rocksdb/db_stress_tool/db_stress_common.cc
Jay Huh 0d68aff3a1 StressTest - Move some stderr messages to stdout (#12304)
Summary:
Moving some of the messages that we print out in `stderr` to `stdout` to make `stderr` more strictly related to errors.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/12304

Test Plan:
```
$> python3 tools/db_crashtest.py blackbox --simple --max_key=25000000 --write_buffer_size=4194304
```

**Before**
```
...
stderr:
WARNING: prefix_size is non-zero but memtablerep != prefix_hash
Error : jewoongh injected test error This is not a real failure.
Verification failed :(
```

**After**

No longer seeing the `WARNING: prefix_size is non-zero but memtablerep != prefix_hash` message in stderr, but still appears in stdout.

```
WARNING: prefix_size is non-zero but memtablerep != prefix_hash
Integrated BlobDB: blob files enabled 0, min blob size 0, blob file size 268435456, blob compression type NoCompression, blob GC enabled 0, cutoff 0.250000, force threshold 1.000000, blob compaction readahead size 0, blob file starting level 0
Integrated BlobDB: blob cache disabled
DB path: [/tmp/jewoongh/rocksdb_crashtest_blackboxzztp281q]
(Re-)verified 0 unique IDs
2024/01/29-11:57:51  Initializing worker threads
Crash-recovery verification passed :)
2024/01/29-11:57:58  Starting database operations
2024/01/29-11:57:58  Starting verification
Stress Test : 245.167 micros/op 10221 ops/sec
            : Wrote 0.00 MB (0.10 MB/sec) (16% of 6 ops)
            : Wrote 1 times
            : Deleted 0 times
            : Single deleted 0 times
            : 4 read and 0 found the key
            : Prefix scanned 0 times
            : Iterator size sum is 0
            : Iterated 3 times
            : Deleted 0 key-ranges
            : Range deletions covered 0 keys
            : Got errors 0 times
            : 0 CompactFiles() succeed
            : 0 CompactFiles() did not succeed

stderr:
Error : jewoongh injected test error This is not a real failure.
Error : jewoongh injected test error This is not a real failure.
Error : jewoongh injected test error This is not a real failure.
Verification failed :(
```

Reviewed By: akankshamahajan15

Differential Revision: D53193587

Pulled By: jaykorean

fbshipit-source-id: 40d59f4c993c5ce043c571a207ccc9b74a0180c6
2024-01-29 12:52:59 -08:00

567 lines
19 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
//
#ifdef GFLAGS
#include "db_stress_tool/db_stress_common.h"
#include <cmath>
#include "rocksdb/secondary_cache.h"
#include "util/file_checksum_helper.h"
#include "util/xxhash.h"
ROCKSDB_NAMESPACE::Env* db_stress_listener_env = nullptr;
ROCKSDB_NAMESPACE::Env* db_stress_env = nullptr;
// If non-null, injects read error at a rate specified by the
// read_fault_one_in or write_fault_one_in flag
std::shared_ptr<ROCKSDB_NAMESPACE::FaultInjectionTestFS> fault_fs_guard;
std::shared_ptr<ROCKSDB_NAMESPACE::SecondaryCache> compressed_secondary_cache;
std::shared_ptr<ROCKSDB_NAMESPACE::Cache> block_cache;
enum ROCKSDB_NAMESPACE::CompressionType compression_type_e =
ROCKSDB_NAMESPACE::kSnappyCompression;
enum ROCKSDB_NAMESPACE::CompressionType bottommost_compression_type_e =
ROCKSDB_NAMESPACE::kSnappyCompression;
enum ROCKSDB_NAMESPACE::ChecksumType checksum_type_e =
ROCKSDB_NAMESPACE::kCRC32c;
enum RepFactory FLAGS_rep_factory = kSkipList;
std::vector<double> sum_probs(100001);
constexpr int64_t zipf_sum_size = 100000;
namespace ROCKSDB_NAMESPACE {
// Zipfian distribution is generated based on a pre-calculated array.
// It should be used before start the stress test.
// First, the probability distribution function (PDF) of this Zipfian follows
// power low. P(x) = 1/(x^alpha).
// So we calculate the PDF when x is from 0 to zipf_sum_size in first for loop
// and add the PDF value togetger as c. So we get the total probability in c.
// Next, we calculate inverse CDF of Zipfian and store the value of each in
// an array (sum_probs). The rank is from 0 to zipf_sum_size. For example, for
// integer k, its Zipfian CDF value is sum_probs[k].
// Third, when we need to get an integer whose probability follows Zipfian
// distribution, we use a rand_seed [0,1] which follows uniform distribution
// as a seed and search it in the sum_probs via binary search. When we find
// the closest sum_probs[i] of rand_seed, i is the integer that in
// [0, zipf_sum_size] following Zipfian distribution with parameter alpha.
// Finally, we can scale i to [0, max_key] scale.
// In order to avoid that hot keys are close to each other and skew towards 0,
// we use Rando64 to shuffle it.
void InitializeHotKeyGenerator(double alpha) {
double c = 0;
for (int64_t i = 1; i <= zipf_sum_size; i++) {
c = c + (1.0 / std::pow(static_cast<double>(i), alpha));
}
c = 1.0 / c;
sum_probs[0] = 0;
for (int64_t i = 1; i <= zipf_sum_size; i++) {
sum_probs[i] =
sum_probs[i - 1] + c / std::pow(static_cast<double>(i), alpha);
}
}
// Generate one key that follows the Zipfian distribution. The skewness
// is decided by the parameter alpha. Input is the rand_seed [0,1] and
// the max of the key to be generated. If we directly return tmp_zipf_seed,
// the closer to 0, the higher probability will be. To randomly distribute
// the hot keys in [0, max_key], we use Random64 to shuffle it.
int64_t GetOneHotKeyID(double rand_seed, int64_t max_key) {
int64_t low = 1, mid, high = zipf_sum_size, zipf = 0;
while (low <= high) {
mid = (low + high) / 2;
if (sum_probs[mid] >= rand_seed && sum_probs[mid - 1] < rand_seed) {
zipf = mid;
break;
} else if (sum_probs[mid] >= rand_seed) {
high = mid - 1;
} else {
low = mid + 1;
}
}
int64_t tmp_zipf_seed = zipf * max_key / zipf_sum_size;
Random64 rand_local(tmp_zipf_seed);
return rand_local.Next() % max_key;
}
void PoolSizeChangeThread(void* v) {
assert(FLAGS_compaction_thread_pool_adjust_interval > 0);
ThreadState* thread = reinterpret_cast<ThreadState*>(v);
SharedState* shared = thread->shared;
while (true) {
{
MutexLock l(shared->GetMutex());
if (shared->ShouldStopBgThread()) {
shared->IncBgThreadsFinished();
if (shared->BgThreadsFinished()) {
shared->GetCondVar()->SignalAll();
}
return;
}
}
auto thread_pool_size_base = FLAGS_max_background_compactions;
auto thread_pool_size_var = FLAGS_compaction_thread_pool_variations;
int new_thread_pool_size =
thread_pool_size_base - thread_pool_size_var +
thread->rand.Next() % (thread_pool_size_var * 2 + 1);
if (new_thread_pool_size < 1) {
new_thread_pool_size = 1;
}
db_stress_env->SetBackgroundThreads(new_thread_pool_size,
ROCKSDB_NAMESPACE::Env::Priority::LOW);
// Sleep up to 3 seconds
db_stress_env->SleepForMicroseconds(
thread->rand.Next() % FLAGS_compaction_thread_pool_adjust_interval *
1000 +
1);
}
}
void DbVerificationThread(void* v) {
assert(FLAGS_continuous_verification_interval > 0);
auto* thread = reinterpret_cast<ThreadState*>(v);
SharedState* shared = thread->shared;
StressTest* stress_test = shared->GetStressTest();
assert(stress_test != nullptr);
while (true) {
{
MutexLock l(shared->GetMutex());
if (shared->ShouldStopBgThread()) {
shared->IncBgThreadsFinished();
if (shared->BgThreadsFinished()) {
shared->GetCondVar()->SignalAll();
}
return;
}
}
if (!shared->HasVerificationFailedYet()) {
stress_test->ContinuouslyVerifyDb(thread);
}
db_stress_env->SleepForMicroseconds(
thread->rand.Next() % FLAGS_continuous_verification_interval * 1000 +
1);
}
}
void CompressedCacheSetCapacityThread(void* v) {
assert(FLAGS_compressed_secondary_cache_size > 0 ||
FLAGS_compressed_secondary_cache_ratio > 0.0);
auto* thread = reinterpret_cast<ThreadState*>(v);
SharedState* shared = thread->shared;
while (true) {
{
MutexLock l(shared->GetMutex());
if (shared->ShouldStopBgThread()) {
shared->IncBgThreadsFinished();
if (shared->BgThreadsFinished()) {
shared->GetCondVar()->SignalAll();
}
return;
}
}
db_stress_env->SleepForMicroseconds(FLAGS_secondary_cache_update_interval);
if (FLAGS_compressed_secondary_cache_size > 0) {
Status s = compressed_secondary_cache->SetCapacity(0);
size_t capacity;
if (s.ok()) {
s = compressed_secondary_cache->GetCapacity(capacity);
assert(capacity == 0);
}
db_stress_env->SleepForMicroseconds(10 * 1000 * 1000);
if (s.ok()) {
s = compressed_secondary_cache->SetCapacity(
FLAGS_compressed_secondary_cache_size);
}
if (s.ok()) {
s = compressed_secondary_cache->GetCapacity(capacity);
assert(capacity == FLAGS_compressed_secondary_cache_size);
}
if (!s.ok()) {
fprintf(stderr, "Compressed cache Set/GetCapacity returned error: %s\n",
s.ToString().c_str());
}
} else if (FLAGS_compressed_secondary_cache_ratio > 0.0) {
if (thread->rand.OneIn(2)) { // if (thread->rand.OneIn(2)) {
size_t capacity = block_cache->GetCapacity();
size_t adjustment;
if (FLAGS_use_write_buffer_manager && FLAGS_db_write_buffer_size > 0) {
adjustment = (capacity - FLAGS_db_write_buffer_size);
} else {
adjustment = capacity;
}
// Lower by upto 50% of usable block cache capacity
adjustment = (adjustment * thread->rand.Uniform(50)) / 100;
block_cache->SetCapacity(capacity - adjustment);
fprintf(stdout, "New cache capacity = %lu\n",
block_cache->GetCapacity());
db_stress_env->SleepForMicroseconds(10 * 1000 * 1000);
block_cache->SetCapacity(capacity);
} else {
Status s;
double new_comp_cache_ratio =
(double)thread->rand.Uniform(
FLAGS_compressed_secondary_cache_ratio * 100) /
100;
fprintf(stdout, "New comp cache ratio = %f\n", new_comp_cache_ratio);
s = UpdateTieredCache(block_cache, /*capacity*/ -1,
new_comp_cache_ratio);
if (s.ok()) {
db_stress_env->SleepForMicroseconds(10 * 1000 * 1000);
}
if (s.ok()) {
s = UpdateTieredCache(block_cache, /*capacity*/ -1,
FLAGS_compressed_secondary_cache_ratio);
}
if (!s.ok()) {
fprintf(stderr, "UpdateTieredCache returned error: %s\n",
s.ToString().c_str());
}
}
}
}
}
void PrintKeyValue(int cf, uint64_t key, const char* value, size_t sz) {
if (!FLAGS_verbose) {
return;
}
std::string tmp;
tmp.reserve(sz * 2 + 16);
char buf[4];
for (size_t i = 0; i < sz; i++) {
snprintf(buf, 4, "%X", value[i]);
tmp.append(buf);
}
auto key_str = Key(key);
Slice key_slice = key_str;
fprintf(stdout, "[CF %d] %s (%" PRIi64 ") == > (%" ROCKSDB_PRIszt ") %s\n",
cf, key_slice.ToString(true).c_str(), key, sz, tmp.c_str());
}
// Note that if hot_key_alpha != 0, it generates the key based on Zipfian
// distribution. Keys are randomly scattered to [0, FLAGS_max_key]. It does
// not ensure the order of the keys being generated and the keys does not have
// the active range which is related to FLAGS_active_width.
int64_t GenerateOneKey(ThreadState* thread, uint64_t iteration) {
const double completed_ratio =
static_cast<double>(iteration) / FLAGS_ops_per_thread;
const int64_t base_key = static_cast<int64_t>(
completed_ratio * (FLAGS_max_key - FLAGS_active_width));
int64_t rand_seed = base_key + thread->rand.Next() % FLAGS_active_width;
int64_t cur_key = rand_seed;
if (FLAGS_hot_key_alpha != 0) {
// If set the Zipfian distribution Alpha to non 0, use Zipfian
double float_rand =
(static_cast<double>(thread->rand.Next() % FLAGS_max_key)) /
FLAGS_max_key;
cur_key = GetOneHotKeyID(float_rand, FLAGS_max_key);
}
return cur_key;
}
// Note that if hot_key_alpha != 0, it generates the key based on Zipfian
// distribution. Keys being generated are in random order.
// If user want to generate keys based on uniform distribution, user needs to
// set hot_key_alpha == 0. It will generate the random keys in increasing
// order in the key array (ensure key[i] >= key[i+1]) and constrained in a
// range related to FLAGS_active_width.
std::vector<int64_t> GenerateNKeys(ThreadState* thread, int num_keys,
uint64_t iteration) {
const double completed_ratio =
static_cast<double>(iteration) / FLAGS_ops_per_thread;
const int64_t base_key = static_cast<int64_t>(
completed_ratio * (FLAGS_max_key - FLAGS_active_width));
std::vector<int64_t> keys;
keys.reserve(num_keys);
int64_t next_key = base_key + thread->rand.Next() % FLAGS_active_width;
keys.push_back(next_key);
for (int i = 1; i < num_keys; ++i) {
// Generate the key follows zipfian distribution
if (FLAGS_hot_key_alpha != 0) {
double float_rand =
(static_cast<double>(thread->rand.Next() % FLAGS_max_key)) /
FLAGS_max_key;
next_key = GetOneHotKeyID(float_rand, FLAGS_max_key);
} else {
// This may result in some duplicate keys
next_key = next_key + thread->rand.Next() %
(FLAGS_active_width - (next_key - base_key));
}
keys.push_back(next_key);
}
return keys;
}
size_t GenerateValue(uint32_t rand, char* v, size_t max_sz) {
size_t value_sz =
((rand % kRandomValueMaxFactor) + 1) * FLAGS_value_size_mult;
assert(value_sz <= max_sz && value_sz >= sizeof(uint32_t));
(void)max_sz;
PutUnaligned(reinterpret_cast<uint32_t*>(v), rand);
for (size_t i = sizeof(uint32_t); i < value_sz; i++) {
v[i] = (char)(rand ^ i);
}
v[value_sz] = '\0';
return value_sz; // the size of the value set.
}
uint32_t GetValueBase(Slice s) {
assert(s.size() >= sizeof(uint32_t));
uint32_t res;
GetUnaligned(reinterpret_cast<const uint32_t*>(s.data()), &res);
return res;
}
WideColumns GenerateWideColumns(uint32_t value_base, const Slice& slice) {
WideColumns columns;
constexpr size_t max_columns = 4;
const size_t num_columns = (value_base % max_columns) + 1;
columns.reserve(num_columns);
assert(slice.size() >= num_columns);
columns.emplace_back(kDefaultWideColumnName, slice);
for (size_t i = 1; i < num_columns; ++i) {
const Slice name(slice.data(), i);
const Slice value(slice.data() + i, slice.size() - i);
columns.emplace_back(name, value);
}
return columns;
}
WideColumns GenerateExpectedWideColumns(uint32_t value_base,
const Slice& slice) {
if (FLAGS_use_put_entity_one_in == 0 ||
(value_base % FLAGS_use_put_entity_one_in) != 0) {
return WideColumns{{kDefaultWideColumnName, slice}};
}
WideColumns columns = GenerateWideColumns(value_base, slice);
WideColumnsHelper::SortColumns(columns);
return columns;
}
bool VerifyWideColumns(const Slice& value, const WideColumns& columns) {
if (value.size() < sizeof(uint32_t)) {
return false;
}
const uint32_t value_base = GetValueBase(value);
const WideColumns expected_columns =
GenerateExpectedWideColumns(value_base, value);
if (columns != expected_columns) {
return false;
}
return true;
}
bool VerifyWideColumns(const WideColumns& columns) {
if (!WideColumnsHelper::HasDefaultColumn(columns)) {
return false;
}
const Slice& value_of_default = WideColumnsHelper::GetDefaultColumn(columns);
return VerifyWideColumns(value_of_default, columns);
}
std::string GetNowNanos() {
uint64_t t = db_stress_env->NowNanos();
std::string ret;
PutFixed64(&ret, t);
return ret;
}
namespace {
class MyXXH64Checksum : public FileChecksumGenerator {
public:
explicit MyXXH64Checksum(bool big) : big_(big) {
state_ = XXH64_createState();
XXH64_reset(state_, 0);
}
virtual ~MyXXH64Checksum() override { XXH64_freeState(state_); }
void Update(const char* data, size_t n) override {
XXH64_update(state_, data, n);
}
void Finalize() override {
assert(str_.empty());
uint64_t digest = XXH64_digest(state_);
// Store as little endian raw bytes
PutFixed64(&str_, digest);
if (big_) {
// Throw in some more data for stress testing (448 bits total)
PutFixed64(&str_, GetSliceHash64(str_));
PutFixed64(&str_, GetSliceHash64(str_));
PutFixed64(&str_, GetSliceHash64(str_));
PutFixed64(&str_, GetSliceHash64(str_));
PutFixed64(&str_, GetSliceHash64(str_));
PutFixed64(&str_, GetSliceHash64(str_));
}
}
std::string GetChecksum() const override {
assert(!str_.empty());
return str_;
}
const char* Name() const override {
return big_ ? "MyBigChecksum" : "MyXXH64Checksum";
}
private:
bool big_;
XXH64_state_t* state_;
std::string str_;
};
class DbStressChecksumGenFactory : public FileChecksumGenFactory {
std::string default_func_name_;
std::unique_ptr<FileChecksumGenerator> CreateFromFuncName(
const std::string& func_name) {
std::unique_ptr<FileChecksumGenerator> rv;
if (func_name == "FileChecksumCrc32c") {
rv.reset(new FileChecksumGenCrc32c(FileChecksumGenContext()));
} else if (func_name == "MyXXH64Checksum") {
rv.reset(new MyXXH64Checksum(false /* big */));
} else if (func_name == "MyBigChecksum") {
rv.reset(new MyXXH64Checksum(true /* big */));
} else {
// Should be a recognized function when we get here
assert(false);
}
return rv;
}
public:
explicit DbStressChecksumGenFactory(const std::string& default_func_name)
: default_func_name_(default_func_name) {}
std::unique_ptr<FileChecksumGenerator> CreateFileChecksumGenerator(
const FileChecksumGenContext& context) override {
if (context.requested_checksum_func_name.empty()) {
return CreateFromFuncName(default_func_name_);
} else {
return CreateFromFuncName(context.requested_checksum_func_name);
}
}
const char* Name() const override { return "FileChecksumGenCrc32cFactory"; }
};
} // namespace
std::shared_ptr<FileChecksumGenFactory> GetFileChecksumImpl(
const std::string& name) {
// Translate from friendly names to internal names
std::string internal_name;
if (name == "crc32c") {
internal_name = "FileChecksumCrc32c";
} else if (name == "xxh64") {
internal_name = "MyXXH64Checksum";
} else if (name == "big") {
internal_name = "MyBigChecksum";
} else {
assert(name.empty() || name == "none");
return nullptr;
}
return std::make_shared<DbStressChecksumGenFactory>(internal_name);
}
Status DeleteFilesInDirectory(const std::string& dirname) {
std::vector<std::string> filenames;
Status s = Env::Default()->GetChildren(dirname, &filenames);
for (size_t i = 0; s.ok() && i < filenames.size(); ++i) {
s = Env::Default()->DeleteFile(dirname + "/" + filenames[i]);
}
return s;
}
Status SaveFilesInDirectory(const std::string& src_dirname,
const std::string& dst_dirname) {
std::vector<std::string> filenames;
Status s = Env::Default()->GetChildren(src_dirname, &filenames);
for (size_t i = 0; s.ok() && i < filenames.size(); ++i) {
bool is_dir = false;
s = Env::Default()->IsDirectory(src_dirname + "/" + filenames[i], &is_dir);
if (s.ok()) {
if (is_dir) {
continue;
}
s = Env::Default()->LinkFile(src_dirname + "/" + filenames[i],
dst_dirname + "/" + filenames[i]);
}
}
return s;
}
Status InitUnverifiedSubdir(const std::string& dirname) {
Status s = Env::Default()->FileExists(dirname);
if (s.IsNotFound()) {
return Status::OK();
}
const std::string kUnverifiedDirname = dirname + "/unverified";
if (s.ok()) {
s = Env::Default()->CreateDirIfMissing(kUnverifiedDirname);
}
if (s.ok()) {
// It might already exist with some stale contents. Delete any such
// contents.
s = DeleteFilesInDirectory(kUnverifiedDirname);
}
if (s.ok()) {
s = SaveFilesInDirectory(dirname, kUnverifiedDirname);
}
return s;
}
Status DestroyUnverifiedSubdir(const std::string& dirname) {
Status s = Env::Default()->FileExists(dirname);
if (s.IsNotFound()) {
return Status::OK();
}
const std::string kUnverifiedDirname = dirname + "/unverified";
if (s.ok()) {
s = Env::Default()->FileExists(kUnverifiedDirname);
}
if (s.IsNotFound()) {
return Status::OK();
}
if (s.ok()) {
s = DeleteFilesInDirectory(kUnverifiedDirname);
}
if (s.ok()) {
s = Env::Default()->DeleteDir(kUnverifiedDirname);
}
return s;
}
} // namespace ROCKSDB_NAMESPACE
#endif // GFLAGS