mirror of https://github.com/facebook/rocksdb.git
1128 lines
46 KiB
C++
1128 lines
46 KiB
C++
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
#pragma once
|
|
|
|
#include <cmath>
|
|
|
|
#include "port/port.h" // for PREFETCH
|
|
#include "util/fastrange.h"
|
|
#include "util/ribbon_alg.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
namespace ribbon {
|
|
|
|
// RIBBON PHSF & RIBBON Filter (Rapid Incremental Boolean Banding ON-the-fly)
|
|
//
|
|
// ribbon_impl.h: templated (parameterized) standard implementations
|
|
//
|
|
// Ribbon is a Perfect Hash Static Function construction useful as a compact
|
|
// static Bloom filter alternative. See ribbon_alg.h for core algorithms
|
|
// and core design details.
|
|
//
|
|
// TODO: more details on trade-offs and practical issues.
|
|
//
|
|
// APIs for configuring Ribbon are in ribbon_config.h
|
|
|
|
// Ribbon implementations in this file take these parameters, which must be
|
|
// provided in a class/struct type with members expressed in this concept:
|
|
|
|
// concept TypesAndSettings {
|
|
// // See RibbonTypes and *Hasher in ribbon_alg.h, except here we have
|
|
// // the added constraint that Hash be equivalent to either uint32_t or
|
|
// // uint64_t.
|
|
// typename Hash;
|
|
// typename CoeffRow;
|
|
// typename ResultRow;
|
|
// typename Index;
|
|
// typename Key;
|
|
// static constexpr bool kFirstCoeffAlwaysOne;
|
|
//
|
|
// // An unsigned integer type for identifying a hash seed, typically
|
|
// // uint32_t or uint64_t. Importantly, this is the amount of data
|
|
// // stored in memory for identifying a raw seed. See StandardHasher.
|
|
// typename Seed;
|
|
//
|
|
// // When true, the PHSF implements a static filter, expecting just
|
|
// // keys as inputs for construction. When false, implements a general
|
|
// // PHSF and expects std::pair<Key, ResultRow> as inputs for
|
|
// // construction.
|
|
// static constexpr bool kIsFilter;
|
|
//
|
|
// // When true, enables a special "homogeneous" filter implementation that
|
|
// // is slightly faster to construct, and never fails to construct though
|
|
// // FP rate can quickly explode in cases where corresponding
|
|
// // non-homogeneous filter would fail (or nearly fail?) to construct.
|
|
// // For smaller filters, you can configure with ConstructionFailureChance
|
|
// // smaller than desired FP rate to largely counteract this effect.
|
|
// // TODO: configuring Homogeneous Ribbon for arbitrarily large filters
|
|
// // based on data from OptimizeHomogAtScale
|
|
// static constexpr bool kHomogeneous;
|
|
//
|
|
// // When true, adds a tiny bit more hashing logic on queries and
|
|
// // construction to improve utilization at the beginning and end of
|
|
// // the structure. Recommended when CoeffRow is only 64 bits (or
|
|
// // less), so typical num_starts < 10k. Although this is compatible
|
|
// // with kHomogeneous, the competing space vs. time priorities might
|
|
// // not be useful.
|
|
// static constexpr bool kUseSmash;
|
|
//
|
|
// // When true, allows number of "starts" to be zero, for best support
|
|
// // of the "no keys to add" case by always returning false for filter
|
|
// // queries. (This is distinct from the "keys added but no space for
|
|
// // any data" case, in which a filter always returns true.) The cost
|
|
// // supporting this is a conditional branch (probably predictable) in
|
|
// // queries.
|
|
// static constexpr bool kAllowZeroStarts;
|
|
//
|
|
// // A seedable stock hash function on Keys. All bits of Hash must
|
|
// // be reasonably high quality. XXH functions recommended, but
|
|
// // Murmur, City, Farm, etc. also work.
|
|
// static Hash HashFn(const Key &, Seed raw_seed);
|
|
// };
|
|
|
|
// A bit of a hack to automatically construct the type for
|
|
// AddInput based on a constexpr bool.
|
|
template <typename Key, typename ResultRow, bool IsFilter>
|
|
struct AddInputSelector {
|
|
// For general PHSF, not filter
|
|
using T = std::pair<Key, ResultRow>;
|
|
};
|
|
|
|
template <typename Key, typename ResultRow>
|
|
struct AddInputSelector<Key, ResultRow, true /*IsFilter*/> {
|
|
// For Filter
|
|
using T = Key;
|
|
};
|
|
|
|
// To avoid writing 'typename' everywhere that we use types like 'Index'
|
|
#define IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings) \
|
|
using CoeffRow = typename TypesAndSettings::CoeffRow; \
|
|
using ResultRow = typename TypesAndSettings::ResultRow; \
|
|
using Index = typename TypesAndSettings::Index; \
|
|
using Hash = typename TypesAndSettings::Hash; \
|
|
using Key = typename TypesAndSettings::Key; \
|
|
using Seed = typename TypesAndSettings::Seed; \
|
|
\
|
|
/* Some more additions */ \
|
|
using QueryInput = Key; \
|
|
using AddInput = typename ROCKSDB_NAMESPACE::ribbon::AddInputSelector< \
|
|
Key, ResultRow, TypesAndSettings::kIsFilter>::T; \
|
|
static constexpr auto kCoeffBits = \
|
|
static_cast<Index>(sizeof(CoeffRow) * 8U); \
|
|
\
|
|
/* Export to algorithm */ \
|
|
static constexpr bool kFirstCoeffAlwaysOne = \
|
|
TypesAndSettings::kFirstCoeffAlwaysOne; \
|
|
\
|
|
static_assert(sizeof(CoeffRow) + sizeof(ResultRow) + sizeof(Index) + \
|
|
sizeof(Hash) + sizeof(Key) + sizeof(Seed) + \
|
|
sizeof(QueryInput) + sizeof(AddInput) + kCoeffBits + \
|
|
kFirstCoeffAlwaysOne > \
|
|
0, \
|
|
"avoid unused warnings, semicolon expected after macro call")
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 4309) // cast truncating constant
|
|
#pragma warning(disable : 4307) // arithmetic constant overflow
|
|
#endif
|
|
|
|
// StandardHasher: A standard implementation of concepts RibbonTypes,
|
|
// PhsfQueryHasher, FilterQueryHasher, and BandingHasher from ribbon_alg.h.
|
|
//
|
|
// This implementation should be suitable for most all practical purposes
|
|
// as it "behaves" across a wide range of settings, with little room left
|
|
// for improvement. The key functionality in this hasher is generating
|
|
// CoeffRows, starts, and (for filters) ResultRows, which could be ~150
|
|
// bits of data or more, from a modest hash of 64 or even just 32 bits, with
|
|
// enough uniformity and bitwise independence to be close to "the best you
|
|
// can do" with available hash information in terms of FP rate and
|
|
// compactness. (64 bits recommended and sufficient for PHSF practical
|
|
// purposes.)
|
|
//
|
|
// Another feature of this hasher is a minimal "premixing" of seeds before
|
|
// they are provided to TypesAndSettings::HashFn in case that function does
|
|
// not provide sufficiently independent hashes when iterating merely
|
|
// sequentially on seeds. (This for example works around a problem with the
|
|
// preview version 0.7.2 of XXH3 used in RocksDB, a.k.a. XXPH3 or Hash64, and
|
|
// MurmurHash1 used in RocksDB, a.k.a. Hash.) We say this pre-mixing step
|
|
// translates "ordinal seeds," which we iterate sequentially to find a
|
|
// solution, into "raw seeds," with many more bits changing for each
|
|
// iteration. The translation is an easily reversible lightweight mixing,
|
|
// not suitable for hashing on its own. An advantage of this approach is that
|
|
// StandardHasher can store just the raw seed (e.g. 64 bits) for fast query
|
|
// times, while from the application perspective, we can limit to a small
|
|
// number of ordinal keys (e.g. 64 in 6 bits) for saving in metadata.
|
|
//
|
|
// The default constructor initializes the seed to ordinal seed zero, which
|
|
// is equal to raw seed zero.
|
|
//
|
|
template <class TypesAndSettings>
|
|
class StandardHasher {
|
|
public:
|
|
IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings);
|
|
|
|
inline Hash GetHash(const Key& key) const {
|
|
return TypesAndSettings::HashFn(key, raw_seed_);
|
|
};
|
|
// For when AddInput == pair<Key, ResultRow> (kIsFilter == false)
|
|
inline Hash GetHash(const std::pair<Key, ResultRow>& bi) const {
|
|
return GetHash(bi.first);
|
|
};
|
|
inline Index GetStart(Hash h, Index num_starts) const {
|
|
// This is "critical path" code because it's required before memory
|
|
// lookup.
|
|
//
|
|
// FastRange gives us a fast and effective mapping from h to the
|
|
// appropriate range. This depends most, sometimes exclusively, on
|
|
// upper bits of h.
|
|
//
|
|
if (TypesAndSettings::kUseSmash) {
|
|
// Extra logic to "smash" entries at beginning and end, for
|
|
// better utilization. For example, without smash and with
|
|
// kFirstCoeffAlwaysOne, there's about a 30% chance that the
|
|
// first slot in the banding will be unused, and worse without
|
|
// kFirstCoeffAlwaysOne. The ending slots are even less utilized
|
|
// without smash.
|
|
//
|
|
// But since this only affects roughly kCoeffBits of the slots,
|
|
// it's usually small enough to be ignorable (less computation in
|
|
// this function) when number of slots is roughly 10k or larger.
|
|
//
|
|
// The best values for these smash weights might depend on how
|
|
// densely you're packing entries, and also kCoeffBits, but this
|
|
// seems to work well for roughly 95% success probability.
|
|
//
|
|
constexpr Index kFrontSmash = kCoeffBits / 4;
|
|
constexpr Index kBackSmash = kCoeffBits / 4;
|
|
Index start = FastRangeGeneric(h, num_starts + kFrontSmash + kBackSmash);
|
|
start = std::max(start, kFrontSmash);
|
|
start -= kFrontSmash;
|
|
start = std::min(start, num_starts - 1);
|
|
return start;
|
|
} else {
|
|
// For query speed, we allow small number of initial and final
|
|
// entries to be under-utilized.
|
|
// NOTE: This call statically enforces that Hash is equivalent to
|
|
// either uint32_t or uint64_t.
|
|
return FastRangeGeneric(h, num_starts);
|
|
}
|
|
}
|
|
inline CoeffRow GetCoeffRow(Hash h) const {
|
|
// This is not so much "critical path" code because it can be done in
|
|
// parallel (instruction level) with memory lookup.
|
|
//
|
|
// When we might have many entries squeezed into a single start,
|
|
// we need reasonably good remixing for CoeffRow.
|
|
if (TypesAndSettings::kUseSmash) {
|
|
// Reasonably good, reasonably fast, reasonably general.
|
|
// Probably not 1:1 but probably close enough.
|
|
Unsigned128 a = Multiply64to128(h, kAltCoeffFactor1);
|
|
Unsigned128 b = Multiply64to128(h, kAltCoeffFactor2);
|
|
auto cr = static_cast<CoeffRow>(b ^ (a << 64) ^ (a >> 64));
|
|
|
|
// Now ensure the value is non-zero
|
|
if (kFirstCoeffAlwaysOne) {
|
|
cr |= 1;
|
|
} else {
|
|
// Still have to ensure some bit is non-zero
|
|
cr |= (cr == 0) ? 1 : 0;
|
|
}
|
|
return cr;
|
|
}
|
|
// If not kUseSmash, we ensure we're not squeezing many entries into a
|
|
// single start, in part by ensuring num_starts > num_slots / 2. Thus,
|
|
// here we do not need good remixing for CoeffRow, but just enough that
|
|
// (a) every bit is reasonably independent from Start.
|
|
// (b) every Hash-length bit subsequence of the CoeffRow has full or
|
|
// nearly full entropy from h.
|
|
// (c) if nontrivial bit subsequences within are correlated, it needs to
|
|
// be more complicated than exact copy or bitwise not (at least without
|
|
// kFirstCoeffAlwaysOne), or else there seems to be a kind of
|
|
// correlated clustering effect.
|
|
// (d) the CoeffRow is not zero, so that no one input on its own can
|
|
// doom construction success. (Preferably a mix of 1's and 0's if
|
|
// satisfying above.)
|
|
|
|
// First, establish sufficient bitwise independence from Start, with
|
|
// multiplication by a large random prime.
|
|
// Note that we cast to Hash because if we use product bits beyond
|
|
// original input size, that's going to correlate with Start (FastRange)
|
|
// even with a (likely) different multiplier here.
|
|
Hash a = h * kCoeffAndResultFactor;
|
|
|
|
static_assert(
|
|
sizeof(Hash) == sizeof(uint64_t) || sizeof(Hash) == sizeof(uint32_t),
|
|
"Supported sizes");
|
|
// If that's big enough, we're done. If not, we have to expand it,
|
|
// maybe up to 4x size.
|
|
uint64_t b;
|
|
if (sizeof(Hash) < sizeof(uint64_t)) {
|
|
// Almost-trivial hash expansion (OK - see above), favoring roughly
|
|
// equal number of 1's and 0's in result
|
|
b = (uint64_t{a} << 32) ^ (a ^ kCoeffXor32);
|
|
} else {
|
|
b = a;
|
|
}
|
|
static_assert(sizeof(CoeffRow) <= sizeof(Unsigned128), "Supported sizes");
|
|
Unsigned128 c;
|
|
if (sizeof(uint64_t) < sizeof(CoeffRow)) {
|
|
// Almost-trivial hash expansion (OK - see above), favoring roughly
|
|
// equal number of 1's and 0's in result
|
|
c = (Unsigned128{b} << 64) ^ (b ^ kCoeffXor64);
|
|
} else {
|
|
c = b;
|
|
}
|
|
auto cr = static_cast<CoeffRow>(c);
|
|
|
|
// Now ensure the value is non-zero
|
|
if (kFirstCoeffAlwaysOne) {
|
|
cr |= 1;
|
|
} else if (sizeof(CoeffRow) == sizeof(Hash)) {
|
|
// Still have to ensure some bit is non-zero
|
|
cr |= (cr == 0) ? 1 : 0;
|
|
} else {
|
|
// (We did trivial expansion with constant xor, which ensures some
|
|
// bits are non-zero.)
|
|
}
|
|
return cr;
|
|
}
|
|
inline ResultRow GetResultRowMask() const {
|
|
// TODO: will be used with InterleavedSolutionStorage?
|
|
// For now, all bits set (note: might be a small type so might need to
|
|
// narrow after promotion)
|
|
return static_cast<ResultRow>(~ResultRow{0});
|
|
}
|
|
inline ResultRow GetResultRowFromHash(Hash h) const {
|
|
if (TypesAndSettings::kIsFilter && !TypesAndSettings::kHomogeneous) {
|
|
// This is not so much "critical path" code because it can be done in
|
|
// parallel (instruction level) with memory lookup.
|
|
//
|
|
// ResultRow bits only needs to be independent from CoeffRow bits if
|
|
// many entries might have the same start location, where "many" is
|
|
// comparable to number of hash bits or kCoeffBits. If !kUseSmash
|
|
// and num_starts > kCoeffBits, it is safe and efficient to draw from
|
|
// the same bits computed for CoeffRow, which are reasonably
|
|
// independent from Start. (Inlining and common subexpression
|
|
// elimination with GetCoeffRow should make this
|
|
// a single shared multiplication in generated code when !kUseSmash.)
|
|
Hash a = h * kCoeffAndResultFactor;
|
|
|
|
// The bits here that are *most* independent of Start are the highest
|
|
// order bits (as in Knuth multiplicative hash). To make those the
|
|
// most preferred for use in the result row, we do a bswap here.
|
|
auto rr = static_cast<ResultRow>(EndianSwapValue(a));
|
|
return rr & GetResultRowMask();
|
|
} else {
|
|
// Must be zero
|
|
return 0;
|
|
}
|
|
}
|
|
// For when AddInput == Key (kIsFilter == true)
|
|
inline ResultRow GetResultRowFromInput(const Key&) const {
|
|
// Must be zero
|
|
return 0;
|
|
}
|
|
// For when AddInput == pair<Key, ResultRow> (kIsFilter == false)
|
|
inline ResultRow GetResultRowFromInput(
|
|
const std::pair<Key, ResultRow>& bi) const {
|
|
// Simple extraction
|
|
return bi.second;
|
|
}
|
|
|
|
// Seed tracking APIs - see class comment
|
|
void SetRawSeed(Seed seed) { raw_seed_ = seed; }
|
|
Seed GetRawSeed() { return raw_seed_; }
|
|
void SetOrdinalSeed(Seed count) {
|
|
// A simple, reversible mixing of any size (whole bytes) up to 64 bits.
|
|
// This allows casting the raw seed to any smaller size we use for
|
|
// ordinal seeds without risk of duplicate raw seeds for unique ordinal
|
|
// seeds.
|
|
|
|
// Seed type might be smaller than numerical promotion size, but Hash
|
|
// should be at least that size, so we use Hash as intermediate type.
|
|
static_assert(sizeof(Seed) <= sizeof(Hash),
|
|
"Hash must be at least size of Seed");
|
|
|
|
// Multiply by a large random prime (one-to-one for any prefix of bits)
|
|
Hash tmp = count * kToRawSeedFactor;
|
|
// Within-byte one-to-one mixing
|
|
static_assert((kSeedMixMask & (kSeedMixMask >> kSeedMixShift)) == 0,
|
|
"Illegal mask+shift");
|
|
tmp ^= (tmp & kSeedMixMask) >> kSeedMixShift;
|
|
raw_seed_ = static_cast<Seed>(tmp);
|
|
// dynamic verification
|
|
assert(GetOrdinalSeed() == count);
|
|
}
|
|
Seed GetOrdinalSeed() {
|
|
Hash tmp = raw_seed_;
|
|
// Within-byte one-to-one mixing (its own inverse)
|
|
tmp ^= (tmp & kSeedMixMask) >> kSeedMixShift;
|
|
// Multiply by 64-bit multiplicative inverse
|
|
static_assert(kToRawSeedFactor * kFromRawSeedFactor == Hash{1},
|
|
"Must be inverses");
|
|
return static_cast<Seed>(tmp * kFromRawSeedFactor);
|
|
}
|
|
|
|
protected:
|
|
// For expanding hash:
|
|
// large random prime
|
|
static constexpr Hash kCoeffAndResultFactor =
|
|
static_cast<Hash>(0xc28f82822b650bedULL);
|
|
static constexpr uint64_t kAltCoeffFactor1 = 0x876f170be4f1fcb9U;
|
|
static constexpr uint64_t kAltCoeffFactor2 = 0xf0433a4aecda4c5fU;
|
|
// random-ish data
|
|
static constexpr uint32_t kCoeffXor32 = 0xa6293635U;
|
|
static constexpr uint64_t kCoeffXor64 = 0xc367844a6e52731dU;
|
|
|
|
// For pre-mixing seeds
|
|
static constexpr Hash kSeedMixMask = static_cast<Hash>(0xf0f0f0f0f0f0f0f0ULL);
|
|
static constexpr unsigned kSeedMixShift = 4U;
|
|
static constexpr Hash kToRawSeedFactor =
|
|
static_cast<Hash>(0xc78219a23eeadd03ULL);
|
|
static constexpr Hash kFromRawSeedFactor =
|
|
static_cast<Hash>(0xfe1a137d14b475abULL);
|
|
|
|
// See class description
|
|
Seed raw_seed_ = 0;
|
|
};
|
|
|
|
// StandardRehasher (and StandardRehasherAdapter): A variant of
|
|
// StandardHasher that uses the same type for keys as for hashes.
|
|
// This is primarily intended for building a Ribbon filter
|
|
// from existing hashes without going back to original inputs in
|
|
// order to apply a different seed. This hasher seeds a 1-to-1 mixing
|
|
// transformation to apply a seed to an existing hash. (Untested for
|
|
// hash-sized keys that are not already uniformly distributed.) This
|
|
// transformation builds on the seed pre-mixing done in StandardHasher.
|
|
//
|
|
// Testing suggests essentially no degradation of solution success rate
|
|
// vs. going back to original inputs when changing hash seeds. For example:
|
|
// Average re-seeds for solution with r=128, 1.02x overhead, and ~100k keys
|
|
// is about 1.10 for both StandardHasher and StandardRehasher.
|
|
//
|
|
// StandardRehasher is not really recommended for general PHSFs (not
|
|
// filters) because a collision in the original hash could prevent
|
|
// construction despite re-seeding the Rehasher. (Such collisions
|
|
// do not interfere with filter construction.)
|
|
//
|
|
// concept RehasherTypesAndSettings: like TypesAndSettings but
|
|
// does not require Key or HashFn.
|
|
template <class RehasherTypesAndSettings>
|
|
class StandardRehasherAdapter : public RehasherTypesAndSettings {
|
|
public:
|
|
using Hash = typename RehasherTypesAndSettings::Hash;
|
|
using Key = Hash;
|
|
using Seed = typename RehasherTypesAndSettings::Seed;
|
|
|
|
static Hash HashFn(const Hash& input, Seed raw_seed) {
|
|
// Note: raw_seed is already lightly pre-mixed, and this multiplication
|
|
// by a large prime is sufficient mixing (low-to-high bits) on top of
|
|
// that for good FastRange results, which depends primarily on highest
|
|
// bits. (The hashed CoeffRow and ResultRow are less sensitive to
|
|
// mixing than Start.)
|
|
// Also note: did consider adding ^ (input >> some) before the
|
|
// multiplication, but doesn't appear to be necessary.
|
|
return (input ^ raw_seed) * kRehashFactor;
|
|
}
|
|
|
|
private:
|
|
static constexpr Hash kRehashFactor =
|
|
static_cast<Hash>(0x6193d459236a3a0dULL);
|
|
};
|
|
|
|
// See comment on StandardRehasherAdapter
|
|
template <class RehasherTypesAndSettings>
|
|
using StandardRehasher =
|
|
StandardHasher<StandardRehasherAdapter<RehasherTypesAndSettings>>;
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
// Especially with smaller hashes (e.g. 32 bit), there can be noticeable
|
|
// false positives due to collisions in the Hash returned by GetHash.
|
|
// This function returns the expected FP rate due to those collisions,
|
|
// which can be added to the expected FP rate from the underlying data
|
|
// structure. (Note: technically, a + b is only a good approximation of
|
|
// 1-(1-a)(1-b) == a + b - a*b, if a and b are much closer to 0 than to 1.)
|
|
// The number of entries added can be a double here in case it's an
|
|
// average.
|
|
template <class Hasher, typename Numerical>
|
|
double ExpectedCollisionFpRate(const Hasher& hasher, Numerical added) {
|
|
// Standardize on the 'double' specialization
|
|
return ExpectedCollisionFpRate(hasher, 1.0 * added);
|
|
}
|
|
template <class Hasher>
|
|
double ExpectedCollisionFpRate(const Hasher& /*hasher*/, double added) {
|
|
// Technically, there could be overlap among the added, but ignoring that
|
|
// is typically close enough.
|
|
return added / std::pow(256.0, sizeof(typename Hasher::Hash));
|
|
}
|
|
|
|
// StandardBanding: a canonical implementation of BandingStorage and
|
|
// BacktrackStorage, with convenience API for banding (solving with on-the-fly
|
|
// Gaussian elimination) with and without backtracking.
|
|
template <class TypesAndSettings>
|
|
class StandardBanding : public StandardHasher<TypesAndSettings> {
|
|
public:
|
|
IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings);
|
|
|
|
StandardBanding(Index num_slots = 0, Index backtrack_size = 0) {
|
|
Reset(num_slots, backtrack_size);
|
|
}
|
|
|
|
void Reset(Index num_slots, Index backtrack_size = 0) {
|
|
if (num_slots == 0) {
|
|
// Unusual (TypesAndSettings::kAllowZeroStarts) or "uninitialized"
|
|
num_starts_ = 0;
|
|
} else {
|
|
// Normal
|
|
assert(num_slots >= kCoeffBits);
|
|
if (num_slots > num_slots_allocated_) {
|
|
coeff_rows_.reset(new CoeffRow[num_slots]());
|
|
if (!TypesAndSettings::kHomogeneous) {
|
|
// Note: don't strictly have to zero-init result_rows,
|
|
// except possible information leakage, etc ;)
|
|
result_rows_.reset(new ResultRow[num_slots]());
|
|
}
|
|
num_slots_allocated_ = num_slots;
|
|
} else {
|
|
for (Index i = 0; i < num_slots; ++i) {
|
|
coeff_rows_[i] = 0;
|
|
if (!TypesAndSettings::kHomogeneous) {
|
|
// Note: don't strictly have to zero-init result_rows,
|
|
// except possible information leakage, etc ;)
|
|
result_rows_[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
num_starts_ = num_slots - kCoeffBits + 1;
|
|
}
|
|
EnsureBacktrackSize(backtrack_size);
|
|
}
|
|
|
|
void EnsureBacktrackSize(Index backtrack_size) {
|
|
if (backtrack_size > backtrack_size_) {
|
|
backtrack_.reset(new Index[backtrack_size]);
|
|
backtrack_size_ = backtrack_size;
|
|
}
|
|
}
|
|
|
|
// ********************************************************************
|
|
// From concept BandingStorage
|
|
|
|
inline bool UsePrefetch() const {
|
|
// A rough guesstimate of when prefetching during construction pays off.
|
|
// TODO: verify/validate
|
|
return num_starts_ > 1500;
|
|
}
|
|
inline void Prefetch(Index i) const {
|
|
PREFETCH(&coeff_rows_[i], 1 /* rw */, 1 /* locality */);
|
|
if (!TypesAndSettings::kHomogeneous) {
|
|
PREFETCH(&result_rows_[i], 1 /* rw */, 1 /* locality */);
|
|
}
|
|
}
|
|
inline void LoadRow(Index i, CoeffRow* cr, ResultRow* rr,
|
|
bool for_back_subst) const {
|
|
*cr = coeff_rows_[i];
|
|
if (TypesAndSettings::kHomogeneous) {
|
|
if (for_back_subst && *cr == 0) {
|
|
// Cheap pseudorandom data to fill unconstrained solution rows
|
|
*rr = static_cast<ResultRow>(i * 0x9E3779B185EBCA87ULL);
|
|
} else {
|
|
*rr = 0;
|
|
}
|
|
} else {
|
|
*rr = result_rows_[i];
|
|
}
|
|
}
|
|
inline void StoreRow(Index i, CoeffRow cr, ResultRow rr) {
|
|
coeff_rows_[i] = cr;
|
|
if (TypesAndSettings::kHomogeneous) {
|
|
assert(rr == 0);
|
|
} else {
|
|
result_rows_[i] = rr;
|
|
}
|
|
}
|
|
inline Index GetNumStarts() const { return num_starts_; }
|
|
|
|
// from concept BacktrackStorage, for when backtracking is used
|
|
inline bool UseBacktrack() const { return true; }
|
|
inline void BacktrackPut(Index i, Index to_save) { backtrack_[i] = to_save; }
|
|
inline Index BacktrackGet(Index i) const { return backtrack_[i]; }
|
|
|
|
// ********************************************************************
|
|
// Some useful API, still somewhat low level. Here an input is
|
|
// a Key for filters, or std::pair<Key, ResultRow> for general PHSF.
|
|
|
|
// Adds a range of inputs to the banding, returning true if successful.
|
|
// False means none or some may have been successfully added, so it's
|
|
// best to Reset this banding before any further use.
|
|
//
|
|
// Adding can fail even before all the "slots" are completely "full".
|
|
//
|
|
template <typename InputIterator>
|
|
bool AddRange(InputIterator begin, InputIterator end) {
|
|
assert(num_starts_ > 0 || TypesAndSettings::kAllowZeroStarts);
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual. Can't add any in this case.
|
|
return begin == end;
|
|
}
|
|
// Normal
|
|
return BandingAddRange(this, *this, begin, end);
|
|
}
|
|
|
|
// Adds a range of inputs to the banding, returning true if successful,
|
|
// or if unsuccessful, rolls back to state before this call and returns
|
|
// false. Caller guarantees that the number of inputs in this batch
|
|
// does not exceed `backtrack_size` provided to Reset.
|
|
//
|
|
// Adding can fail even before all the "slots" are completely "full".
|
|
//
|
|
template <typename InputIterator>
|
|
bool AddRangeOrRollBack(InputIterator begin, InputIterator end) {
|
|
assert(num_starts_ > 0 || TypesAndSettings::kAllowZeroStarts);
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual. Can't add any in this case.
|
|
return begin == end;
|
|
}
|
|
// else Normal
|
|
return BandingAddRange(this, this, *this, begin, end);
|
|
}
|
|
|
|
// Adds a single input to the banding, returning true if successful.
|
|
// If unsuccessful, returns false and banding state is unchanged.
|
|
//
|
|
// Adding can fail even before all the "slots" are completely "full".
|
|
//
|
|
bool Add(const AddInput& input) {
|
|
// Pointer can act as iterator
|
|
return AddRange(&input, &input + 1);
|
|
}
|
|
|
|
// Return the number of "occupied" rows (with non-zero coefficients stored).
|
|
Index GetOccupiedCount() const {
|
|
Index count = 0;
|
|
if (num_starts_ > 0) {
|
|
const Index num_slots = num_starts_ + kCoeffBits - 1;
|
|
for (Index i = 0; i < num_slots; ++i) {
|
|
if (coeff_rows_[i] != 0) {
|
|
++count;
|
|
}
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
// Returns whether a row is "occupied" in the banding (non-zero
|
|
// coefficients stored). (Only recommended for debug/test)
|
|
bool IsOccupied(Index i) { return coeff_rows_[i] != 0; }
|
|
|
|
// ********************************************************************
|
|
// High-level API
|
|
|
|
// Iteratively (a) resets the structure for `num_slots`, (b) attempts
|
|
// to add the range of inputs, and (c) if unsuccessful, chooses next
|
|
// hash seed, until either successful or unsuccessful with all the
|
|
// allowed seeds. Returns true if successful. In that case, use
|
|
// GetOrdinalSeed() or GetRawSeed() to get the successful seed.
|
|
//
|
|
// The allowed sequence of hash seeds is determined by
|
|
// `starting_ordinal_seed,` the first ordinal seed to be attempted
|
|
// (see StandardHasher), and `ordinal_seed_mask,` a bit mask (power of
|
|
// two minus one) for the range of ordinal seeds to consider. The
|
|
// max number of seeds considered will be ordinal_seed_mask + 1.
|
|
// For filters we suggest `starting_ordinal_seed` be chosen randomly
|
|
// or round-robin, to minimize false positive correlations between keys.
|
|
//
|
|
// If unsuccessful, how best to continue is going to be application
|
|
// specific. It should be possible to choose parameters such that
|
|
// failure is extremely unlikely, using max_seed around 32 to 64.
|
|
// (TODO: APIs to help choose parameters) One option for fallback in
|
|
// constructing a filter is to construct a Bloom filter instead.
|
|
// Increasing num_slots is an option, but should not be used often
|
|
// unless construction maximum latency is a concern (rather than
|
|
// average running time of construction). Instead, choose parameters
|
|
// appropriately and trust that seeds are independent. (Also,
|
|
// increasing num_slots without changing hash seed would have a
|
|
// significant correlation in success, rather than independence.)
|
|
template <typename InputIterator>
|
|
bool ResetAndFindSeedToSolve(Index num_slots, InputIterator begin,
|
|
InputIterator end,
|
|
Seed starting_ordinal_seed = 0U,
|
|
Seed ordinal_seed_mask = 63U) {
|
|
// power of 2 minus 1
|
|
assert((ordinal_seed_mask & (ordinal_seed_mask + 1)) == 0);
|
|
// starting seed is within mask
|
|
assert((starting_ordinal_seed & ordinal_seed_mask) ==
|
|
starting_ordinal_seed);
|
|
starting_ordinal_seed &= ordinal_seed_mask; // if not debug
|
|
|
|
Seed cur_ordinal_seed = starting_ordinal_seed;
|
|
do {
|
|
StandardHasher<TypesAndSettings>::SetOrdinalSeed(cur_ordinal_seed);
|
|
Reset(num_slots);
|
|
bool success = AddRange(begin, end);
|
|
if (success) {
|
|
return true;
|
|
}
|
|
cur_ordinal_seed = (cur_ordinal_seed + 1) & ordinal_seed_mask;
|
|
} while (cur_ordinal_seed != starting_ordinal_seed);
|
|
// Reached limit by circling around
|
|
return false;
|
|
}
|
|
|
|
protected:
|
|
// TODO: explore combining in a struct
|
|
std::unique_ptr<CoeffRow[]> coeff_rows_;
|
|
std::unique_ptr<ResultRow[]> result_rows_;
|
|
// We generally store "starts" instead of slots for speed of GetStart(),
|
|
// as in StandardHasher.
|
|
Index num_starts_ = 0;
|
|
Index num_slots_allocated_ = 0;
|
|
std::unique_ptr<Index[]> backtrack_;
|
|
Index backtrack_size_ = 0;
|
|
};
|
|
|
|
// Implements concept SimpleSolutionStorage, mostly for demonstration
|
|
// purposes. This is "in memory" only because it does not handle byte
|
|
// ordering issues for serialization.
|
|
template <class TypesAndSettings>
|
|
class InMemSimpleSolution {
|
|
public:
|
|
IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings);
|
|
|
|
void PrepareForNumStarts(Index num_starts) {
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts == 0) {
|
|
// Unusual
|
|
num_starts_ = 0;
|
|
} else {
|
|
// Normal
|
|
const Index num_slots = num_starts + kCoeffBits - 1;
|
|
assert(num_slots >= kCoeffBits);
|
|
if (num_slots > num_slots_allocated_) {
|
|
// Do not need to init the memory
|
|
solution_rows_.reset(new ResultRow[num_slots]);
|
|
num_slots_allocated_ = num_slots;
|
|
}
|
|
num_starts_ = num_starts;
|
|
}
|
|
}
|
|
|
|
Index GetNumStarts() const { return num_starts_; }
|
|
|
|
ResultRow Load(Index slot_num) const { return solution_rows_[slot_num]; }
|
|
|
|
void Store(Index slot_num, ResultRow solution_row) {
|
|
solution_rows_[slot_num] = solution_row;
|
|
}
|
|
|
|
// ********************************************************************
|
|
// High-level API
|
|
|
|
template <typename BandingStorage>
|
|
void BackSubstFrom(const BandingStorage& bs) {
|
|
if (TypesAndSettings::kAllowZeroStarts && bs.GetNumStarts() == 0) {
|
|
// Unusual
|
|
PrepareForNumStarts(0);
|
|
} else {
|
|
// Normal
|
|
SimpleBackSubst(this, bs);
|
|
}
|
|
}
|
|
|
|
template <typename PhsfQueryHasher>
|
|
ResultRow PhsfQuery(const Key& input, const PhsfQueryHasher& hasher) const {
|
|
// assert(!TypesAndSettings::kIsFilter); Can be useful in testing
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual
|
|
return 0;
|
|
} else {
|
|
// Normal
|
|
return SimplePhsfQuery(input, hasher, *this);
|
|
}
|
|
}
|
|
|
|
template <typename FilterQueryHasher>
|
|
bool FilterQuery(const Key& input, const FilterQueryHasher& hasher) const {
|
|
assert(TypesAndSettings::kIsFilter);
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual. Zero starts presumes no keys added -> always false
|
|
return false;
|
|
} else {
|
|
// Normal, or upper_num_columns_ == 0 means "no space for data" and
|
|
// thus will always return true.
|
|
return SimpleFilterQuery(input, hasher, *this);
|
|
}
|
|
}
|
|
|
|
double ExpectedFpRate() const {
|
|
assert(TypesAndSettings::kIsFilter);
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual, but we don't have FPs if we always return false.
|
|
return 0.0;
|
|
}
|
|
// else Normal
|
|
|
|
// Each result (solution) bit (column) cuts FP rate in half
|
|
return std::pow(0.5, 8U * sizeof(ResultRow));
|
|
}
|
|
|
|
// ********************************************************************
|
|
// Static high-level API
|
|
|
|
// Round up to a number of slots supported by this structure. Note that
|
|
// this needs to be must be taken into account for the banding if this
|
|
// solution layout/storage is to be used.
|
|
static Index RoundUpNumSlots(Index num_slots) {
|
|
// Must be at least kCoeffBits for at least one start
|
|
// Or if not smash, even more because hashing not equipped
|
|
// for stacking up so many entries on a single start location
|
|
auto min_slots = kCoeffBits * (TypesAndSettings::kUseSmash ? 1 : 2);
|
|
return std::max(num_slots, static_cast<Index>(min_slots));
|
|
}
|
|
|
|
protected:
|
|
// We generally store "starts" instead of slots for speed of GetStart(),
|
|
// as in StandardHasher.
|
|
Index num_starts_ = 0;
|
|
Index num_slots_allocated_ = 0;
|
|
std::unique_ptr<ResultRow[]> solution_rows_;
|
|
};
|
|
|
|
// Implements concept InterleavedSolutionStorage always using little-endian
|
|
// byte order, so easy for serialization/deserialization. This implementation
|
|
// fully supports fractional bits per key, where any number of segments
|
|
// (number of bytes multiple of sizeof(CoeffRow)) can be used with any number
|
|
// of slots that is a multiple of kCoeffBits.
|
|
//
|
|
// The structure is passed an externally allocated/de-allocated byte buffer
|
|
// that is optionally pre-populated (from storage) for answering queries,
|
|
// or can be populated by BackSubstFrom.
|
|
//
|
|
template <class TypesAndSettings>
|
|
class SerializableInterleavedSolution {
|
|
public:
|
|
IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings);
|
|
|
|
// Does not take ownership of `data` but uses it (up to `data_len` bytes)
|
|
// throughout lifetime
|
|
SerializableInterleavedSolution(char* data, size_t data_len)
|
|
: data_(data), data_len_(data_len) {}
|
|
|
|
void PrepareForNumStarts(Index num_starts) {
|
|
assert(num_starts == 0 || (num_starts % kCoeffBits == 1));
|
|
num_starts_ = num_starts;
|
|
|
|
InternalConfigure();
|
|
}
|
|
|
|
Index GetNumStarts() const { return num_starts_; }
|
|
|
|
Index GetNumBlocks() const {
|
|
const Index num_slots = num_starts_ + kCoeffBits - 1;
|
|
return num_slots / kCoeffBits;
|
|
}
|
|
|
|
Index GetUpperNumColumns() const { return upper_num_columns_; }
|
|
|
|
Index GetUpperStartBlock() const { return upper_start_block_; }
|
|
|
|
Index GetNumSegments() const {
|
|
return static_cast<Index>(data_len_ / sizeof(CoeffRow));
|
|
}
|
|
|
|
CoeffRow LoadSegment(Index segment_num) const {
|
|
assert(data_ != nullptr); // suppress clang analyzer report
|
|
return DecodeFixedGeneric<CoeffRow>(data_ + segment_num * sizeof(CoeffRow));
|
|
}
|
|
void StoreSegment(Index segment_num, CoeffRow val) {
|
|
assert(data_ != nullptr); // suppress clang analyzer report
|
|
EncodeFixedGeneric(data_ + segment_num * sizeof(CoeffRow), val);
|
|
}
|
|
void PrefetchSegmentRange(Index begin_segment_num,
|
|
Index end_segment_num) const {
|
|
if (end_segment_num == begin_segment_num) {
|
|
// Nothing to do
|
|
return;
|
|
}
|
|
char* cur = data_ + begin_segment_num * sizeof(CoeffRow);
|
|
char* last = data_ + (end_segment_num - 1) * sizeof(CoeffRow);
|
|
while (cur < last) {
|
|
PREFETCH(cur, 0 /* rw */, 1 /* locality */);
|
|
cur += CACHE_LINE_SIZE;
|
|
}
|
|
PREFETCH(last, 0 /* rw */, 1 /* locality */);
|
|
}
|
|
|
|
// ********************************************************************
|
|
// High-level API
|
|
|
|
void ConfigureForNumBlocks(Index num_blocks) {
|
|
if (num_blocks == 0) {
|
|
PrepareForNumStarts(0);
|
|
} else {
|
|
PrepareForNumStarts(num_blocks * kCoeffBits - kCoeffBits + 1);
|
|
}
|
|
}
|
|
|
|
void ConfigureForNumSlots(Index num_slots) {
|
|
assert(num_slots % kCoeffBits == 0);
|
|
ConfigureForNumBlocks(num_slots / kCoeffBits);
|
|
}
|
|
|
|
template <typename BandingStorage>
|
|
void BackSubstFrom(const BandingStorage& bs) {
|
|
if (TypesAndSettings::kAllowZeroStarts && bs.GetNumStarts() == 0) {
|
|
// Unusual
|
|
PrepareForNumStarts(0);
|
|
} else {
|
|
// Normal
|
|
InterleavedBackSubst(this, bs);
|
|
}
|
|
}
|
|
|
|
template <typename PhsfQueryHasher>
|
|
ResultRow PhsfQuery(const Key& input, const PhsfQueryHasher& hasher) const {
|
|
// assert(!TypesAndSettings::kIsFilter); Can be useful in testing
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual
|
|
return 0;
|
|
} else {
|
|
// Normal
|
|
// NOTE: not using a struct to encourage compiler optimization
|
|
Hash hash;
|
|
Index segment_num;
|
|
Index num_columns;
|
|
Index start_bit;
|
|
InterleavedPrepareQuery(input, hasher, *this, &hash, &segment_num,
|
|
&num_columns, &start_bit);
|
|
return InterleavedPhsfQuery(hash, segment_num, num_columns, start_bit,
|
|
hasher, *this);
|
|
}
|
|
}
|
|
|
|
template <typename FilterQueryHasher>
|
|
bool FilterQuery(const Key& input, const FilterQueryHasher& hasher) const {
|
|
assert(TypesAndSettings::kIsFilter);
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual. Zero starts presumes no keys added -> always false
|
|
return false;
|
|
} else {
|
|
// Normal, or upper_num_columns_ == 0 means "no space for data" and
|
|
// thus will always return true.
|
|
// NOTE: not using a struct to encourage compiler optimization
|
|
Hash hash;
|
|
Index segment_num;
|
|
Index num_columns;
|
|
Index start_bit;
|
|
InterleavedPrepareQuery(input, hasher, *this, &hash, &segment_num,
|
|
&num_columns, &start_bit);
|
|
return InterleavedFilterQuery(hash, segment_num, num_columns, start_bit,
|
|
hasher, *this);
|
|
}
|
|
}
|
|
|
|
double ExpectedFpRate() const {
|
|
assert(TypesAndSettings::kIsFilter);
|
|
if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
|
|
// Unusual. Zero starts presumes no keys added -> always false
|
|
return 0.0;
|
|
}
|
|
// else Normal
|
|
|
|
// Note: Ignoring smash setting; still close enough in that case
|
|
double lower_portion =
|
|
(upper_start_block_ * 1.0 * kCoeffBits) / num_starts_;
|
|
|
|
// Each result (solution) bit (column) cuts FP rate in half. Weight that
|
|
// for upper and lower number of bits (columns).
|
|
return lower_portion * std::pow(0.5, upper_num_columns_ - 1) +
|
|
(1.0 - lower_portion) * std::pow(0.5, upper_num_columns_);
|
|
}
|
|
|
|
// ********************************************************************
|
|
// Static high-level API
|
|
|
|
// Round up to a number of slots supported by this structure. Note that
|
|
// this needs to be must be taken into account for the banding if this
|
|
// solution layout/storage is to be used.
|
|
static Index RoundUpNumSlots(Index num_slots) {
|
|
// Must be multiple of kCoeffBits
|
|
Index corrected = (num_slots + kCoeffBits - 1) / kCoeffBits * kCoeffBits;
|
|
|
|
// Do not use num_starts==1 unless kUseSmash, because the hashing
|
|
// might not be equipped for stacking up so many entries on a
|
|
// single start location.
|
|
if (!TypesAndSettings::kUseSmash && corrected == kCoeffBits) {
|
|
corrected += kCoeffBits;
|
|
}
|
|
return corrected;
|
|
}
|
|
|
|
// Round down to a number of slots supported by this structure. Note that
|
|
// this needs to be must be taken into account for the banding if this
|
|
// solution layout/storage is to be used.
|
|
static Index RoundDownNumSlots(Index num_slots) {
|
|
// Must be multiple of kCoeffBits
|
|
Index corrected = num_slots / kCoeffBits * kCoeffBits;
|
|
|
|
// Do not use num_starts==1 unless kUseSmash, because the hashing
|
|
// might not be equipped for stacking up so many entries on a
|
|
// single start location.
|
|
if (!TypesAndSettings::kUseSmash && corrected == kCoeffBits) {
|
|
corrected = 0;
|
|
}
|
|
return corrected;
|
|
}
|
|
|
|
// Compute the number of bytes for a given number of slots and desired
|
|
// FP rate. Since desired FP rate might not be exactly achievable,
|
|
// rounding_bias32==0 means to always round toward lower FP rate
|
|
// than desired (more bytes); rounding_bias32==max uint32_t means always
|
|
// round toward higher FP rate than desired (fewer bytes); other values
|
|
// act as a proportional threshold or bias between the two.
|
|
static size_t GetBytesForFpRate(Index num_slots, double desired_fp_rate,
|
|
uint32_t rounding_bias32) {
|
|
return InternalGetBytesForFpRate(num_slots, desired_fp_rate,
|
|
1.0 / desired_fp_rate, rounding_bias32);
|
|
}
|
|
|
|
// The same, but specifying desired accuracy as 1.0 / FP rate, or
|
|
// one_in_fp_rate. E.g. desired_one_in_fp_rate=100 means 1% FP rate.
|
|
static size_t GetBytesForOneInFpRate(Index num_slots,
|
|
double desired_one_in_fp_rate,
|
|
uint32_t rounding_bias32) {
|
|
return InternalGetBytesForFpRate(num_slots, 1.0 / desired_one_in_fp_rate,
|
|
desired_one_in_fp_rate, rounding_bias32);
|
|
}
|
|
|
|
protected:
|
|
static size_t InternalGetBytesForFpRate(Index num_slots,
|
|
double desired_fp_rate,
|
|
double desired_one_in_fp_rate,
|
|
uint32_t rounding_bias32) {
|
|
assert(TypesAndSettings::kIsFilter);
|
|
if (TypesAndSettings::kAllowZeroStarts) {
|
|
if (num_slots == 0) {
|
|
// Unusual. Zero starts presumes no keys added -> always false (no FPs)
|
|
return 0U;
|
|
}
|
|
} else {
|
|
assert(num_slots > 0);
|
|
}
|
|
// Must be rounded up already.
|
|
assert(RoundUpNumSlots(num_slots) == num_slots);
|
|
|
|
if (desired_one_in_fp_rate > 1.0 && desired_fp_rate < 1.0) {
|
|
// Typical: less than 100% FP rate
|
|
if (desired_one_in_fp_rate <= static_cast<ResultRow>(-1)) {
|
|
// Typical: Less than maximum result row entropy
|
|
ResultRow rounded = static_cast<ResultRow>(desired_one_in_fp_rate);
|
|
int lower_columns = FloorLog2(rounded);
|
|
double lower_columns_fp_rate = std::pow(2.0, -lower_columns);
|
|
double upper_columns_fp_rate = std::pow(2.0, -(lower_columns + 1));
|
|
// Floating point don't let me down!
|
|
assert(lower_columns_fp_rate >= desired_fp_rate);
|
|
assert(upper_columns_fp_rate <= desired_fp_rate);
|
|
|
|
double lower_portion = (desired_fp_rate - upper_columns_fp_rate) /
|
|
(lower_columns_fp_rate - upper_columns_fp_rate);
|
|
// Floating point don't let me down!
|
|
assert(lower_portion >= 0.0);
|
|
assert(lower_portion <= 1.0);
|
|
|
|
double rounding_bias = (rounding_bias32 + 0.5) / double{0x100000000};
|
|
assert(rounding_bias > 0.0);
|
|
assert(rounding_bias < 1.0);
|
|
|
|
// Note: Ignoring smash setting; still close enough in that case
|
|
Index num_starts = num_slots - kCoeffBits + 1;
|
|
// Lower upper_start_block means lower FP rate (higher accuracy)
|
|
Index upper_start_block = static_cast<Index>(
|
|
(lower_portion * num_starts + rounding_bias) / kCoeffBits);
|
|
Index num_blocks = num_slots / kCoeffBits;
|
|
assert(upper_start_block < num_blocks);
|
|
|
|
// Start by assuming all blocks use lower number of columns
|
|
Index num_segments = num_blocks * static_cast<Index>(lower_columns);
|
|
// Correct by 1 each for blocks using upper number of columns
|
|
num_segments += (num_blocks - upper_start_block);
|
|
// Total bytes
|
|
return num_segments * sizeof(CoeffRow);
|
|
} else {
|
|
// one_in_fp_rate too big, thus requested FP rate is smaller than
|
|
// supported. Use max number of columns for minimum supported FP rate.
|
|
return num_slots * sizeof(ResultRow);
|
|
}
|
|
} else {
|
|
// Effectively asking for 100% FP rate, or NaN etc.
|
|
if (TypesAndSettings::kAllowZeroStarts) {
|
|
// Zero segments
|
|
return 0U;
|
|
} else {
|
|
// One segment (minimum size, maximizing FP rate)
|
|
return sizeof(CoeffRow);
|
|
}
|
|
}
|
|
}
|
|
|
|
void InternalConfigure() {
|
|
const Index num_blocks = GetNumBlocks();
|
|
Index num_segments = GetNumSegments();
|
|
|
|
if (num_blocks == 0) {
|
|
// Exceptional
|
|
upper_num_columns_ = 0;
|
|
upper_start_block_ = 0;
|
|
} else {
|
|
// Normal
|
|
upper_num_columns_ =
|
|
(num_segments + /*round up*/ num_blocks - 1) / num_blocks;
|
|
upper_start_block_ = upper_num_columns_ * num_blocks - num_segments;
|
|
// Unless that's more columns than supported by ResultRow data type
|
|
if (upper_num_columns_ > 8U * sizeof(ResultRow)) {
|
|
// Use maximum columns (there will be space unused)
|
|
upper_num_columns_ = static_cast<Index>(8U * sizeof(ResultRow));
|
|
upper_start_block_ = 0;
|
|
num_segments = num_blocks * upper_num_columns_;
|
|
}
|
|
}
|
|
// Update data_len_ for correct rounding and/or unused space
|
|
// NOTE: unused space stays gone if we PrepareForNumStarts again.
|
|
// We are prioritizing minimizing the number of fields over making
|
|
// the "unusued space" feature work well.
|
|
data_len_ = num_segments * sizeof(CoeffRow);
|
|
}
|
|
|
|
char* const data_;
|
|
size_t data_len_;
|
|
Index num_starts_ = 0;
|
|
Index upper_num_columns_ = 0;
|
|
Index upper_start_block_ = 0;
|
|
};
|
|
|
|
} // namespace ribbon
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|
|
// For convenience working with templates
|
|
#define IMPORT_RIBBON_IMPL_TYPES(TypesAndSettings) \
|
|
using Hasher = ROCKSDB_NAMESPACE::ribbon::StandardHasher<TypesAndSettings>; \
|
|
using Banding = \
|
|
ROCKSDB_NAMESPACE::ribbon::StandardBanding<TypesAndSettings>; \
|
|
using SimpleSoln = \
|
|
ROCKSDB_NAMESPACE::ribbon::InMemSimpleSolution<TypesAndSettings>; \
|
|
using InterleavedSoln = \
|
|
ROCKSDB_NAMESPACE::ribbon::SerializableInterleavedSolution< \
|
|
TypesAndSettings>; \
|
|
static_assert(sizeof(Hasher) + sizeof(Banding) + sizeof(SimpleSoln) + \
|
|
sizeof(InterleavedSoln) > \
|
|
0, \
|
|
"avoid unused warnings, semicolon expected after macro call")
|