|
# define DEBUGLEVEL 0
|
|
#endif
|
|
|
|
#if (DEBUGLEVEL>=1)
|
|
# include <assert.h> /* note : can still be disabled with NDEBUG */
|
|
# define XXPH_ASSERT(c) assert(c)
|
|
#else
|
|
# define XXPH_ASSERT(c) ((void)0)
|
|
#endif
|
|
|
|
/* note : use after variable declarations */
|
|
#define XXPH_STATIC_ASSERT(c) { enum { XXPH_sa = 1/(int)(!!(c)) }; }
|
|
|
|
|
|
/* *************************************
|
|
* Basic Types
|
|
***************************************/
|
|
#if !defined (__VMS) \
|
|
&& (defined (__cplusplus) \
|
|
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
|
|
# include <stdint.h>
|
|
typedef uint8_t xxh_u8;
|
|
#else
|
|
typedef unsigned char xxh_u8;
|
|
#endif
|
|
typedef XXPH32_hash_t xxh_u32;
|
|
|
|
|
|
/* === Memory access === */
|
|
|
|
#if (defined(XXPH_FORCE_MEMORY_ACCESS) && (XXPH_FORCE_MEMORY_ACCESS==2))
|
|
|
|
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
|
|
static xxh_u32 XXPH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
|
|
|
|
#elif (defined(XXPH_FORCE_MEMORY_ACCESS) && (XXPH_FORCE_MEMORY_ACCESS==1))
|
|
|
|
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
|
|
/* currently only defined for gcc and icc */
|
|
typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
|
|
static xxh_u32 XXPH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
|
|
|
|
#else
|
|
|
|
/* portable and safe solution. Generally efficient.
|
|
* see : http://stackoverflow.com/a/32095106/646947
|
|
*/
|
|
static xxh_u32 XXPH_read32(const void* memPtr)
|
|
{
|
|
xxh_u32 val;
|
|
memcpy(&val, memPtr, sizeof(val));
|
|
return val;
|
|
}
|
|
|
|
#endif /* XXPH_FORCE_DIRECT_MEMORY_ACCESS */
|
|
|
|
|
|
/* === Endianess === */
|
|
|
|
/* XXPH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
|
|
#ifndef XXPH_CPU_LITTLE_ENDIAN
|
|
# if defined(_WIN32) /* Windows is always little endian */ \
|
|
|| defined(__LITTLE_ENDIAN__) \
|
|
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
|
|
# define XXPH_CPU_LITTLE_ENDIAN 1
|
|
# elif defined(__BIG_ENDIAN__) \
|
|
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
|
|
# define XXPH_CPU_LITTLE_ENDIAN 0
|
|
# else
|
|
static int XXPH_isLittleEndian(void)
|
|
{
|
|
const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 }; /* don't use static : performance detrimental */
|
|
return one.c[0];
|
|
}
|
|
# define XXPH_CPU_LITTLE_ENDIAN XXPH_isLittleEndian()
|
|
# endif
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* ****************************************
|
|
* Compiler-specific Functions and Macros
|
|
******************************************/
|
|
#define XXPH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
|
|
|
|
#ifndef __has_builtin
|
|
# define __has_builtin(x) 0
|
|
#endif
|
|
|
|
#if !defined(NO_CLANG_BUILTIN) && __has_builtin(__builtin_rotateleft32) && __has_builtin(__builtin_rotateleft64)
|
|
# define XXPH_rotl32 __builtin_rotateleft32
|
|
# define XXPH_rotl64 __builtin_rotateleft64
|
|
/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
|
|
#elif defined(_MSC_VER)
|
|
# define XXPH_rotl32(x,r) _rotl(x,r)
|
|
# define XXPH_rotl64(x,r) _rotl64(x,r)
|
|
#else
|
|
# define XXPH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
|
|
# define XXPH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
|
|
#endif
|
|
|
|
#if defined(_MSC_VER) /* Visual Studio */
|
|
# define XXPH_swap32 _byteswap_ulong
|
|
#elif XXPH_GCC_VERSION >= 403
|
|
# define XXPH_swap32 __builtin_bswap32
|
|
#else
|
|
static xxh_u32 XXPH_swap32 (xxh_u32 x)
|
|
{
|
|
return ((x << 24) & 0xff000000 ) |
|
|
((x << 8) & 0x00ff0000 ) |
|
|
((x >> 8) & 0x0000ff00 ) |
|
|
((x >> 24) & 0x000000ff );
|
|
}
|
|
#endif
|
|
|
|
|
|
/* ***************************
|
|
* Memory reads
|
|
*****************************/
|
|
typedef enum { XXPH_aligned, XXPH_unaligned } XXPH_alignment;
|
|
|
|
XXPH_FORCE_INLINE xxh_u32 XXPH_readLE32(const void* ptr)
|
|
{
|
|
return XXPH_CPU_LITTLE_ENDIAN ? XXPH_read32(ptr) : XXPH_swap32(XXPH_read32(ptr));
|
|
}
|
|
|
|
XXPH_FORCE_INLINE xxh_u32
|
|
XXPH_readLE32_align(const void* ptr, XXPH_alignment align)
|
|
{
|
|
if (align==XXPH_unaligned) {
|
|
return XXPH_readLE32(ptr);
|
|
} else {
|
|
return XXPH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXPH_swap32(*(const xxh_u32*)ptr);
|
|
}
|
|
}
|
|
|
|
|
|
/* *************************************
|
|
* Misc
|
|
***************************************/
|
|
XXPH_PUBLIC_API unsigned XXPH_versionNumber (void) { return XXPH_VERSION_NUMBER; }
|
|
|
|
|
|
static const xxh_u32 PRIME32_1 = 0x9E3779B1U; /* 0b10011110001101110111100110110001 */
|
|
static const xxh_u32 PRIME32_2 = 0x85EBCA77U; /* 0b10000101111010111100101001110111 */
|
|
static const xxh_u32 PRIME32_3 = 0xC2B2AE3DU; /* 0b11000010101100101010111000111101 */
|
|
static const xxh_u32 PRIME32_4 = 0x27D4EB2FU; /* 0b00100111110101001110101100101111 */
|
|
static const xxh_u32 PRIME32_5 = 0x165667B1U; /* 0b00010110010101100110011110110001 */
|
|
|
|
#ifndef XXPH_NO_LONG_LONG
|
|
|
|
/* *******************************************************************
|
|
* 64-bit hash functions
|
|
*********************************************************************/
|
|
|
|
/*====== Memory access ======*/
|
|
|
|
typedef XXPH64_hash_t xxh_u64;
|
|
|
|
#if (defined(XXPH_FORCE_MEMORY_ACCESS) && (XXPH_FORCE_MEMORY_ACCESS==2))
|
|
|
|
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
|
|
static xxh_u64 XXPH_read64(const void* memPtr) { return *(const xxh_u64*) memPtr; }
|
|
|
|
#elif (defined(XXPH_FORCE_MEMORY_ACCESS) && (XXPH_FORCE_MEMORY_ACCESS==1))
|
|
|
|
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
|
|
/* currently only defined for gcc and icc */
|
|
typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
|
|
static xxh_u64 XXPH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; }
|
|
|
|
#else
|
|
|
|
/* portable and safe solution. Generally efficient.
|
|
* see : http://stackoverflow.com/a/32095106/646947
|
|
*/
|
|
|
|
static xxh_u64 XXPH_read64(const void* memPtr)
|
|
{
|
|
xxh_u64 val;
|
|
memcpy(&val, memPtr, sizeof(val));
|
|
return val;
|
|
}
|
|
|
|
#endif /* XXPH_FORCE_DIRECT_MEMORY_ACCESS */
|
|
|
|
#if defined(_MSC_VER) /* Visual Studio */
|
|
# define XXPH_swap64 _byteswap_uint64
|
|
#elif XXPH_GCC_VERSION >= 403
|
|
# define XXPH_swap64 __builtin_bswap64
|
|
#else
|
|
static xxh_u64 XXPH_swap64 (xxh_u64 x)
|
|
{
|
|
return ((x << 56) & 0xff00000000000000ULL) |
|
|
((x << 40) & 0x00ff000000000000ULL) |
|
|
((x << 24) & 0x0000ff0000000000ULL) |
|
|
((x << 8) & 0x000000ff00000000ULL) |
|
|
((x >> 8) & 0x00000000ff000000ULL) |
|
|
((x >> 24) & 0x0000000000ff0000ULL) |
|
|
((x >> 40) & 0x000000000000ff00ULL) |
|
|
((x >> 56) & 0x00000000000000ffULL);
|
|
}
|
|
#endif
|
|
|
|
XXPH_FORCE_INLINE xxh_u64 XXPH_readLE64(const void* ptr)
|
|
{
|
|
return XXPH_CPU_LITTLE_ENDIAN ? XXPH_read64(ptr) : XXPH_swap64(XXPH_read64(ptr));
|
|
}
|
|
|
|
XXPH_FORCE_INLINE xxh_u64
|
|
XXPH_readLE64_align(const void* ptr, XXPH_alignment align)
|
|
{
|
|
if (align==XXPH_unaligned)
|
|
return XXPH_readLE64(ptr);
|
|
else
|
|
return XXPH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXPH_swap64(*(const xxh_u64*)ptr);
|
|
}
|
|
|
|
|
|
/*====== xxh64 ======*/
|
|
|
|
static const xxh_u64 PRIME64_1 = 0x9E3779B185EBCA87ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 */
|
|
static const xxh_u64 PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 */
|
|
static const xxh_u64 PRIME64_3 = 0x165667B19E3779F9ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 */
|
|
static const xxh_u64 PRIME64_4 = 0x85EBCA77C2B2AE63ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011 */
|
|
static const xxh_u64 PRIME64_5 = 0x27D4EB2F165667C5ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101 */
|
|
|
|
|
|
/* *********************************************************************
|
|
* XXPH3
|
|
* New generation hash designed for speed on small keys and vectorization
|
|
************************************************************************ */
|
|
|
|
/*======== Was #include "xxh3.h", now inlined below ==========*/
|
|
|
|
/*
|
|
xxHash - Extremely Fast Hash algorithm
|
|
Development source file for `xxh3`
|
|
Copyright (C) 2019-present, Yann Collet.
|
|
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- xxHash source repository : https://github.com/Cyan4973/xxHash
|
|
*/
|
|
|
|
/* RocksDB Note: This file contains a preview release (xxhash repository
|
|
version 0.7.2) of XXPH3 that is unlikely to be compatible with the final
|
|
version of XXPH3. We have therefore renamed this XXPH3 ("preview"), for
|
|
clarity so that we can continue to use this version even after
|
|
integrating a newer incompatible version.
|
|
*/
|
|
|
|
/* === Dependencies === */
|
|
|
|
#undef XXPH_INLINE_ALL /* in case it's already defined */
|
|
#define XXPH_INLINE_ALL
|
|
|
|
|
|
/* === Compiler specifics === */
|
|
|
|
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
|
|
# define XXPH_RESTRICT restrict
|
|
#else
|
|
/* note : it might be useful to define __restrict or __restrict__ for some C++ compilers */
|
|
# define XXPH_RESTRICT /* disable */
|
|
#endif
|
|
|
|
#if defined(__GNUC__)
|
|
# if defined(__AVX2__)
|
|
# include <immintrin.h>
|
|
# elif defined(__SSE2__)
|
|
# include <emmintrin.h>
|
|
# elif defined(__ARM_NEON__) || defined(__ARM_NEON)
|
|
# define inline __inline__ /* clang bug */
|
|
# include <arm_neon.h>
|
|
# undef inline
|
|
# endif
|
|
#elif defined(_MSC_VER)
|
|
# include <intrin.h>
|
|
#endif
|
|
|
|
/*
|
|
* Sanity check.
|
|
*
|
|
* XXPH3 only requires these features to be efficient:
|
|
*
|
|
* - Usable unaligned access
|
|
* - A 32-bit or 64-bit ALU
|
|
* - If 32-bit, a decent ADC instruction
|
|
* - A 32 or 64-bit multiply with a 64-bit result
|
|
*
|
|
* Almost all 32-bit and 64-bit targets meet this, except for Thumb-1, the
|
|
* classic 16-bit only subset of ARM's instruction set.
|
|
*
|
|
* First of all, Thumb-1 lacks support for the UMULL instruction which
|
|
* performs the important long multiply. This means numerous __aeabi_lmul
|
|
* calls.
|
|
*
|
|
* Second of all, the 8 functional registers are just not enough.
|
|
* Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
|
|
* Lo registers, and this shuffling results in thousands more MOVs than A32.
|
|
*
|
|
* A32 and T32 don't have this limitation. They can access all 14 registers,
|
|
* do a 32->64 multiply with UMULL, and the flexible operand is helpful too.
|
|
*
|
|
* If compiling Thumb-1 for a target which supports ARM instructions, we
|
|
* will give a warning.
|
|
*
|
|
* Usually, if this happens, it is because of an accident and you probably
|
|
* need to specify -march, as you probably meant to compileh for a newer
|
|
* architecture.
|
|
*/
|
|
#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
|
|
# warning "XXPH3 is highly inefficient without ARM or Thumb-2."
|
|
#endif
|
|
|
|
/* ==========================================
|
|
* Vectorization detection
|
|
* ========================================== */
|
|
#define XXPH_SCALAR 0
|
|
#define XXPH_SSE2 1
|
|
#define XXPH_AVX2 2
|
|
#define XXPH_NEON 3
|
|
#define XXPH_VSX 4
|
|
|
|
#ifndef XXPH_VECTOR /* can be defined on command line */
|
|
# if defined(__AVX2__)
|
|
# define XXPH_VECTOR XXPH_AVX2
|
|
# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
|
|
# define XXPH_VECTOR XXPH_SSE2
|
|
# elif defined(__GNUC__) /* msvc support maybe later */ \
|
|
&& (defined(__ARM_NEON__) || defined(__ARM_NEON)) \
|
|
&& (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
|
|
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
|
|
# define XXPH_VECTOR XXPH_NEON
|
|
# elif defined(__PPC64__) && defined(__POWER8_VECTOR__) && defined(__GNUC__)
|
|
# define XXPH_VECTOR XXPH_VSX
|
|
# else
|
|
# define XXPH_VECTOR XXPH_SCALAR
|
|
# endif
|
|
#endif
|
|
|
|
/* control alignment of accumulator,
|
|
* for compatibility with fast vector loads */
|
|
#ifndef XXPH_ACC_ALIGN
|
|
# if XXPH_VECTOR == 0 /* scalar */
|
|
# define XXPH_ACC_ALIGN 8
|
|
# elif XXPH_VECTOR == 1 /* sse2 */
|
|
# define XXPH_ACC_ALIGN 16
|
|
# elif XXPH_VECTOR == 2 /* avx2 */
|
|
# define XXPH_ACC_ALIGN 32
|
|
# elif XXPH_VECTOR == 3 /* neon */
|
|
# define XXPH_ACC_ALIGN 16
|
|
# elif XXPH_VECTOR == 4 /* vsx */
|
|
# define XXPH_ACC_ALIGN 16
|
|
# endif
|
|
#endif
|
|
|
|
/* xxh_u64 XXPH_mult32to64(xxh_u32 a, xxh_u64 b) { return (xxh_u64)a * (xxh_u64)b; } */
|
|
#if defined(_MSC_VER) && defined(_M_IX86)
|
|
# include <intrin.h>
|
|
# define XXPH_mult32to64(x, y) __emulu(x, y)
|
|
#else
|
|
# define XXPH_mult32to64(x, y) ((xxh_u64)((x) & 0xFFFFFFFF) * (xxh_u64)((y) & 0xFFFFFFFF))
|
|
#endif
|
|
|
|
/* VSX stuff. It's a lot because VSX support is mediocre across compilers and
|
|
* there is a lot of mischief with endianness. */
|
|
#if XXPH_VECTOR == XXPH_VSX
|
|
# include <altivec.h>
|
|
# undef vector
|
|
typedef __vector unsigned long long U64x2;
|
|
typedef __vector unsigned char U8x16;
|
|
typedef __vector unsigned U32x4;
|
|
|
|
#ifndef XXPH_VSX_BE
|
|
# if defined(__BIG_ENDIAN__) \
|
|
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
|
|
# define XXPH_VSX_BE 1
|
|
# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
|
|
# warning "-maltivec=be is not recommended. Please use native endianness."
|
|
# define XXPH_VSX_BE 1
|
|
# else
|
|
# define XXPH_VSX_BE 0
|
|
# endif
|
|
#endif
|
|
|
|
/* We need some helpers for big endian mode. */
|
|
#if XXPH_VSX_BE
|
|
/* A wrapper for POWER9's vec_revb. */
|
|
# ifdef __POWER9_VECTOR__
|
|
# define XXPH_vec_revb vec_revb
|
|
# else
|
|
XXPH_FORCE_INLINE U64x2 XXPH_vec_revb(U64x2 val)
|
|
{
|
|
U8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
|
|
0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
|
|
return vec_perm(val, val, vByteSwap);
|
|
}
|
|
# endif
|
|
|
|
/* Power8 Crypto gives us vpermxor which is very handy for
|
|
* PPC64EB.
|
|
*
|
|
* U8x16 vpermxor(U8x16 a, U8x16 b, U8x16 mask)
|
|
* {
|
|
* U8x16 ret;
|
|
* for (int i = 0; i < 16; i++) {
|
|
* ret[i] = a[mask[i] & 0xF] ^ b[mask[i] >> 4];
|
|
* }
|
|
* return ret;
|
|
* }
|
|
*
|
|
* Because both of the main loops load the key, swap, and xor it with input,
|
|
* we can combine the key swap into this instruction.
|
|
*/
|
|
# ifdef vec_permxor
|
|
# define XXPH_vec_permxor vec_permxor
|
|
# else
|
|
# define XXPH_vec_permxor __builtin_crypto_vpermxor
|
|
# endif
|
|
#endif /* XXPH_VSX_BE */
|
|
/*
|
|
* Because we reinterpret the multiply, there are endian memes: vec_mulo actually becomes
|
|
* vec_mule.
|
|
*
|
|
* Additionally, the intrinsic wasn't added until GCC 8, despite existing for a while.
|
|
* Clang has an easy way to control this, we can just use the builtin which doesn't swap.
|
|
* GCC needs inline assembly. */
|
|
#if __has_builtin(__builtin_altivec_vmuleuw)
|
|
# define XXPH_vec_mulo __builtin_altivec_vmulouw
|
|
# define XXPH_vec_mule __builtin_altivec_vmuleuw
|
|
#else
|
|
/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
|
|
XXPH_FORCE_INLINE U64x2 XXPH_vec_mulo(U32x4 a, U32x4 b) {
|
|
U64x2 result;
|
|
__asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
|
|
return result;
|
|
}
|
|
XXPH_FORCE_INLINE U64x2 XXPH_vec_mule(U32x4 a, U32x4 b) {
|
|
U64x2 result;
|
|
__asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
|
|
return result;
|
|
}
|
|
#endif /* __has_builtin(__builtin_altivec_vmuleuw) */
|
|
#endif /* XXPH_VECTOR == XXPH_VSX */
|
|
|
|
/* prefetch
|
|
* can be disabled, by declaring XXPH_NO_PREFETCH build macro */
|
|
#if defined(XXPH_NO_PREFETCH)
|
|
# define XXPH_PREFETCH(ptr) (void)(ptr) /* disabled */
|
|
#else
|
|
#if defined(_MSC_VER) && \
|
|
(defined(_M_X64) || \
|
|
defined(_M_IX86)) /* _mm_prefetch() is not defined outside of x86/x64 */
|
|
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
|
|
# define XXPH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
|
|
# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
|
|
# define XXPH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
|
|
# else
|
|
# define XXPH_PREFETCH(ptr) (void)(ptr) /* disabled */
|
|
# endif
|
|
#endif /* XXPH_NO_PREFETCH */
|
|
|
|
|
|
/* ==========================================
|
|
* XXPH3 default settings
|
|
* ========================================== */
|
|
|
|
#define XXPH_SECRET_DEFAULT_SIZE 192 /* minimum XXPH3_SECRET_SIZE_MIN */
|
|
|
|
#if (XXPH_SECRET_DEFAULT_SIZE < XXPH3_SECRET_SIZE_MIN)
|
|
# error "default keyset is not large enough"
|
|
#endif
|
|
|
|
XXPH_ALIGN(64) static const xxh_u8 kSecret[XXPH_SECRET_DEFAULT_SIZE] = {
|
|
0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
|
|
0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
|
|
0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
|
|
0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
|
|
0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
|
|
0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
|
|
0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
|
|
0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
|
|
|
|
0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
|
|
0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
|
|
0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
|
|
0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
|
|
};
|
|
|
|
/*
|
|
* GCC for x86 has a tendency to use SSE in this loop. While it
|
|
* successfully avoids swapping (as MUL overwrites EAX and EDX), it
|
|
* slows it down because instead of free register swap shifts, it
|
|
* must use pshufd and punpckl/hd.
|
|
*
|
|
* To prevent this, we use this attribute to shut off SSE.
|
|
*/
|
|
#if defined(__GNUC__) && !defined(__clang__) && defined(__i386__)
|
|
__attribute__((__target__("no-sse")))
|
|
#endif
|
|
static XXPH128_hash_t
|
|
XXPH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
|
|
{
|
|
/*
|
|
* GCC/Clang __uint128_t method.
|
|
*
|
|
* On most 64-bit targets, GCC and Clang define a __uint128_t type.
|
|
* This is usually the best way as it usually uses a native long 64-bit
|
|
* multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
|
|
*
|
|
* Usually.
|
|
*
|
|
* Despite being a 32-bit platform, Clang (and emscripten) define this
|
|
* type despite not having the arithmetic for it. This results in a
|
|
* laggy compiler builtin call which calculates a full 128-bit multiply.
|
|
* In that case it is best to use the portable one.
|
|
* https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
|
|
*/
|
|
#if defined(__GNUC__) && !defined(__wasm__) \
|
|
&& defined(__SIZEOF_INT128__) \
|
|
|| (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
|
|
|
|
__uint128_t product = (__uint128_t)lhs * (__uint128_t)rhs;
|
|
XXPH128_hash_t const r128 = { (xxh_u64)(product), (xxh_u64)(product >> 64) };
|
|
return r128;
|
|
|
|
/*
|
|
* MSVC for x64's _umul128 method.
|
|
*
|
|
* xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
|
|
*
|
|
* This compiles to single operand MUL on x64.
|
|
*/
|
|
#elif defined(_M_X64) || defined(_M_IA64)
|
|
|
|
#ifndef _MSC_VER
|
|
# pragma intrinsic(_umul128)
|
|
#endif
|
|
xxh_u64 product_high;
|
|
xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
|
|
XXPH128_hash_t const r128 = { product_low, product_high };
|
|
return r128;
|
|
|
|
#else
|
|
/*
|
|
* Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
|
|
*
|
|
* This is a fast and simple grade school multiply, which is shown
|
|
* below with base 10 arithmetic instead of base 0x100000000.
|
|
*
|
|
* 9 3 // D2 lhs = 93
|
|
* x 7 5 // D2 rhs = 75
|
|
* ----------
|
|
* 1 5 // D2 lo_lo = (93 % 10) * (75 % 10)
|
|
* 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10)
|
|
* 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10)
|
|
* + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10)
|
|
* ---------
|
|
* 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21
|
|
* + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63
|
|
* ---------
|
|
* 6 9 7 5
|
|
*
|
|
* The reasons for adding the products like this are:
|
|
* 1. It avoids manual carry tracking. Just like how
|
|
* (9 * 9) + 9 + 9 = 99, the same applies with this for
|
|
* UINT64_MAX. This avoids a lot of complexity.
|
|
*
|
|
* 2. It hints for, and on Clang, compiles to, the powerful UMAAL
|
|
* instruction available in ARMv6+ A32/T32, which is shown below:
|
|
*
|
|
* void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
|
|
* {
|
|
* xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
|
|
* *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
|
|
* *RdHi = (xxh_u32)(product >> 32);
|
|
* }
|
|
*
|
|
* This instruction was designed for efficient long multiplication,
|
|
* and allows this to be calculated in only 4 instructions which
|
|
* is comparable to some 64-bit ALUs.
|
|
*
|
|
* 3. It isn't terrible on other platforms. Usually this will be
|
|
* a couple of 32-bit ADD/ADCs.
|
|
*/
|
|
|
|
/* First calculate all of the cross products. */
|
|
xxh_u64 const lo_lo = XXPH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
|
|
xxh_u64 const hi_lo = XXPH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
|
|
xxh_u64 const lo_hi = XXPH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
|
|
xxh_u64 const hi_hi = XXPH_mult32to64(lhs >> 32, rhs >> 32);
|
|
|
|
/* Now add the products together. These will never overflow. */
|
|
xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
|
|
xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
|
|
xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
|
|
|
|
XXPH128_hash_t r128 = { lower, upper };
|
|
return r128;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* We want to keep the attribute here because a target switch
|
|
* disables inlining.
|
|
*
|
|
* Does a 64-bit to 128-bit multiply, then XOR folds it.
|
|
* The reason for the separate function is to prevent passing
|
|
* too many structs around by value. This will hopefully inline
|
|
* the multiply, but we don't force it.
|
|
*/
|
|
#if defined(__GNUC__) && !defined(__clang__) && defined(__i386__)
|
|
__attribute__((__target__("no-sse")))
|
|
#endif
|
|
static xxh_u64
|
|
XXPH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
|
|
{
|
|
XXPH128_hash_t product = XXPH_mult64to128(lhs, rhs);
|
|
return product.low64 ^ product.high64;
|
|
}
|
|
|
|
|
|
static XXPH64_hash_t XXPH3_avalanche(xxh_u64 h64)
|
|
{
|
|
h64 ^= h64 >> 37;
|
|
h64 *= PRIME64_3;
|
|
h64 ^= h64 >> 32;
|
|
return h64;
|
|
}
|
|
|
|
|
|
/* ==========================================
|
|
* Short keys
|
|
* ========================================== */
|
|
|
|
XXPH_FORCE_INLINE XXPH64_hash_t
|
|
XXPH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXPH64_hash_t seed)
|
|
{
|
|
XXPH_ASSERT(input != NULL);
|
|
XXPH_ASSERT(1 <= len && len <= 3);
|
|
XXPH_ASSERT(secret != NULL);
|
|
{ xxh_u8 const c1 = input[0];
|
|
xxh_u8 const c2 = input[len >> 1];
|
|
xxh_u8 const c3 = input[len - 1];
|
|
xxh_u32 const combined = ((xxh_u32)c1) | (((xxh_u32)c2) << 8) | (((xxh_u32)c3) << 16) | (((xxh_u32)len) << 24);
|
|
xxh_u64 const keyed = (xxh_u64)combined ^ (XXPH_readLE32(secret) + seed);
|
|
xxh_u64 const mixed = keyed * PRIME64_1;
|
|
return XXPH3_avalanche(mixed);
|
|
}
|
|
}
|
|
|
|
XXPH_FORCE_INLINE XXPH64_hash_t
|
|
XXPH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXPH64_hash_t seed)
|
|
{
|
|
XXPH_ASSERT(input != NULL);
|
|
XXPH_ASSERT(secret != NULL);
|
|
XXPH_ASSERT(4 <= len && len <= 8);
|
|
{ xxh_u32 const input_lo = XXPH_readLE32(input);
|
|
xxh_u32 const input_hi = XXPH_readLE32(input + len - 4);
|
|
xxh_u64 const input_64 = input_lo | ((xxh_u64)input_hi << 32);
|
|
xxh_u64 const keyed = input_64 ^ (XXPH_readLE64(secret) + seed);
|
|
xxh_u64 const mix64 = len + ((keyed ^ (keyed >> 51)) * PRIME32_1);
|
|
return XXPH3_avalanche((mix64 ^ (mix64 >> 47)) * PRIME64_2);
|
|
}
|
|
}
|
|
|
|
XXPH_FORCE_INLINE XXPH64_hash_t
|
|
XXPH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXPH64_hash_t seed)
|
|
{
|
|
XXPH_ASSERT(input != NULL);
|
|
XXPH_ASSERT(secret != NULL);
|
|
XXPH_ASSERT(9 <= len && len <= 16);
|
|
{ xxh_u64 const input_lo = XXPH_readLE64(input) ^ (XXPH_readLE64(secret) + seed);
|
|
xxh_u64 const input_hi = XXPH_readLE64(input + len - 8) ^ (XXPH_readLE64(secret + 8) - seed);
|
|
xxh_u64 const acc = len + (input_lo + input_hi) + XXPH3_mul128_fold64(input_lo, input_hi);
|
|
return XXPH3_avalanche(acc);
|
|
}
|
|
}
|
|
|
|
XXPH_FORCE_INLINE XXPH64_hash_t
|
|
XXPH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXPH64_hash_t seed)
|
|
{
|
|
XXPH_ASSERT(len <= 16);
|
|
{ if (len > 8) return XXPH3_len_9to16_64b(input, len, secret, seed);
|
|
if (len >= 4) return XXPH3_len_4to8_64b(input, len, secret, seed);
|
|
if (len) return XXPH3_len_1to3_64b(input, len, secret, seed);
|
|
/*
|
|
* RocksDB modification from XXPH3 preview: zero result for empty
|
|
* string can be problematic for multiplication-based algorithms.
|
|
* Return a hash of the seed instead.
|
|
*/
|
|
return XXPH3_mul128_fold64(seed + XXPH_readLE64(secret), PRIME64_2);
|
|
}
|
|
}
|
|
|
|
|
|
/* === Long Keys === */
|
|
|
|
#define STRIPE_LEN 64
|
|
#define XXPH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
|
|
#define ACC_NB (STRIPE_LEN / sizeof(xxh_u64))
|
|
|
|
typedef enum { XXPH3_acc_64bits, XXPH3_acc_128bits } XXPH3_accWidth_e;
|
|
|
|
XXPH_FORCE_INLINE void
|
|
XXPH3_accumulate_512( void* XXPH_RESTRICT acc,
|
|
const void* XXPH_RESTRICT input,
|
|
const void* XXPH_RESTRICT secret,
|
|
XXPH3_accWidth_e accWidth)
|
|
{
|
|
#if (XXPH_VECTOR == XXPH_AVX2)
|
|
|
|
XXPH_ASSERT((((size_t)acc) & 31) == 0);
|
|
{ XXPH_ALIGN(32) __m256i* const xacc = (__m256i *) acc;
|
|
const __m256i* const xinput = (const __m256i *) input; /* not really aligned, just for ptr arithmetic, and because _mm256_loadu_si256() requires this type */
|
|
const __m256i* const xsecret = (const __m256i *) secret; /* not really aligned, just for ptr arithmetic, and because _mm256_loadu_si256() requires this type */
|
|
|
|
size_t i;
|
|
for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
|
|
__m256i const data_vec = _mm256_loadu_si256 (xinput+i);
|
|
__m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
|
|
__m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); /* uint32 dk[8] = {d0+k0, d1+k1, d2+k2, d3+k3, ...} */
|
|
__m256i const product = _mm256_mul_epu32 (data_key, _mm256_shuffle_epi32 (data_key, 0x31)); /* uint64 mul[4] = {dk0*dk1, dk2*dk3, ...} */
|
|
if (accWidth == XXPH3_acc_128bits) {
|
|
__m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
|
|
__m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
|
|
xacc[i] = _mm256_add_epi64(product, sum);
|
|
} else { /* XXPH3_acc_64bits */
|
|
__m256i const sum = _mm256_add_epi64(xacc[i], data_vec);
|
|
xacc[i] = _mm256_add_epi64(product, sum);
|
|
}
|
|
} }
|
|
|
|
#elif (XXPH_VECTOR == XXPH_SSE2)
|
|
|
|
XXPH_ASSERT((((size_t)acc) & 15) == 0);
|
|
{ XXPH_ALIGN(16) __m128i* const xacc = (__m128i *) acc;
|
|
const __m128i* const xinput = (const __m128i *) input; /* not really aligned, just for ptr arithmetic, and because _mm_loadu_si128() requires this type */
|
|
const __m128i* const xsecret = (const __m128i *) secret; /* not really aligned, just for ptr arithmetic, and because _mm_loadu_si128() requires this type */
|
|
|
|
size_t i;
|
|
for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
|
|
__m128i const data_vec = _mm_loadu_si128 (xinput+i);
|
|
__m128i const key_vec = _mm_loadu_si128 (xsecret+i);
|
|
__m128i const data_key = _mm_xor_si128 (data_vec, key_vec); /* uint32 dk[8] = {d0+k0, d1+k1, d2+k2, d3+k3, ...} */
|
|
__m128i const product = _mm_mul_epu32 (data_key, _mm_shuffle_epi32 (data_key, 0x31)); /* uint64 mul[4] = {dk0*dk1, dk2*dk3, ...} */
|
|
if (accWidth == XXPH3_acc_128bits) {
|
|
__m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
|
|
__m128i const sum = _mm_add_epi64(xacc[i], data_swap);
|
|
xacc[i] = _mm_add_epi64(product, sum);
|
|
} else { /* XXPH3_acc_64bits */
|
|
__m128i const sum = _mm_add_epi64(xacc[i], data_vec);
|
|
xacc[i] = _mm_add_epi64(product, sum);
|
|
}
|
|
} }
|
|
|
|
#elif (XXPH_VECTOR == XXPH_NEON)
|
|
|
|
XXPH_ASSERT((((size_t)acc) & 15) == 0);
|
|
{
|
|
XXPH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc;
|
|
/* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
|
|
uint8_t const* const xinput = (const uint8_t *) input;
|
|
uint8_t const* const xsecret = (const uint8_t *) secret;
|
|
|
|
size_t i;
|
|
for (i=0; i < STRIPE_LEN / sizeof(uint64x2_t); i++) {
|
|
#if !defined(__aarch64__) && !defined(__arm64__) && defined(__GNUC__) /* ARM32-specific hack */
|
|
/* vzip on ARMv7 Clang generates a lot of vmovs (technically vorrs) without this.
|
|
* vzip on 32-bit ARM NEON will overwrite the original register, and I think that Clang
|
|
* assumes I don't want to destroy it and tries to make a copy. This slows down the code
|
|
* a lot.
|
|
* aarch64 not only uses an entirely different syntax, but it requires three
|
|
* instructions...
|
|
* ext v1.16B, v0.16B, #8 // select high bits because aarch64 can't address them directly
|
|
* zip1 v3.2s, v0.2s, v1.2s // first zip
|
|
* zip2 v2.2s, v0.2s, v1.2s // second zip
|
|
* ...to do what ARM does in one:
|
|
* vzip.32 d0, d1 // Interleave high and low bits and overwrite. */
|
|
|
|
/* data_vec = xsecret[i]; */
|
|
uint8x16_t const data_vec = vld1q_u8(xinput + (i * 16));
|
|
/* key_vec = xsecret[i]; */
|
|
uint8x16_t const key_vec = vld1q_u8(xsecret + (i * 16));
|
|
/* data_key = data_vec ^ key_vec; */
|
|
uint32x4_t data_key;
|
|
|
|
if (accWidth == XXPH3_acc_64bits) {
|
|
/* Add first to prevent register swaps */
|
|
/* xacc[i] += data_vec; */
|
|
xacc[i] = vaddq_u64 (xacc[i], vreinterpretq_u64_u8(data_vec));
|
|
} else { /* XXPH3_acc_128bits */
|
|
/* xacc[i] += swap(data_vec); */
|
|
/* can probably be optimized better */
|
|
uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
|
|
uint64x2_t const swapped= vextq_u64(data64, data64, 1);
|
|
xacc[i] = vaddq_u64 (xacc[i], swapped);
|
|
}
|
|
|
|
data_key = vreinterpretq_u32_u8(veorq_u8(data_vec, key_vec));
|
|
|
|
/* Here's the magic. We use the quirkiness of vzip to shuffle data_key in place.
|
|
* shuffle: data_key[0, 1, 2, 3] = data_key[0, 2, 1, 3] */
|
|
__asm__("vzip.32 %e0, %f0" : "+w" (data_key));
|
|
/* xacc[i] += (uint64x2_t) data_key[0, 1] * (uint64x2_t) data_key[2, 3]; */
|
|
xacc[i] = vmlal_u32(xacc[i], vget_low_u32(data_key), vget_high_u32(data_key));
|
|
|
|
#else
|
|
/* On aarch64, vshrn/vmovn seems to be equivalent to, if not faster than, the vzip method. */
|
|
|
|
/* data_vec = xsecret[i]; */
|
|
uint8x16_t const data_vec = vld1q_u8(xinput + (i * 16));
|
|
/* key_vec = xsecret[i]; */
|
|
uint8x16_t const key_vec = vld1q_u8(xsecret + (i * 16));
|
|
/* data_key = data_vec ^ key_vec; */
|
|
uint64x2_t const data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
|
|
/* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); */
|
|
uint32x2_t const data_key_lo = vmovn_u64 (data_key);
|
|
/* data_key_hi = (uint32x2_t) (data_key >> 32); */
|
|
uint32x2_t const data_key_hi = vshrn_n_u64 (data_key, 32);
|
|
if (accWidth == XXPH3_acc_64bits) {
|
|
/* xacc[i] += data_vec; */
|
|
xacc[i] = vaddq_u64 (xacc[i], vreinterpretq_u64_u8(data_vec));
|
|
} else { /* XXPH3_acc_128bits */
|
|
/* xacc[i] += swap(data_vec); */
|
|
uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
|
|
uint64x2_t const swapped= vextq_u64(data64, data64, 1);
|
|
xacc[i] = vaddq_u64 (xacc[i], swapped);
|
|
}
|
|
/* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
|
|
xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
|
|
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#elif (XXPH_VECTOR == XXPH_VSX) && /* work around a compiler bug */ (__GNUC__ > 5)
|
|
U64x2* const xacc = (U64x2*) acc; /* presumed aligned */
|
|
U64x2 const* const xinput = (U64x2 const*) input; /* no alignment restriction */
|
|
U64x2 const* const xsecret = (U64x2 const*) secret; /* no alignment restriction */
|
|
U64x2 const v32 = { 32, 32 };
|
|
#if XXPH_VSX_BE
|
|
U8x16 const vXorSwap = { 0x07, 0x16, 0x25, 0x34, 0x43, 0x52, 0x61, 0x70,
|
|
0x8F, 0x9E, 0xAD, 0xBC, 0xCB, 0xDA, 0xE9, 0xF8 };
|
|
#endif
|
|
size_t i;
|
|
for (i = 0; i < STRIPE_LEN / sizeof(U64x2); i++) {
|
|
/* data_vec = xinput[i]; */
|
|
/* key_vec = xsecret[i]; */
|
|
#if XXPH_VSX_BE
|
|
/* byteswap */
|
|
U64x2 const data_vec = XXPH_vec_revb(vec_vsx_ld(0, xinput + i));
|
|
U64x2 const key_raw = vec_vsx_ld(0, xsecret + i);
|
|
/* See comment above. data_key = data_vec ^ swap(xsecret[i]); */
|
|
U64x2 const data_key = (U64x2)XXPH_vec_permxor((U8x16)data_vec, (U8x16)key_raw, vXorSwap);
|
|
#else
|
|
U64x2 const data_vec = vec_vsx_ld(0, xinput + i);
|
|
U64x2 const key_vec = vec_vsx_ld(0, xsecret + i);
|
|
U64x2 const data_key = data_vec ^ key_vec;
|
|
#endif
|
|
/* shuffled = (data_key << 32) | (data_key >> 32); */
|
|
U32x4 const shuffled = (U32x4)vec_rl(data_key, v32);
|
|
/* product = ((U64x2)data_key & 0xFFFFFFFF) * ((U64x2)shuffled & 0xFFFFFFFF); */
|
|
U64x2 const product = XXPH_vec_mulo((U32x4)data_key, shuffled);
|
|
xacc[i] += product;
|
|
|
|
if (accWidth == XXPH3_acc_64bits) {
|
|
xacc[i] += data_vec;
|
|
} else { /* XXPH3_acc_128bits */
|
|
/* swap high and low halves */
|
|
U64x2 const data_swapped = vec_xxpermdi(data_vec, data_vec, 2);
|
|
xacc[i] += data_swapped;
|
|
}
|
|
}
|
|
|
|
#else /* scalar variant of Accumulator - universal */
|
|
|
|
XXPH_ALIGN(XXPH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned on 32-bytes boundaries, little hint for the auto-vectorizer */
|
|
const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */
|
|
const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
|
|
size_t i;
|
|
XXPH_ASSERT(((size_t)acc & (XXPH_ACC_ALIGN-1)) == 0);
|
|
for (i=0; i < ACC_NB; i++) {
|
|
xxh_u64 const data_val = XXPH_readLE64(xinput + 8*i);
|
|
xxh_u64 const data_key = data_val ^ XXPH_readLE64(xsecret + i*8);
|
|
|
|
if (accWidth == XXPH3_acc_64bits) {
|
|
xacc[i] += data_val;
|
|
} else {
|
|
xacc[i ^ 1] += data_val; /* swap adjacent lanes */
|
|
}
|
|
xacc[i] += XXPH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
XXPH_FORCE_INLINE void
|
|
XXPH3_scrambleAcc(void* XXPH_RESTRICT acc, const void* XXPH_RESTRICT secret)
|
|
{
|
|
#if (XXPH_VECTOR == XXPH_AVX2)
|
|
|
|
XXPH_ASSERT((((size_t)acc) & 31) == 0);
|
|
{ XXPH_ALIGN(32) __m256i* const xacc = (__m256i*) acc;
|
|
const __m256i* const xsecret = (const __m256i *) secret; /* not really aligned, just for ptr arithmetic, and because _mm256_loadu_si256() requires this argument type */
|
|
const __m256i prime32 = _mm256_set1_epi32((int)PRIME32_1);
|
|
|
|
size_t i;
|
|
for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
|
|
/* xacc[i] ^= (xacc[i] >> 47) */
|
|
__m256i const acc_vec = xacc[i];
|
|
__m256i const shifted = _mm256_srli_epi64 (acc_vec, 47);
|
|
__m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted);
|
|
/* xacc[i] ^= xsecret; */
|
|
__m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
|
|
__m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
|
|
|
|
/* xacc[i] *= PRIME32_1; */
|
|
__m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, 0x31);
|
|
__m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32);
|
|
__m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32);
|
|
xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
|
|
}
|
|
}
|
|
|
|
#elif (XXPH_VECTOR == XXPH_SSE2)
|
|
|
|
XXPH_ASSERT((((size_t)acc) & 15) == 0);
|
|
{ XXPH_ALIGN(16) __m128i* const xacc = (__m128i*) acc;
|
|
const __m128i* const xsecret = (const __m128i *) secret; /* not really aligned, just for ptr arithmetic, and because _mm_loadu_si128() requires this argument type */
|
|
const __m128i prime32 = _mm_set1_epi32((int)PRIME32_1);
|
|
|
|
size_t i;
|
|
for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
|
|
/* xacc[i] ^= (xacc[i] >> 47) */
|
|
__m128i const acc_vec = xacc[i];
|
|
__m128i const shifted = _mm_srli_epi64 (acc_vec, 47);
|
|
__m128i const data_vec = _mm_xor_si128 (acc_vec, shifted);
|
|
/* xacc[i] ^= xsecret; */
|
|
__m128i const key_vec = _mm_loadu_si128 (xsecret+i);
|
|
__m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
|
|
|
|
/* xacc[i] *= PRIME32_1; */
|
|
__m128i const data_key_hi = _mm_shuffle_epi32 (data_key, 0x31);
|
|
__m128i const prod_lo = _mm_mul_epu32 (data_key, prime32);
|
|
__m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32);
|
|
xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
|
|
}
|
|
}
|
|
|
|
#elif (XXPH_VECTOR == XXPH_NEON)
|
|
|
|
XXPH_ASSERT((((size_t)acc) & 15) == 0);
|
|
|
|
{ uint64x2_t* const xacc = (uint64x2_t*) acc;
|
|
uint8_t const* const xsecret = (uint8_t const*) secret;
|
|
uint32x2_t const prime = vdup_n_u32 (PRIME32_1);
|
|
|
|
size_t i;
|
|
for (i=0; i < STRIPE_LEN/sizeof(uint64x2_t); i++) {
|
|
/* data_vec = xacc[i] ^ (xacc[i] >> 47); */
|
|
uint64x2_t const acc_vec = xacc[i];
|
|
uint64x2_t const shifted = vshrq_n_u64 (acc_vec, 47);
|
|
uint64x2_t const data_vec = veorq_u64 (acc_vec, shifted);
|
|
|
|
/* key_vec = xsecret[i]; */
|
|
uint32x4_t const key_vec = vreinterpretq_u32_u8(vld1q_u8(xsecret + (i * 16)));
|
|
/* data_key = data_vec ^ key_vec; */
|
|
uint32x4_t const data_key = veorq_u32 (vreinterpretq_u32_u64(data_vec), key_vec);
|
|
/* shuffled = { data_key[0, 2], data_key[1, 3] }; */
|
|
uint32x2x2_t const shuffled = vzip_u32 (vget_low_u32(data_key), vget_high_u32(data_key));
|
|
|
|
/* data_key *= PRIME32_1 */
|
|
|
|
/* prod_hi = (data_key >> 32) * PRIME32_1; */
|
|
uint64x2_t const prod_hi = vmull_u32 (shuffled.val[1], prime);
|
|
/* xacc[i] = prod_hi << 32; */
|
|
xacc[i] = vshlq_n_u64(prod_hi, 32);
|
|
/* xacc[i] += (prod_hi & 0xFFFFFFFF) * PRIME32_1; */
|
|
xacc[i] = vmlal_u32(xacc[i], shuffled.val[0], prime);
|
|
} }
|
|
|
|
#elif (XXPH_VECTOR == XXPH_VSX) && /* work around a compiler bug */ (__GNUC__ > 5)
|
|
|
|
U64x2* const xacc = (U64x2*) acc;
|
|
const U64x2* const xsecret = (const U64x2*) secret;
|
|
/* constants */
|
|
U64x2 const v32 = { 32, 32 };
|
|
U64x2 const v47 = { 47, 47 };
|
|
U32x4 const prime = { PRIME32_1, PRIME32_1, PRIME32_1, PRIME32_1 };
|
|
size_t i;
|
|
#if XXPH_VSX_BE
|
|
/* endian swap */
|
|
U8x16 const vXorSwap = { 0x07, 0x16, 0x25, 0x34, 0x43, 0x52, 0x61, 0x70,
|
|
0x8F, 0x9E, 0xAD, 0xBC, 0xCB, 0xDA, 0xE9, 0xF8 };
|
|
#endif
|
|
for (i = 0; i < STRIPE_LEN / sizeof(U64x2); i++) {
|
|
U64x2 const acc_vec = xacc[i];
|
|
U64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
|
|
/* key_vec = xsecret[i]; */
|
|
#if XXPH_VSX_BE
|
|
/* swap bytes words */
|
|
U64x2 const key_raw = vec_vsx_ld(0, xsecret + i);
|
|
U64x2 const data_key = (U64x2)XXPH_vec_permxor((U8x16)data_vec, (U8x16)key_raw, vXorSwap);
|
|
#else
|
|
U64x2 const key_vec = vec_vsx_ld(0, xsecret + i);
|
|
U64x2 const data_key = data_vec ^ key_vec;
|
|
#endif
|
|
|
|
/* data_key *= PRIME32_1 */
|
|
|
|
/* prod_lo = ((U64x2)data_key & 0xFFFFFFFF) * ((U64x2)prime & 0xFFFFFFFF); */
|
|
U64x2 const prod_even = XXPH_vec_mule((U32x4)data_key, prime);
|
|
/* prod_hi = ((U64x2)data_key >> 32) * ((U64x2)prime >> 32); */
|
|
U64x2 const prod_odd = XXPH_vec_mulo((U32x4)data_key, prime);
|
|
xacc[i] = prod_odd + (prod_even << v32);
|
|
}
|
|
|
|
#else /* scalar variant of Scrambler - universal */
|
|
|
|
XXPH_ALIGN(XXPH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned on 32-bytes boundaries, little hint for the auto-vectorizer */
|
|
const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
|
|
size_t i;
|
|
XXPH_ASSERT((((size_t)acc) & (XXPH_ACC_ALIGN-1)) == 0);
|
|
for (i=0; i < ACC_NB; i++) {
|
|
xxh_u64 const key64 = XXPH_readLE64(xsecret + 8*i);
|
|
xxh_u64 acc64 = xacc[i];
|
|
acc64 ^= acc64 >> 47;
|
|
acc64 ^= key64;
|
|
acc64 *= PRIME32_1;
|
|
xacc[i] = acc64;
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
#define XXPH_PREFETCH_DIST 384
|
|
|
|
/* assumption : nbStripes will not overflow secret size */
|
|
XXPH_FORCE_INLINE void
|
|
XXPH3_accumulate( xxh_u64* XXPH_RESTRICT acc,
|
|
const xxh_u8* XXPH_RESTRICT input,
|
|
const xxh_u8* XXPH_RESTRICT secret,
|
|
size_t nbStripes,
|
|
XXPH3_accWidth_e accWidth)
|
|
{
|
|
size_t n;
|
|
for (n = 0; n < nbStripes; n++ ) {
|
|
const xxh_u8* const in = input + n*STRIPE_LEN;
|
|
XXPH_PREFETCH(in + XXPH_PREFETCH_DIST);
|
|
XXPH3_accumulate_512(acc,
|
|
in,
|
|
secret + n*XXPH_SECRET_CONSUME_RATE,
|
|
accWidth);
|
|
}
|
|
}
|
|
|
|
/* note : clang auto-vectorizes well in SS2 mode _if_ this function is `static`,
|
|
* and doesn't auto-vectorize it at all if it is `FORCE_INLINE`.
|
|
* However, it auto-vectorizes better AVX2 if it is `FORCE_INLINE`
|
|
* Pretty much every other modes and compilers prefer `FORCE_INLINE`.
|
|
*/
|
|
|
|
#if defined(__clang__) && (XXPH_VECTOR==0) && !defined(__AVX2__) && !defined(__arm__) && !defined(__thumb__)
|
|
static void
|
|
#else
|
|
XXPH_FORCE_INLINE void
|
|
#endif
|
|
XXPH3_hashLong_internal_loop( xxh_u64* XXPH_RESTRICT acc,
|
|
const xxh_u8* XXPH_RESTRICT input, size_t len,
|
|
const xxh_u8* XXPH_RESTRICT secret, size_t secretSize,
|
|
XXPH3_accWidth_e accWidth)
|
|
{
|
|
size_t const nb_rounds = (secretSize - STRIPE_LEN) / XXPH_SECRET_CONSUME_RATE;
|
|
size_t const block_len = STRIPE_LEN * nb_rounds;
|
|
size_t const nb_blocks = len / block_len;
|
|
|
|
size_t n;
|
|
|
|
XXPH_ASSERT(secretSize >= XXPH3_SECRET_SIZE_MIN);
|
|
|
|
for (n = 0; n < nb_blocks; n++) {
|
|
XXPH3_accumulate(acc, input + n*block_len, secret, nb_rounds, accWidth);
|
|
XXPH3_scrambleAcc(acc, secret + secretSize - STRIPE_LEN);
|
|
}
|
|
|
|
/* last partial block */
|
|
XXPH_ASSERT(len > STRIPE_LEN);
|
|
{ size_t const nbStripes = (len - (block_len * nb_blocks)) / STRIPE_LEN;
|
|
XXPH_ASSERT(nbStripes <= (secretSize / XXPH_SECRET_CONSUME_RATE));
|
|
XXPH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, accWidth);
|
|
|
|
/* last stripe */
|
|
if (len & (STRIPE_LEN - 1)) {
|
|
const xxh_u8* const p = input + len - STRIPE_LEN;
|
|
#define XXPH_SECRET_LASTACC_START 7 /* do not align on 8, so that secret is different from scrambler */
|
|
XXPH3_accumulate_512(acc, p, secret + secretSize - STRIPE_LEN - XXPH_SECRET_LASTACC_START, accWidth);
|
|
} }
|
|
}
|
|
|
|
XXPH_FORCE_INLINE xxh_u64
|
|
XXPH3_mix2Accs(const xxh_u64* XXPH_RESTRICT acc, const xxh_u8* XXPH_RESTRICT secret)
|
|
{
|
|
return XXPH3_mul128_fold64(
|
|
acc[0] ^ XXPH_readLE64(secret),
|
|
acc[1] ^ XXPH_readLE64(secret+8) );
|
|
}
|
|
|
|
static XXPH64_hash_t
|
|
XXPH3_mergeAccs(const xxh_u64* XXPH_RESTRICT acc, const xxh_u8* XXPH_RESTRICT secret, xxh_u64 start)
|
|
{
|
|
xxh_u64 result64 = start;
|
|
|
|
result64 += XXPH3_mix2Accs(acc+0, secret + 0);
|
|
result64 += XXPH3_mix2Accs(acc+2, secret + 16);
|
|
result64 += XXPH3_mix2Accs(acc+4, secret + 32);
|
|
result64 += XXPH3_mix2Accs(acc+6, secret + 48);
|
|
|
|
return XXPH3_avalanche(result64);
|
|
}
|
|
|
|
#define XXPH3_INIT_ACC { PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3, \
|
|
PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1 };
|
|
|
|
XXPH_FORCE_INLINE XXPH64_hash_t
|
|
XXPH3_hashLong_internal(const xxh_u8* XXPH_RESTRICT input, size_t len,
|
|
const xxh_u8* XXPH_RESTRICT secret, size_t secretSize)
|
|
{
|
|
XXPH_ALIGN(XXPH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXPH3_INIT_ACC;
|
|
|
|
XXPH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXPH3_acc_64bits);
|
|
|
|
/* converge into final hash */
|
|
XXPH_STATIC_ASSERT(sizeof(acc) == 64);
|
|
#define XXPH_SECRET_MERGEACCS_START 11 /* do not align on 8, so that secret is different from accumulator */
|
|
XXPH_ASSERT(secretSize >= sizeof(acc) + XXPH_SECRET_MERGEACCS_START);
|
|
return XXPH3_mergeAccs(acc, secret + XXPH_SECRET_MERGEACCS_START, (xxh_u64)len * PRIME64_1);
|
|
}
|
|
|
|
|
|
XXPH_NO_INLINE XXPH64_hash_t /* It's important for performance that XXPH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
|
|
XXPH3_hashLong_64b_defaultSecret(const xxh_u8* XXPH_RESTRICT input, size_t len)
|
|
{
|
|
return XXPH3_hashLong_internal(input, len, kSecret, sizeof(kSecret));
|
|
}
|
|
|
|
XXPH_NO_INLINE XXPH64_hash_t /* It's important for performance that XXPH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
|
|
XXPH3_hashLong_64b_withSecret(const xxh_u8* XXPH_RESTRICT input, size_t len,
|
|
const xxh_u8* XXPH_RESTRICT secret, size_t secretSize)
|
|
{
|
|
return XXPH3_hashLong_internal(input, len, secret, secretSize);
|
|
}
|
|
|
|
|
|
XXPH_FORCE_INLINE void XXPH_writeLE64(void* dst, xxh_u64 v64)
|
|
{
|
|
if (!XXPH_CPU_LITTLE_ENDIAN) v64 = XXPH_swap64(v64);
|
|
memcpy(dst, &v64, sizeof(v64));
|
|
}
|
|
|
|
/* XXPH3_initCustomSecret() :
|
|
* destination `customSecret` is presumed allocated and same size as `kSecret`.
|
|
*/
|
|
XXPH_FORCE_INLINE void XXPH3_initCustomSecret(xxh_u8* customSecret, xxh_u64 seed64)
|
|
{
|
|
int const nbRounds = XXPH_SECRET_DEFAULT_SIZE / 16;
|
|
int i;
|
|
|
|
XXPH_STATIC_ASSERT((XXPH_SECRET_DEFAULT_SIZE & 15) == 0);
|
|
|
|
for (i=0; i < nbRounds; i++) {
|
|
XXPH_writeLE64(customSecret + 16*i, XXPH_readLE64(kSecret + 16*i) + seed64);
|
|
XXPH_writeLE64(customSecret + 16*i + 8, XXPH_readLE64(kSecret + 16*i + 8) - seed64);
|
|
}
|
|
}
|
|
|
|
|
|
/* XXPH3_hashLong_64b_withSeed() :
|
|
* Generate a custom key,
|
|
* based on alteration of default kSecret with the seed,
|
|
* and then use this key for long mode hashing.
|
|
* This operation is decently fast but nonetheless costs a little bit of time.
|
|
* Try to avoid it whenever possible (typically when seed==0).
|
|
*/
|
|
XXPH_NO_INLINE XXPH64_hash_t /* It's important for performance that XXPH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
|
|
XXPH3_hashLong_64b_withSeed(const xxh_u8* input, size_t len, XXPH64_hash_t seed)
|
|
{
|
|
XXPH_ALIGN(8) xxh_u8 secret[XXPH_SECRET_DEFAULT_SIZE];
|
|
if (seed==0) return XXPH3_hashLong_64b_defaultSecret(input, len);
|
|
XXPH3_initCustomSecret(secret, seed);
|
|
return XXPH3_hashLong_internal(input, len, secret, sizeof(secret));
|
|
}
|
|
|
|
|
|
XXPH_FORCE_INLINE xxh_u64 XXPH3_mix16B(const xxh_u8* XXPH_RESTRICT input,
|
|
const xxh_u8* XXPH_RESTRICT secret, xxh_u64 seed64)
|
|
{
|
|
xxh_u64 const input_lo = XXPH_readLE64(input);
|
|
xxh_u64 const input_hi = XXPH_readLE64(input+8);
|
|
return XXPH3_mul128_fold64(
|
|
input_lo ^ (XXPH_readLE64(secret) + seed64),
|
|
input_hi ^ (XXPH_readLE64(secret+8) - seed64) );
|
|
}
|
|
|
|
|
|
XXPH_FORCE_INLINE XXPH64_hash_t
|
|
XXPH3_len_17to128_64b(const xxh_u8* XXPH_RESTRICT input, size_t len,
|
|
const xxh_u8* XXPH_RESTRICT secret, size_t secretSize,
|
|
XXPH64_hash_t seed)
|
|
{
|
|
XXPH_ASSERT(secretSize >= XXPH3_SECRET_SIZE_MIN); (void)secretSize;
|
|
XXPH_ASSERT(16 < len && len <= 128);
|
|
|
|
{ xxh_u64 acc = len * PRIME64_1;
|
|
if (len > 32) {
|
|
if (len > 64) {
|
|
if (len > 96) {
|
|
acc += XXPH3_mix16B(input+48, secret+96, seed);
|
|
acc += XXPH3_mix16B(input+len-64, secret+112, seed);
|
|
}
|
|
acc += XXPH3_mix16B(input+32, secret+64, seed);
|
|
acc += XXPH3_mix16B(input+len-48, secret+80, seed);
|
|
}
|
|
acc += XXPH3_mix16B(input+16, secret+32, seed);
|
|
acc += XXPH3_mix16B(input+len-32, secret+48, seed);
|
|
}
|
|
acc += XXPH3_mix16B(input+0, secret+0, seed);
|
|
acc += XXPH3_mix16B(input+len-16, secret+16, seed);
|
|
|
|
return XXPH3_avalanche(acc);
|
|
}
|
|
}
|
|
|
|
#define XXPH3_MIDSIZE_MAX 240
|
|
|
|
XXPH_NO_INLINE XXPH64_hash_t
|
|
XXPH3_len_129to240_64b(const xxh_u8* XXPH_RESTRICT input, size_t len,
|
|
const xxh_u8* XXPH_RESTRICT secret, size_t secretSize,
|
|
XXPH64_hash_t seed)
|
|
{
|
|
XXPH_ASSERT(secretSize >= XXPH3_SECRET_SIZE_MIN); (void)secretSize;
|
|
XXPH_ASSERT(128 < len && len <= XXPH3_MIDSIZE_MAX);
|
|
|
|
#define XXPH3_MIDSIZE_STARTOFFSET 3
|
|
#define XXPH3_MIDSIZE_LASTOFFSET 17
|
|
|
|
{ xxh_u64 acc = len * PRIME64_1;
|
|
int const nbRounds = (int)len / 16;
|
|
int i;
|
|
for (i=0; i<8; i++) {
|
|
acc += XXPH3_mix16B(input+(16*i), secret+(16*i), seed);
|
|
}
|
|
acc = XXPH3_avalanche(acc);
|
|
XXPH_ASSERT(nbRounds >= 8);
|
|
for (i=8 ; i < nbRounds; i++) {
|
|
acc += XXPH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXPH3_MIDSIZE_STARTOFFSET, seed);
|
|
}
|
|
/* last bytes */
|
|
acc += XXPH3_mix16B(input + len - 16, secret + XXPH3_SECRET_SIZE_MIN - XXPH3_MIDSIZE_LASTOFFSET, seed);
|
|
return XXPH3_avalanche(acc);
|
|
}
|
|
}
|
|
|
|
/* === Public entry point === */
|
|
|
|
XXPH_PUBLIC_API XXPH64_hash_t XXPH3_64bits(const void* input, size_t len)
|
|
{
|
|
if (len <= 16) return XXPH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, 0);
|
|
if (len <= 128) return XXPH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
|
|
if (len <= XXPH3_MIDSIZE_MAX) return XXPH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
|
|
return XXPH3_hashLong_64b_defaultSecret((const xxh_u8*)input, len);
|
|
}
|
|
|
|
XXPH_PUBLIC_API XXPH64_hash_t
|
|
XXPH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
|
|
{
|
|
XXPH_ASSERT(secretSize >= XXPH3_SECRET_SIZE_MIN);
|
|
/* if an action must be taken should `secret` conditions not be respected,
|
|
* it should be done here.
|
|
* For now, it's a contract pre-condition.
|
|
* Adding a check and a branch here would cost performance at every hash */
|
|
if (len <= 16) return XXPH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0);
|
|
if (len <= 128) return XXPH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
|
|
if (len <= XXPH3_MIDSIZE_MAX) return XXPH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
|
|
return XXPH3_hashLong_64b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize);
|
|
}
|
|
|
|
XXPH_PUBLIC_API XXPH64_hash_t
|
|
XXPH3_64bits_withSeed(const void* input, size_t len, XXPH64_hash_t seed)
|
|
{
|
|
if (len <= 16) return XXPH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, seed);
|
|
if (len <= 128) return XXPH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
|
|
if (len <= XXPH3_MIDSIZE_MAX) return XXPH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
|
|
return XXPH3_hashLong_64b_withSeed((const xxh_u8*)input, len, seed);
|
|
}
|
|
|
|
/* === XXPH3 streaming === */
|
|
|
|
/* RocksDB Note: unused & removed due to bug in preview version */
|
|
|
|
/*======== END #include "xxh3.h", now inlined above ==========*/
|
|
|
|
#endif /* XXPH_NO_LONG_LONG */
|
|
|
|
/* === END RocksDB modification of permanently inlining === */
|
|
|
|
#endif /* defined(XXPH_INLINE_ALL) || defined(XXPH_PRIVATE_API) */
|
|
|
|
#endif /* XXPH_STATIC_LINKING_ONLY */
|
|
|
|
#if defined (__cplusplus)
|
|
}
|
|
#endif
|
|
|
|
#endif /* XXPHASH_H_5627135585666179 */
|