mirror of https://github.com/facebook/rocksdb.git
1179 lines
43 KiB
C++
1179 lines
43 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. Use of
|
|
// this source code is governed by a BSD-style license that can be found
|
|
// in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
//
|
|
// InlineSkipList is derived from SkipList (skiplist.h), but it optimizes
|
|
// the memory layout by requiring that the key storage be allocated through
|
|
// the skip list instance. For the common case of SkipList<const char*,
|
|
// Cmp> this saves 1 pointer per skip list node and gives better cache
|
|
// locality, at the expense of wasted padding from using AllocateAligned
|
|
// instead of Allocate for the keys. The unused padding will be from
|
|
// 0 to sizeof(void*)-1 bytes, and the space savings are sizeof(void*)
|
|
// bytes, so despite the padding the space used is always less than
|
|
// SkipList<const char*, ..>.
|
|
//
|
|
// Thread safety -------------
|
|
//
|
|
// Writes via Insert require external synchronization, most likely a mutex.
|
|
// InsertConcurrently can be safely called concurrently with reads and
|
|
// with other concurrent inserts. Reads require a guarantee that the
|
|
// InlineSkipList will not be destroyed while the read is in progress.
|
|
// Apart from that, reads progress without any internal locking or
|
|
// synchronization.
|
|
//
|
|
// Invariants:
|
|
//
|
|
// (1) Allocated nodes are never deleted until the InlineSkipList is
|
|
// destroyed. This is trivially guaranteed by the code since we never
|
|
// delete any skip list nodes.
|
|
//
|
|
// (2) The contents of a Node except for the next/prev pointers are
|
|
// immutable after the Node has been linked into the InlineSkipList.
|
|
// Only Insert() modifies the list, and it is careful to initialize a
|
|
// node and use release-stores to publish the nodes in one or more lists.
|
|
//
|
|
// ... prev vs. next pointer ordering ...
|
|
//
|
|
|
|
#pragma once
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <type_traits>
|
|
|
|
#include "memory/allocator.h"
|
|
#include "port/likely.h"
|
|
#include "port/port.h"
|
|
#include "rocksdb/slice.h"
|
|
#include "test_util/sync_point.h"
|
|
#include "util/coding.h"
|
|
#include "util/random.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
template <class Comparator>
|
|
class InlineSkipList {
|
|
private:
|
|
struct Node;
|
|
struct Splice;
|
|
|
|
public:
|
|
using DecodedKey =
|
|
typename std::remove_reference<Comparator>::type::DecodedType;
|
|
|
|
static const uint16_t kMaxPossibleHeight = 32;
|
|
|
|
// Create a new InlineSkipList object that will use "cmp" for comparing
|
|
// keys, and will allocate memory using "*allocator". Objects allocated
|
|
// in the allocator must remain allocated for the lifetime of the
|
|
// skiplist object.
|
|
explicit InlineSkipList(Comparator cmp, Allocator* allocator,
|
|
int32_t max_height = 12,
|
|
int32_t branching_factor = 4);
|
|
// No copying allowed
|
|
InlineSkipList(const InlineSkipList&) = delete;
|
|
InlineSkipList& operator=(const InlineSkipList&) = delete;
|
|
|
|
// Allocates a key and a skip-list node, returning a pointer to the key
|
|
// portion of the node. This method is thread-safe if the allocator
|
|
// is thread-safe.
|
|
char* AllocateKey(size_t key_size);
|
|
|
|
// Allocate a splice using allocator.
|
|
Splice* AllocateSplice();
|
|
|
|
// Allocate a splice on heap.
|
|
Splice* AllocateSpliceOnHeap();
|
|
|
|
// Inserts a key allocated by AllocateKey, after the actual key value
|
|
// has been filled in.
|
|
//
|
|
// REQUIRES: nothing that compares equal to key is currently in the list.
|
|
// REQUIRES: no concurrent calls to any of inserts.
|
|
bool Insert(const char* key);
|
|
|
|
// Inserts a key allocated by AllocateKey with a hint of last insert
|
|
// position in the skip-list. If hint points to nullptr, a new hint will be
|
|
// populated, which can be used in subsequent calls.
|
|
//
|
|
// It can be used to optimize the workload where there are multiple groups
|
|
// of keys, and each key is likely to insert to a location close to the last
|
|
// inserted key in the same group. One example is sequential inserts.
|
|
//
|
|
// REQUIRES: nothing that compares equal to key is currently in the list.
|
|
// REQUIRES: no concurrent calls to any of inserts.
|
|
bool InsertWithHint(const char* key, void** hint);
|
|
|
|
// Like InsertConcurrently, but with a hint
|
|
//
|
|
// REQUIRES: nothing that compares equal to key is currently in the list.
|
|
// REQUIRES: no concurrent calls that use same hint
|
|
bool InsertWithHintConcurrently(const char* key, void** hint);
|
|
|
|
// Like Insert, but external synchronization is not required.
|
|
bool InsertConcurrently(const char* key);
|
|
|
|
// Inserts a node into the skip list. key must have been allocated by
|
|
// AllocateKey and then filled in by the caller. If UseCAS is true,
|
|
// then external synchronization is not required, otherwise this method
|
|
// may not be called concurrently with any other insertions.
|
|
//
|
|
// Regardless of whether UseCAS is true, the splice must be owned
|
|
// exclusively by the current thread. If allow_partial_splice_fix is
|
|
// true, then the cost of insertion is amortized O(log D), where D is
|
|
// the distance from the splice to the inserted key (measured as the
|
|
// number of intervening nodes). Note that this bound is very good for
|
|
// sequential insertions! If allow_partial_splice_fix is false then
|
|
// the existing splice will be ignored unless the current key is being
|
|
// inserted immediately after the splice. allow_partial_splice_fix ==
|
|
// false has worse running time for the non-sequential case O(log N),
|
|
// but a better constant factor.
|
|
template <bool UseCAS>
|
|
bool Insert(const char* key, Splice* splice, bool allow_partial_splice_fix);
|
|
|
|
// Returns true iff an entry that compares equal to key is in the list.
|
|
bool Contains(const char* key) const;
|
|
|
|
// Return estimated number of entries from `start_ikey` to `end_ikey`.
|
|
uint64_t ApproximateNumEntries(const Slice& start_ikey,
|
|
const Slice& end_ikey) const;
|
|
|
|
// Validate correctness of the skip-list.
|
|
void TEST_Validate() const;
|
|
|
|
// Iteration over the contents of a skip list
|
|
class Iterator {
|
|
public:
|
|
// Initialize an iterator over the specified list.
|
|
// The returned iterator is not valid.
|
|
explicit Iterator(const InlineSkipList* list);
|
|
|
|
// Change the underlying skiplist used for this iterator
|
|
// This enables us not changing the iterator without deallocating
|
|
// an old one and then allocating a new one
|
|
void SetList(const InlineSkipList* list);
|
|
|
|
// Returns true iff the iterator is positioned at a valid node.
|
|
bool Valid() const;
|
|
|
|
// Returns the key at the current position.
|
|
// REQUIRES: Valid()
|
|
const char* key() const;
|
|
|
|
// Advances to the next position.
|
|
// REQUIRES: Valid()
|
|
void Next();
|
|
|
|
[[nodiscard]] Status NextAndValidate(bool allow_data_in_errors);
|
|
|
|
// Advances to the previous position.
|
|
// REQUIRES: Valid()
|
|
void Prev();
|
|
|
|
[[nodiscard]] Status PrevAndValidate(bool allow_data_in_errors);
|
|
|
|
// Advance to the first entry with a key >= target
|
|
void Seek(const char* target);
|
|
|
|
[[nodiscard]] Status SeekAndValidate(const char* target,
|
|
bool allow_data_in_errors);
|
|
|
|
// Retreat to the last entry with a key <= target
|
|
void SeekForPrev(const char* target);
|
|
|
|
// Advance to a random entry in the list.
|
|
void RandomSeek();
|
|
|
|
// Position at the first entry in list.
|
|
// Final state of iterator is Valid() iff list is not empty.
|
|
void SeekToFirst();
|
|
|
|
// Position at the last entry in list.
|
|
// Final state of iterator is Valid() iff list is not empty.
|
|
void SeekToLast();
|
|
|
|
private:
|
|
const InlineSkipList* list_;
|
|
Node* node_;
|
|
// Intentionally copyable
|
|
};
|
|
|
|
private:
|
|
const uint16_t kMaxHeight_;
|
|
const uint16_t kBranching_;
|
|
const uint32_t kScaledInverseBranching_;
|
|
|
|
Allocator* const allocator_; // Allocator used for allocations of nodes
|
|
// Immutable after construction
|
|
Comparator const compare_;
|
|
Node* const head_;
|
|
|
|
// Modified only by Insert(). Read racily by readers, but stale
|
|
// values are ok.
|
|
std::atomic<int> max_height_; // Height of the entire list
|
|
|
|
// seq_splice_ is a Splice used for insertions in the non-concurrent
|
|
// case. It caches the prev and next found during the most recent
|
|
// non-concurrent insertion.
|
|
Splice* seq_splice_;
|
|
|
|
inline int GetMaxHeight() const {
|
|
return max_height_.load(std::memory_order_relaxed);
|
|
}
|
|
|
|
int RandomHeight();
|
|
|
|
Node* AllocateNode(size_t key_size, int height);
|
|
|
|
bool Equal(const char* a, const char* b) const {
|
|
return (compare_(a, b) == 0);
|
|
}
|
|
|
|
bool LessThan(const char* a, const char* b) const {
|
|
return (compare_(a, b) < 0);
|
|
}
|
|
|
|
// Return true if key is greater than the data stored in "n". Null n
|
|
// is considered infinite. n should not be head_.
|
|
bool KeyIsAfterNode(const char* key, Node* n) const;
|
|
bool KeyIsAfterNode(const DecodedKey& key, Node* n) const;
|
|
|
|
// Returns the earliest node with a key >= key.
|
|
// Returns nullptr if there is no such node.
|
|
// @param out_of_order_node If not null, will validate the order of visited
|
|
// nodes. If a pair of out-of-order nodes n1 and n2 are found, n1 will be
|
|
// returned and *out_of_order_node will be set to n2.
|
|
Node* FindGreaterOrEqual(const char* key, Node** out_of_order_node) const;
|
|
|
|
// Returns the latest node with a key < key.
|
|
// Returns head_ if there is no such node.
|
|
// Fills prev[level] with pointer to previous node at "level" for every
|
|
// level in [0..max_height_-1], if prev is non-null.
|
|
// @param out_of_order_node If not null, will validate the order of visited
|
|
// nodes. If a pair of out-of-order nodes n1 and n2 are found, n1 will be
|
|
// returned and *out_of_order_node will be set to n2.
|
|
Node* FindLessThan(const char* key, Node** out_of_order_node) const;
|
|
|
|
// Return the last node in the list.
|
|
// Return head_ if list is empty.
|
|
Node* FindLast() const;
|
|
|
|
// Returns a random entry.
|
|
Node* FindRandomEntry() const;
|
|
|
|
// Traverses a single level of the list, setting *out_prev to the last
|
|
// node before the key and *out_next to the first node after. Assumes
|
|
// that the key is not present in the skip list. On entry, before should
|
|
// point to a node that is before the key, and after should point to
|
|
// a node that is after the key. after should be nullptr if a good after
|
|
// node isn't conveniently available.
|
|
template <bool prefetch_before>
|
|
void FindSpliceForLevel(const DecodedKey& key, Node* before, Node* after,
|
|
int level, Node** out_prev, Node** out_next);
|
|
|
|
// Recomputes Splice levels from highest_level (inclusive) down to
|
|
// lowest_level (inclusive).
|
|
void RecomputeSpliceLevels(const DecodedKey& key, Splice* splice,
|
|
int recompute_level);
|
|
|
|
static Status Corruption(Node* prev, Node* next, bool allow_data_in_errors);
|
|
};
|
|
|
|
// Implementation details follow
|
|
|
|
template <class Comparator>
|
|
struct InlineSkipList<Comparator>::Splice {
|
|
// The invariant of a Splice is that prev_[i+1].key <= prev_[i].key <
|
|
// next_[i].key <= next_[i+1].key for all i. That means that if a
|
|
// key is bracketed by prev_[i] and next_[i] then it is bracketed by
|
|
// all higher levels. It is _not_ required that prev_[i]->Next(i) ==
|
|
// next_[i] (it probably did at some point in the past, but intervening
|
|
// or concurrent operations might have inserted nodes in between).
|
|
int height_ = 0;
|
|
Node** prev_;
|
|
Node** next_;
|
|
};
|
|
|
|
// The Node data type is more of a pointer into custom-managed memory than
|
|
// a traditional C++ struct. The key is stored in the bytes immediately
|
|
// after the struct, and the next_ pointers for nodes with height > 1 are
|
|
// stored immediately _before_ the struct. This avoids the need to include
|
|
// any pointer or sizing data, which reduces per-node memory overheads.
|
|
template <class Comparator>
|
|
struct InlineSkipList<Comparator>::Node {
|
|
// Stores the height of the node in the memory location normally used for
|
|
// next_[0]. This is used for passing data from AllocateKey to Insert.
|
|
void StashHeight(const int height) {
|
|
assert(sizeof(int) <= sizeof(next_[0]));
|
|
memcpy(static_cast<void*>(&next_[0]), &height, sizeof(int));
|
|
}
|
|
|
|
// Retrieves the value passed to StashHeight. Undefined after a call
|
|
// to SetNext or NoBarrier_SetNext.
|
|
int UnstashHeight() const {
|
|
int rv;
|
|
memcpy(&rv, &next_[0], sizeof(int));
|
|
return rv;
|
|
}
|
|
|
|
const char* Key() const { return reinterpret_cast<const char*>(&next_[1]); }
|
|
|
|
// Accessors/mutators for links. Wrapped in methods so we can add
|
|
// the appropriate barriers as necessary, and perform the necessary
|
|
// addressing trickery for storing links below the Node in memory.
|
|
Node* Next(int n) {
|
|
assert(n >= 0);
|
|
// Use an 'acquire load' so that we observe a fully initialized
|
|
// version of the returned Node.
|
|
return ((&next_[0] - n)->load(std::memory_order_acquire));
|
|
}
|
|
|
|
void SetNext(int n, Node* x) {
|
|
assert(n >= 0);
|
|
// Use a 'release store' so that anybody who reads through this
|
|
// pointer observes a fully initialized version of the inserted node.
|
|
(&next_[0] - n)->store(x, std::memory_order_release);
|
|
}
|
|
|
|
bool CASNext(int n, Node* expected, Node* x) {
|
|
assert(n >= 0);
|
|
return (&next_[0] - n)->compare_exchange_strong(expected, x);
|
|
}
|
|
|
|
// No-barrier variants that can be safely used in a few locations.
|
|
Node* NoBarrier_Next(int n) {
|
|
assert(n >= 0);
|
|
return (&next_[0] - n)->load(std::memory_order_relaxed);
|
|
}
|
|
|
|
void NoBarrier_SetNext(int n, Node* x) {
|
|
assert(n >= 0);
|
|
(&next_[0] - n)->store(x, std::memory_order_relaxed);
|
|
}
|
|
|
|
// Insert node after prev on specific level.
|
|
void InsertAfter(Node* prev, int level) {
|
|
// NoBarrier_SetNext() suffices since we will add a barrier when
|
|
// we publish a pointer to "this" in prev.
|
|
NoBarrier_SetNext(level, prev->NoBarrier_Next(level));
|
|
prev->SetNext(level, this);
|
|
}
|
|
|
|
private:
|
|
// next_[0] is the lowest level link (level 0). Higher levels are
|
|
// stored _earlier_, so level 1 is at next_[-1].
|
|
std::atomic<Node*> next_[1];
|
|
};
|
|
|
|
template <class Comparator>
|
|
inline InlineSkipList<Comparator>::Iterator::Iterator(
|
|
const InlineSkipList* list) {
|
|
SetList(list);
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline void InlineSkipList<Comparator>::Iterator::SetList(
|
|
const InlineSkipList* list) {
|
|
list_ = list;
|
|
node_ = nullptr;
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline bool InlineSkipList<Comparator>::Iterator::Valid() const {
|
|
return node_ != nullptr;
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline const char* InlineSkipList<Comparator>::Iterator::key() const {
|
|
assert(Valid());
|
|
return node_->Key();
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline void InlineSkipList<Comparator>::Iterator::Next() {
|
|
assert(Valid());
|
|
node_ = node_->Next(0);
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline Status InlineSkipList<Comparator>::Iterator::NextAndValidate(
|
|
bool allow_data_in_errors) {
|
|
assert(Valid());
|
|
Node* prev_node = node_;
|
|
node_ = node_->Next(0);
|
|
// Verify that keys are increasing.
|
|
if (prev_node != list_->head_ && node_ != nullptr &&
|
|
list_->compare_(prev_node->Key(), node_->Key()) >= 0) {
|
|
Node* node = node_;
|
|
// invalidates the iterator
|
|
node_ = nullptr;
|
|
return Corruption(prev_node, node, allow_data_in_errors);
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline void InlineSkipList<Comparator>::Iterator::Prev() {
|
|
// Instead of using explicit "prev" links, we just search for the
|
|
// last node that falls before key.
|
|
assert(Valid());
|
|
node_ = list_->FindLessThan(node_->Key(), nullptr);
|
|
if (node_ == list_->head_) {
|
|
node_ = nullptr;
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline Status InlineSkipList<Comparator>::Iterator::PrevAndValidate(
|
|
const bool allow_data_in_errors) {
|
|
assert(Valid());
|
|
// Skip list validation is done in FindLessThan().
|
|
Node* out_of_order_node = nullptr;
|
|
node_ = list_->FindLessThan(node_->Key(), &out_of_order_node);
|
|
if (out_of_order_node) {
|
|
Node* node = node_;
|
|
node_ = nullptr;
|
|
return Corruption(node, out_of_order_node, allow_data_in_errors);
|
|
}
|
|
if (node_ == list_->head_) {
|
|
node_ = nullptr;
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline void InlineSkipList<Comparator>::Iterator::Seek(const char* target) {
|
|
node_ = list_->FindGreaterOrEqual(target, nullptr);
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline Status InlineSkipList<Comparator>::Iterator::SeekAndValidate(
|
|
const char* target, const bool allow_data_in_errors) {
|
|
Node* out_of_order_node = nullptr;
|
|
node_ = list_->FindGreaterOrEqual(target, &out_of_order_node);
|
|
if (out_of_order_node) {
|
|
Node* node = node_;
|
|
node_ = nullptr;
|
|
return Corruption(node, out_of_order_node, allow_data_in_errors);
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline void InlineSkipList<Comparator>::Iterator::SeekForPrev(
|
|
const char* target) {
|
|
Seek(target);
|
|
if (!Valid()) {
|
|
SeekToLast();
|
|
}
|
|
while (Valid() && list_->LessThan(target, key())) {
|
|
Prev();
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline void InlineSkipList<Comparator>::Iterator::RandomSeek() {
|
|
node_ = list_->FindRandomEntry();
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline void InlineSkipList<Comparator>::Iterator::SeekToFirst() {
|
|
node_ = list_->head_->Next(0);
|
|
}
|
|
|
|
template <class Comparator>
|
|
inline void InlineSkipList<Comparator>::Iterator::SeekToLast() {
|
|
node_ = list_->FindLast();
|
|
if (node_ == list_->head_) {
|
|
node_ = nullptr;
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
int InlineSkipList<Comparator>::RandomHeight() {
|
|
auto rnd = Random::GetTLSInstance();
|
|
|
|
// Increase height with probability 1 in kBranching
|
|
int height = 1;
|
|
while (height < kMaxHeight_ && height < kMaxPossibleHeight &&
|
|
rnd->Next() < kScaledInverseBranching_) {
|
|
height++;
|
|
}
|
|
TEST_SYNC_POINT_CALLBACK("InlineSkipList::RandomHeight::height", &height);
|
|
assert(height > 0);
|
|
assert(height <= kMaxHeight_);
|
|
assert(height <= kMaxPossibleHeight);
|
|
return height;
|
|
}
|
|
|
|
template <class Comparator>
|
|
bool InlineSkipList<Comparator>::KeyIsAfterNode(const char* key,
|
|
Node* n) const {
|
|
// nullptr n is considered infinite
|
|
assert(n != head_);
|
|
return (n != nullptr) && (compare_(n->Key(), key) < 0);
|
|
}
|
|
|
|
template <class Comparator>
|
|
bool InlineSkipList<Comparator>::KeyIsAfterNode(const DecodedKey& key,
|
|
Node* n) const {
|
|
// nullptr n is considered infinite
|
|
assert(n != head_);
|
|
return (n != nullptr) && (compare_(n->Key(), key) < 0);
|
|
}
|
|
|
|
template <class Comparator>
|
|
typename InlineSkipList<Comparator>::Node*
|
|
InlineSkipList<Comparator>::FindGreaterOrEqual(
|
|
const char* key, Node** const out_of_order_node) const {
|
|
// Note: It looks like we could reduce duplication by implementing
|
|
// this function as FindLessThan(key)->Next(0), but we wouldn't be able
|
|
// to exit early on equality and the result wouldn't even be correct.
|
|
// A concurrent insert might occur after FindLessThan(key) but before
|
|
// we get a chance to call Next(0).
|
|
Node* x = head_;
|
|
int level = GetMaxHeight() - 1;
|
|
Node* last_bigger = nullptr;
|
|
const DecodedKey key_decoded = compare_.decode_key(key);
|
|
while (true) {
|
|
Node* next = x->Next(level);
|
|
if (next != nullptr) {
|
|
PREFETCH(next->Next(level), 0, 1);
|
|
if (out_of_order_node && x != head_ &&
|
|
compare_(x->Key(), next->Key()) >= 0) {
|
|
*out_of_order_node = next;
|
|
return x;
|
|
}
|
|
}
|
|
// Make sure the lists are sorted
|
|
assert(x == head_ || next == nullptr || KeyIsAfterNode(next->Key(), x));
|
|
// Make sure we haven't overshot during our search
|
|
assert(x == head_ || KeyIsAfterNode(key_decoded, x));
|
|
int cmp = (next == nullptr || next == last_bigger)
|
|
? 1
|
|
: compare_(next->Key(), key_decoded);
|
|
if (cmp == 0 || (cmp > 0 && level == 0)) {
|
|
return next;
|
|
} else if (cmp < 0) {
|
|
// Keep searching in this list
|
|
x = next;
|
|
} else {
|
|
// Switch to next list, reuse compare_() result
|
|
last_bigger = next;
|
|
level--;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
typename InlineSkipList<Comparator>::Node*
|
|
InlineSkipList<Comparator>::FindLessThan(const char* key,
|
|
Node** const out_of_order_node) const {
|
|
int level = GetMaxHeight() - 1;
|
|
assert(level >= 0);
|
|
Node* x = head_;
|
|
// KeyIsAfter(key, last_not_after) is definitely false
|
|
Node* last_not_after = nullptr;
|
|
const DecodedKey key_decoded = compare_.decode_key(key);
|
|
while (true) {
|
|
assert(x != nullptr);
|
|
Node* next = x->Next(level);
|
|
if (next != nullptr) {
|
|
PREFETCH(next->Next(level), 0, 1);
|
|
if (out_of_order_node && x != head_ &&
|
|
compare_(x->Key(), next->Key()) >= 0) {
|
|
*out_of_order_node = next;
|
|
return x;
|
|
}
|
|
}
|
|
assert(x == head_ || next == nullptr || KeyIsAfterNode(next->Key(), x));
|
|
assert(x == head_ || KeyIsAfterNode(key_decoded, x));
|
|
if (next != last_not_after && KeyIsAfterNode(key_decoded, next)) {
|
|
// Keep searching in this list
|
|
assert(next != nullptr);
|
|
x = next;
|
|
} else {
|
|
if (level == 0) {
|
|
return x;
|
|
} else {
|
|
// Switch to next list, reuse KeyIsAfterNode() result
|
|
last_not_after = next;
|
|
level--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
typename InlineSkipList<Comparator>::Node*
|
|
InlineSkipList<Comparator>::FindLast() const {
|
|
Node* x = head_;
|
|
int level = GetMaxHeight() - 1;
|
|
while (true) {
|
|
Node* next = x->Next(level);
|
|
if (next == nullptr) {
|
|
if (level == 0) {
|
|
return x;
|
|
} else {
|
|
// Switch to next list
|
|
level--;
|
|
}
|
|
} else {
|
|
x = next;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
typename InlineSkipList<Comparator>::Node*
|
|
InlineSkipList<Comparator>::FindRandomEntry() const {
|
|
// TODO(bjlemaire): consider adding PREFETCH calls.
|
|
Node *x = head_, *scan_node = nullptr, *limit_node = nullptr;
|
|
|
|
// We start at the max level.
|
|
// FOr each level, we look at all the nodes at the level, and
|
|
// we randomly pick one of them. Then decrement the level
|
|
// and reiterate the process.
|
|
// eg: assume GetMaxHeight()=5, and there are #100 elements (nodes).
|
|
// level 4 nodes: lvl_nodes={#1, #15, #67, #84}. Randomly pick #15.
|
|
// We will consider all the nodes between #15 (inclusive) and #67
|
|
// (exclusive). #67 is called 'limit_node' here.
|
|
// level 3 nodes: lvl_nodes={#15, #21, #45, #51}. Randomly choose
|
|
// #51. #67 remains 'limit_node'.
|
|
// [...]
|
|
// level 0 nodes: lvl_nodes={#56,#57,#58,#59}. Randomly pick $57.
|
|
// Return Node #57.
|
|
std::vector<Node*> lvl_nodes;
|
|
Random* rnd = Random::GetTLSInstance();
|
|
int level = GetMaxHeight() - 1;
|
|
|
|
while (level >= 0) {
|
|
lvl_nodes.clear();
|
|
scan_node = x;
|
|
while (scan_node != limit_node) {
|
|
lvl_nodes.push_back(scan_node);
|
|
scan_node = scan_node->Next(level);
|
|
}
|
|
uint32_t rnd_idx = rnd->Next() % lvl_nodes.size();
|
|
x = lvl_nodes[rnd_idx];
|
|
if (rnd_idx + 1 < lvl_nodes.size()) {
|
|
limit_node = lvl_nodes[rnd_idx + 1];
|
|
}
|
|
level--;
|
|
}
|
|
// There is a special case where x could still be the head_
|
|
// (note that the head_ contains no key).
|
|
return x == head_ && head_ != nullptr ? head_->Next(0) : x;
|
|
}
|
|
|
|
template <class Comparator>
|
|
uint64_t InlineSkipList<Comparator>::ApproximateNumEntries(
|
|
const Slice& start_ikey, const Slice& end_ikey) const {
|
|
// The number of entries at a given level for the given range, in terms of
|
|
// the actual number of entries in that range (level 0), follows a binomial
|
|
// distribution, which is very well approximated by the Poisson distribution.
|
|
// That has stddev sqrt(x) where x is the expected number of entries (mean)
|
|
// at this level, and the best predictor of x is the number of observed
|
|
// entries (at this level). To predict the number of entries on level 0 we use
|
|
// x * kBranchinng ^ level. From the standard deviation, the P99+ relative
|
|
// error is roughly 3 * sqrt(x) / x. Thus, a reasonable approach would be to
|
|
// find the smallest level with at least some moderate constant number entries
|
|
// in range. E.g. with at least ~40 entries, we expect P99+ relative error
|
|
// (approximation accuracy) of ~ 50% = 3 * sqrt(40) / 40; P95 error of
|
|
// ~30%; P75 error of < 20%.
|
|
//
|
|
// However, there are two issues with this approach, and an observation:
|
|
// * Pointer chasing on the larger (bottom) levels is much slower because of
|
|
// cache hierarchy effects, so when the result is smaller, getting the result
|
|
// will be substantially slower, despite traversing a similar number of
|
|
// entries. (We could be clever about pipelining our pointer chasing but
|
|
// that's complicated.)
|
|
// * The larger (bottom) levels also have lower variance because there's a
|
|
// chance (or certainty) that we reach level 0 and return the exact answer.
|
|
// * For applications in query planning, we can also tolerate more variance on
|
|
// small results because the impact of misestimating is likely smaller.
|
|
//
|
|
// These factors point us to an approach in which we have a higher minimum
|
|
// threshold number of samples for higher levels and lower for lower levels
|
|
// (see sufficient_samples below). This seems to yield roughly consistent
|
|
// relative error (stddev around 20%, less for large results) and roughly
|
|
// consistent query time around the time of two memtable point queries.
|
|
//
|
|
// Engineering observation: it is tempting to think that taking into account
|
|
// what we already found in how many entries occur on higher levels, not just
|
|
// the first iterated level with a sufficient number of samples, would yield
|
|
// a more accurate estimate. But that doesn't work because of the particular
|
|
// correlations and independences of the data: each level higher is just an
|
|
// independently probabilistic filtering of the level below it. That
|
|
// filtering from level l to l+1 has no more information about levels
|
|
// 0 .. l-1 than we can get from level l. The structure of RandomHeight() is
|
|
// a clue to these correlations and independences.
|
|
|
|
Node* lb = head_;
|
|
Node* ub = nullptr;
|
|
uint64_t count = 0;
|
|
for (int level = GetMaxHeight() - 1; level >= 0; level--) {
|
|
auto sufficient_samples = static_cast<uint64_t>(level) * kBranching_ + 10U;
|
|
if (count >= sufficient_samples) {
|
|
// No more counting; apply powers of kBranching and avoid floating point
|
|
count *= kBranching_;
|
|
continue;
|
|
}
|
|
count = 0;
|
|
Node* next;
|
|
// Get a more precise lower bound (for start key)
|
|
for (;;) {
|
|
next = lb->Next(level);
|
|
if (next == ub) {
|
|
break;
|
|
}
|
|
assert(next != nullptr);
|
|
if (compare_(next->Key(), start_ikey) >= 0) {
|
|
break;
|
|
}
|
|
lb = next;
|
|
}
|
|
// Count entries on this level until upper bound (for end key)
|
|
for (;;) {
|
|
if (next == ub) {
|
|
break;
|
|
}
|
|
assert(next != nullptr);
|
|
if (compare_(next->Key(), end_ikey) >= 0) {
|
|
// Save refined upper bound to potentially save key comparison
|
|
ub = next;
|
|
break;
|
|
}
|
|
count++;
|
|
next = next->Next(level);
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
template <class Comparator>
|
|
InlineSkipList<Comparator>::InlineSkipList(const Comparator cmp,
|
|
Allocator* allocator,
|
|
int32_t max_height,
|
|
int32_t branching_factor)
|
|
: kMaxHeight_(static_cast<uint16_t>(max_height)),
|
|
kBranching_(static_cast<uint16_t>(branching_factor)),
|
|
kScaledInverseBranching_((Random::kMaxNext + 1) / kBranching_),
|
|
allocator_(allocator),
|
|
compare_(cmp),
|
|
head_(AllocateNode(0, max_height)),
|
|
max_height_(1),
|
|
seq_splice_(AllocateSplice()) {
|
|
assert(max_height > 0 && kMaxHeight_ == static_cast<uint32_t>(max_height));
|
|
assert(branching_factor > 1 &&
|
|
kBranching_ == static_cast<uint32_t>(branching_factor));
|
|
assert(kScaledInverseBranching_ > 0);
|
|
|
|
for (int i = 0; i < kMaxHeight_; ++i) {
|
|
head_->SetNext(i, nullptr);
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
char* InlineSkipList<Comparator>::AllocateKey(size_t key_size) {
|
|
return const_cast<char*>(AllocateNode(key_size, RandomHeight())->Key());
|
|
}
|
|
|
|
template <class Comparator>
|
|
typename InlineSkipList<Comparator>::Node*
|
|
InlineSkipList<Comparator>::AllocateNode(size_t key_size, int height) {
|
|
auto prefix = sizeof(std::atomic<Node*>) * (height - 1);
|
|
|
|
// prefix is space for the height - 1 pointers that we store before
|
|
// the Node instance (next_[-(height - 1) .. -1]). Node starts at
|
|
// raw + prefix, and holds the bottom-mode (level 0) skip list pointer
|
|
// next_[0]. key_size is the bytes for the key, which comes just after
|
|
// the Node.
|
|
char* raw = allocator_->AllocateAligned(prefix + sizeof(Node) + key_size);
|
|
Node* x = reinterpret_cast<Node*>(raw + prefix);
|
|
|
|
// Once we've linked the node into the skip list we don't actually need
|
|
// to know its height, because we can implicitly use the fact that we
|
|
// traversed into a node at level h to known that h is a valid level
|
|
// for that node. We need to convey the height to the Insert step,
|
|
// however, so that it can perform the proper links. Since we're not
|
|
// using the pointers at the moment, StashHeight temporarily borrow
|
|
// storage from next_[0] for that purpose.
|
|
x->StashHeight(height);
|
|
return x;
|
|
}
|
|
|
|
template <class Comparator>
|
|
typename InlineSkipList<Comparator>::Splice*
|
|
InlineSkipList<Comparator>::AllocateSplice() {
|
|
// size of prev_ and next_
|
|
size_t array_size = sizeof(Node*) * (kMaxHeight_ + 1);
|
|
char* raw = allocator_->AllocateAligned(sizeof(Splice) + array_size * 2);
|
|
Splice* splice = reinterpret_cast<Splice*>(raw);
|
|
splice->height_ = 0;
|
|
splice->prev_ = reinterpret_cast<Node**>(raw + sizeof(Splice));
|
|
splice->next_ = reinterpret_cast<Node**>(raw + sizeof(Splice) + array_size);
|
|
return splice;
|
|
}
|
|
|
|
template <class Comparator>
|
|
typename InlineSkipList<Comparator>::Splice*
|
|
InlineSkipList<Comparator>::AllocateSpliceOnHeap() {
|
|
size_t array_size = sizeof(Node*) * (kMaxHeight_ + 1);
|
|
char* raw = new char[sizeof(Splice) + array_size * 2];
|
|
Splice* splice = reinterpret_cast<Splice*>(raw);
|
|
splice->height_ = 0;
|
|
splice->prev_ = reinterpret_cast<Node**>(raw + sizeof(Splice));
|
|
splice->next_ = reinterpret_cast<Node**>(raw + sizeof(Splice) + array_size);
|
|
return splice;
|
|
}
|
|
|
|
template <class Comparator>
|
|
bool InlineSkipList<Comparator>::Insert(const char* key) {
|
|
return Insert<false>(key, seq_splice_, false);
|
|
}
|
|
|
|
template <class Comparator>
|
|
bool InlineSkipList<Comparator>::InsertConcurrently(const char* key) {
|
|
Node* prev[kMaxPossibleHeight];
|
|
Node* next[kMaxPossibleHeight];
|
|
Splice splice;
|
|
splice.prev_ = prev;
|
|
splice.next_ = next;
|
|
return Insert<true>(key, &splice, false);
|
|
}
|
|
|
|
template <class Comparator>
|
|
bool InlineSkipList<Comparator>::InsertWithHint(const char* key, void** hint) {
|
|
assert(hint != nullptr);
|
|
Splice* splice = reinterpret_cast<Splice*>(*hint);
|
|
if (splice == nullptr) {
|
|
splice = AllocateSplice();
|
|
*hint = splice;
|
|
}
|
|
return Insert<false>(key, splice, true);
|
|
}
|
|
|
|
template <class Comparator>
|
|
bool InlineSkipList<Comparator>::InsertWithHintConcurrently(const char* key,
|
|
void** hint) {
|
|
assert(hint != nullptr);
|
|
Splice* splice = reinterpret_cast<Splice*>(*hint);
|
|
if (splice == nullptr) {
|
|
splice = AllocateSpliceOnHeap();
|
|
*hint = splice;
|
|
}
|
|
return Insert<true>(key, splice, true);
|
|
}
|
|
|
|
template <class Comparator>
|
|
template <bool prefetch_before>
|
|
void InlineSkipList<Comparator>::FindSpliceForLevel(const DecodedKey& key,
|
|
Node* before, Node* after,
|
|
int level, Node** out_prev,
|
|
Node** out_next) {
|
|
while (true) {
|
|
Node* next = before->Next(level);
|
|
if (next != nullptr) {
|
|
PREFETCH(next->Next(level), 0, 1);
|
|
}
|
|
if (prefetch_before == true) {
|
|
if (next != nullptr && level > 0) {
|
|
PREFETCH(next->Next(level - 1), 0, 1);
|
|
}
|
|
}
|
|
assert(before == head_ || next == nullptr ||
|
|
KeyIsAfterNode(next->Key(), before));
|
|
assert(before == head_ || KeyIsAfterNode(key, before));
|
|
if (next == after || !KeyIsAfterNode(key, next)) {
|
|
// found it
|
|
*out_prev = before;
|
|
*out_next = next;
|
|
return;
|
|
}
|
|
before = next;
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
void InlineSkipList<Comparator>::RecomputeSpliceLevels(const DecodedKey& key,
|
|
Splice* splice,
|
|
int recompute_level) {
|
|
assert(recompute_level > 0);
|
|
assert(recompute_level <= splice->height_);
|
|
for (int i = recompute_level - 1; i >= 0; --i) {
|
|
FindSpliceForLevel<true>(key, splice->prev_[i + 1], splice->next_[i + 1], i,
|
|
&splice->prev_[i], &splice->next_[i]);
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
template <bool UseCAS>
|
|
bool InlineSkipList<Comparator>::Insert(const char* key, Splice* splice,
|
|
bool allow_partial_splice_fix) {
|
|
Node* x = reinterpret_cast<Node*>(const_cast<char*>(key)) - 1;
|
|
const DecodedKey key_decoded = compare_.decode_key(key);
|
|
int height = x->UnstashHeight();
|
|
assert(height >= 1 && height <= kMaxHeight_);
|
|
|
|
int max_height = max_height_.load(std::memory_order_relaxed);
|
|
while (height > max_height) {
|
|
if (max_height_.compare_exchange_weak(max_height, height)) {
|
|
// successfully updated it
|
|
max_height = height;
|
|
break;
|
|
}
|
|
// else retry, possibly exiting the loop because somebody else
|
|
// increased it
|
|
}
|
|
assert(max_height <= kMaxPossibleHeight);
|
|
|
|
int recompute_height = 0;
|
|
if (splice->height_ < max_height) {
|
|
// Either splice has never been used or max_height has grown since
|
|
// last use. We could potentially fix it in the latter case, but
|
|
// that is tricky.
|
|
splice->prev_[max_height] = head_;
|
|
splice->next_[max_height] = nullptr;
|
|
splice->height_ = max_height;
|
|
recompute_height = max_height;
|
|
} else {
|
|
// Splice is a valid proper-height splice that brackets some
|
|
// key, but does it bracket this one? We need to validate it and
|
|
// recompute a portion of the splice (levels 0..recompute_height-1)
|
|
// that is a superset of all levels that don't bracket the new key.
|
|
// Several choices are reasonable, because we have to balance the work
|
|
// saved against the extra comparisons required to validate the Splice.
|
|
//
|
|
// One strategy is just to recompute all of orig_splice_height if the
|
|
// bottom level isn't bracketing. This pessimistically assumes that
|
|
// we will either get a perfect Splice hit (increasing sequential
|
|
// inserts) or have no locality.
|
|
//
|
|
// Another strategy is to walk up the Splice's levels until we find
|
|
// a level that brackets the key. This strategy lets the Splice
|
|
// hint help for other cases: it turns insertion from O(log N) into
|
|
// O(log D), where D is the number of nodes in between the key that
|
|
// produced the Splice and the current insert (insertion is aided
|
|
// whether the new key is before or after the splice). If you have
|
|
// a way of using a prefix of the key to map directly to the closest
|
|
// Splice out of O(sqrt(N)) Splices and we make it so that splices
|
|
// can also be used as hints during read, then we end up with Oshman's
|
|
// and Shavit's SkipTrie, which has O(log log N) lookup and insertion
|
|
// (compare to O(log N) for skip list).
|
|
//
|
|
// We control the pessimistic strategy with allow_partial_splice_fix.
|
|
// A good strategy is probably to be pessimistic for seq_splice_,
|
|
// optimistic if the caller actually went to the work of providing
|
|
// a Splice.
|
|
while (recompute_height < max_height) {
|
|
if (splice->prev_[recompute_height]->Next(recompute_height) !=
|
|
splice->next_[recompute_height]) {
|
|
// splice isn't tight at this level, there must have been some inserts
|
|
// to this
|
|
// location that didn't update the splice. We might only be a little
|
|
// stale, but if
|
|
// the splice is very stale it would be O(N) to fix it. We haven't used
|
|
// up any of
|
|
// our budget of comparisons, so always move up even if we are
|
|
// pessimistic about
|
|
// our chances of success.
|
|
++recompute_height;
|
|
} else if (splice->prev_[recompute_height] != head_ &&
|
|
!KeyIsAfterNode(key_decoded,
|
|
splice->prev_[recompute_height])) {
|
|
// key is from before splice
|
|
if (allow_partial_splice_fix) {
|
|
// skip all levels with the same node without more comparisons
|
|
Node* bad = splice->prev_[recompute_height];
|
|
while (splice->prev_[recompute_height] == bad) {
|
|
++recompute_height;
|
|
}
|
|
} else {
|
|
// we're pessimistic, recompute everything
|
|
recompute_height = max_height;
|
|
}
|
|
} else if (KeyIsAfterNode(key_decoded, splice->next_[recompute_height])) {
|
|
// key is from after splice
|
|
if (allow_partial_splice_fix) {
|
|
Node* bad = splice->next_[recompute_height];
|
|
while (splice->next_[recompute_height] == bad) {
|
|
++recompute_height;
|
|
}
|
|
} else {
|
|
recompute_height = max_height;
|
|
}
|
|
} else {
|
|
// this level brackets the key, we won!
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
assert(recompute_height <= max_height);
|
|
if (recompute_height > 0) {
|
|
RecomputeSpliceLevels(key_decoded, splice, recompute_height);
|
|
}
|
|
|
|
bool splice_is_valid = true;
|
|
if (UseCAS) {
|
|
for (int i = 0; i < height; ++i) {
|
|
while (true) {
|
|
// Checking for duplicate keys on the level 0 is sufficient
|
|
if (UNLIKELY(i == 0 && splice->next_[i] != nullptr &&
|
|
compare_(splice->next_[i]->Key(), key_decoded) <= 0)) {
|
|
// duplicate key
|
|
return false;
|
|
}
|
|
if (UNLIKELY(i == 0 && splice->prev_[i] != head_ &&
|
|
compare_(splice->prev_[i]->Key(), key_decoded) >= 0)) {
|
|
// duplicate key
|
|
return false;
|
|
}
|
|
assert(splice->next_[i] == nullptr ||
|
|
compare_(x->Key(), splice->next_[i]->Key()) < 0);
|
|
assert(splice->prev_[i] == head_ ||
|
|
compare_(splice->prev_[i]->Key(), x->Key()) < 0);
|
|
x->NoBarrier_SetNext(i, splice->next_[i]);
|
|
if (splice->prev_[i]->CASNext(i, splice->next_[i], x)) {
|
|
// success
|
|
break;
|
|
}
|
|
// CAS failed, we need to recompute prev and next. It is unlikely
|
|
// to be helpful to try to use a different level as we redo the
|
|
// search, because it should be unlikely that lots of nodes have
|
|
// been inserted between prev[i] and next[i]. No point in using
|
|
// next[i] as the after hint, because we know it is stale.
|
|
FindSpliceForLevel<false>(key_decoded, splice->prev_[i], nullptr, i,
|
|
&splice->prev_[i], &splice->next_[i]);
|
|
|
|
// Since we've narrowed the bracket for level i, we might have
|
|
// violated the Splice constraint between i and i-1. Make sure
|
|
// we recompute the whole thing next time.
|
|
if (i > 0) {
|
|
splice_is_valid = false;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (int i = 0; i < height; ++i) {
|
|
if (i >= recompute_height &&
|
|
splice->prev_[i]->Next(i) != splice->next_[i]) {
|
|
FindSpliceForLevel<false>(key_decoded, splice->prev_[i], nullptr, i,
|
|
&splice->prev_[i], &splice->next_[i]);
|
|
}
|
|
// Checking for duplicate keys on the level 0 is sufficient
|
|
if (UNLIKELY(i == 0 && splice->next_[i] != nullptr &&
|
|
compare_(splice->next_[i]->Key(), key_decoded) <= 0)) {
|
|
// duplicate key
|
|
return false;
|
|
}
|
|
if (UNLIKELY(i == 0 && splice->prev_[i] != head_ &&
|
|
compare_(splice->prev_[i]->Key(), key_decoded) >= 0)) {
|
|
// duplicate key
|
|
return false;
|
|
}
|
|
assert(splice->next_[i] == nullptr ||
|
|
compare_(x->Key(), splice->next_[i]->Key()) < 0);
|
|
assert(splice->prev_[i] == head_ ||
|
|
compare_(splice->prev_[i]->Key(), x->Key()) < 0);
|
|
assert(splice->prev_[i]->Next(i) == splice->next_[i]);
|
|
x->NoBarrier_SetNext(i, splice->next_[i]);
|
|
splice->prev_[i]->SetNext(i, x);
|
|
}
|
|
}
|
|
if (splice_is_valid) {
|
|
for (int i = 0; i < height; ++i) {
|
|
splice->prev_[i] = x;
|
|
}
|
|
assert(splice->prev_[splice->height_] == head_);
|
|
assert(splice->next_[splice->height_] == nullptr);
|
|
for (int i = 0; i < splice->height_; ++i) {
|
|
assert(splice->next_[i] == nullptr ||
|
|
compare_(key, splice->next_[i]->Key()) < 0);
|
|
assert(splice->prev_[i] == head_ ||
|
|
compare_(splice->prev_[i]->Key(), key) <= 0);
|
|
assert(splice->prev_[i + 1] == splice->prev_[i] ||
|
|
splice->prev_[i + 1] == head_ ||
|
|
compare_(splice->prev_[i + 1]->Key(), splice->prev_[i]->Key()) <
|
|
0);
|
|
assert(splice->next_[i + 1] == splice->next_[i] ||
|
|
splice->next_[i + 1] == nullptr ||
|
|
compare_(splice->next_[i]->Key(), splice->next_[i + 1]->Key()) <
|
|
0);
|
|
}
|
|
} else {
|
|
splice->height_ = 0;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class Comparator>
|
|
bool InlineSkipList<Comparator>::Contains(const char* key) const {
|
|
Node* x = FindGreaterOrEqual(key, nullptr);
|
|
if (x != nullptr && Equal(key, x->Key())) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
void InlineSkipList<Comparator>::TEST_Validate() const {
|
|
// Interate over all levels at the same time, and verify nodes appear in
|
|
// the right order, and nodes appear in upper level also appear in lower
|
|
// levels.
|
|
Node* nodes[kMaxPossibleHeight];
|
|
int max_height = GetMaxHeight();
|
|
assert(max_height > 0);
|
|
for (int i = 0; i < max_height; i++) {
|
|
nodes[i] = head_;
|
|
}
|
|
while (nodes[0] != nullptr) {
|
|
Node* l0_next = nodes[0]->Next(0);
|
|
if (l0_next == nullptr) {
|
|
break;
|
|
}
|
|
assert(nodes[0] == head_ || compare_(nodes[0]->Key(), l0_next->Key()) < 0);
|
|
nodes[0] = l0_next;
|
|
|
|
int i = 1;
|
|
while (i < max_height) {
|
|
Node* next = nodes[i]->Next(i);
|
|
if (next == nullptr) {
|
|
break;
|
|
}
|
|
auto cmp = compare_(nodes[0]->Key(), next->Key());
|
|
assert(cmp <= 0);
|
|
if (cmp == 0) {
|
|
assert(next == nodes[0]);
|
|
nodes[i] = next;
|
|
} else {
|
|
break;
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
for (int i = 1; i < max_height; i++) {
|
|
assert(nodes[i] != nullptr && nodes[i]->Next(i) == nullptr);
|
|
}
|
|
}
|
|
|
|
template <class Comparator>
|
|
Status InlineSkipList<Comparator>::Corruption(Node* prev, Node* next,
|
|
bool allow_data_in_errors) {
|
|
std::string msg = "Out-of-order keys found in skiplist.";
|
|
if (allow_data_in_errors) {
|
|
msg.append(" prev key: " + Slice(prev->Key()).ToString(true));
|
|
msg.append(" next key: " + Slice(next->Key()).ToString(true));
|
|
}
|
|
return Status::Corruption(msg);
|
|
}
|
|
} // namespace ROCKSDB_NAMESPACE
|