mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-27 02:44:18 +00:00
30bc495c03
Summary: Delete range logic is moved from `DBIter` to `MergingIterator`, and `MergingIterator` will seek to the end of a range deletion if possible instead of scanning through each key and check with `RangeDelAggregator`. With the invariant that a key in level L (consider memtable as the first level, each immutable and L0 as a separate level) has a larger sequence number than all keys in any level >L, a range tombstone `[start, end)` from level L covers all keys in its range in any level >L. This property motivates optimizations in iterator: - in `Seek(target)`, if level L has a range tombstone `[start, end)` that covers `target.UserKey`, then for all levels > L, we can do Seek() on `end` instead of `target` to skip some range tombstone covered keys. - in `Next()/Prev()`, if the current key is covered by a range tombstone `[start, end)` from level L, we can do `Seek` to `end` for all levels > L. This PR implements the above optimizations in `MergingIterator`. As all range tombstone covered keys are now skipped in `MergingIterator`, the range tombstone logic is removed from `DBIter`. The idea in this PR is similar to https://github.com/facebook/rocksdb/issues/7317, but this PR leaves `InternalIterator` interface mostly unchanged. **Credit**: the cascading seek optimization and the sentinel key (discussed below) are inspired by [Pebble](https://github.com/cockroachdb/pebble/blob/master/merging_iter.go) and suggested by ajkr in https://github.com/facebook/rocksdb/issues/7317. The two optimizations are mostly implemented in `SeekImpl()/SeekForPrevImpl()` and `IsNextDeleted()/IsPrevDeleted()` in `merging_iterator.cc`. See comments for each method for more detail. One notable change is that the minHeap/maxHeap used by `MergingIterator` now contains range tombstone end keys besides point key iterators. This helps to reduce the number of key comparisons. For example, for a range tombstone `[start, end)`, a `start` and an `end` `HeapItem` are inserted into the heap. When a `HeapItem` for range tombstone start key is popped from the minHeap, we know this range tombstone becomes "active" in the sense that, before the range tombstone's end key is popped from the minHeap, all the keys popped from this heap is covered by the range tombstone's internal key range `[start, end)`. Another major change, *delete range sentinel key*, is made to `LevelIterator`. Before this PR, when all point keys in an SST file are iterated through in `MergingIterator`, a level iterator would advance to the next SST file in its level. In the case when an SST file has a range tombstone that covers keys beyond the SST file's last point key, advancing to the next SST file would lose this range tombstone. Consequently, `MergingIterator` could return keys that should have been deleted by some range tombstone. We prevent this by pretending that file boundaries in each SST file are sentinel keys. A `LevelIterator` now only advance the file iterator once the sentinel key is processed. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10449 Test Plan: - Added many unit tests in db_range_del_test - Stress test: `./db_stress --readpercent=5 --prefixpercent=19 --writepercent=20 -delpercent=10 --iterpercent=44 --delrangepercent=2` - Additional iterator stress test is added to verify against iterators against expected state: https://github.com/facebook/rocksdb/issues/10538. This is based on ajkr's previous attempt https://github.com/facebook/rocksdb/pull/5506#issuecomment-506021913. ``` python3 ./tools/db_crashtest.py blackbox --simple --write_buffer_size=524288 --target_file_size_base=524288 --max_bytes_for_level_base=2097152 --compression_type=none --max_background_compactions=8 --value_size_mult=33 --max_key=5000000 --interval=10 --duration=7200 --delrangepercent=3 --delpercent=9 --iterpercent=25 --writepercent=60 --readpercent=3 --prefixpercent=0 --num_iterations=1000 --range_deletion_width=100 --verify_iterator_with_expected_state_one_in=1 ``` - Performance benchmark: I used a similar setup as in the blog [post](http://rocksdb.org/blog/2018/11/21/delete-range.html) that introduced DeleteRange, "a database with 5 million data keys, and 10000 range tombstones (ignoring those dropped during compaction) that were written in regular intervals after 4.5 million data keys were written". As expected, the performance with this PR depends on the range tombstone width. ``` # Setup: TEST_TMPDIR=/dev/shm ./db_bench_main --benchmarks=fillrandom --writes=4500000 --num=5000000 TEST_TMPDIR=/dev/shm ./db_bench_main --benchmarks=overwrite --writes=500000 --num=5000000 --use_existing_db=true --writes_per_range_tombstone=50 # Scan entire DB TEST_TMPDIR=/dev/shm ./db_bench_main --benchmarks=readseq[-X5] --use_existing_db=true --num=5000000 --disable_auto_compactions=true # Short range scan (10 Next()) TEST_TMPDIR=/dev/shm/width-100/ ./db_bench_main --benchmarks=seekrandom[-X5] --use_existing_db=true --num=500000 --reads=100000 --seek_nexts=10 --disable_auto_compactions=true # Long range scan(1000 Next()) TEST_TMPDIR=/dev/shm/width-100/ ./db_bench_main --benchmarks=seekrandom[-X5] --use_existing_db=true --num=500000 --reads=2500 --seek_nexts=1000 --disable_auto_compactions=true ``` Avg over of 10 runs (some slower tests had fews runs): For the first column (tombstone), 0 means no range tombstone, 100-10000 means width of the 10k range tombstones, and 1 means there is a single range tombstone in the entire DB (width is 1000). The 1 tombstone case is to test regression when there's very few range tombstones in the DB, as no range tombstone is likely to take a different code path than with range tombstones. - Scan entire DB | tombstone width | Pre-PR ops/sec | Post-PR ops/sec | ±% | | ------------- | ------------- | ------------- | ------------- | | 0 range tombstone |2525600 (± 43564) |2486917 (± 33698) |-1.53% | | 100 |1853835 (± 24736) |2073884 (± 32176) |+11.87% | | 1000 |422415 (± 7466) |1115801 (± 22781) |+164.15% | | 10000 |22384 (± 227) |227919 (± 6647) |+918.22% | | 1 range tombstone |2176540 (± 39050) |2434954 (± 24563) |+11.87% | - Short range scan | tombstone width | Pre-PR ops/sec | Post-PR ops/sec | ±% | | ------------- | ------------- | ------------- | ------------- | | 0 range tombstone |35398 (± 533) |35338 (± 569) |-0.17% | | 100 |28276 (± 664) |31684 (± 331) |+12.05% | | 1000 |7637 (± 77) |25422 (± 277) |+232.88% | | 10000 |1367 |28667 |+1997.07% | | 1 range tombstone |32618 (± 581) |32748 (± 506) |+0.4% | - Long range scan | tombstone width | Pre-PR ops/sec | Post-PR ops/sec | ±% | | ------------- | ------------- | ------------- | ------------- | | 0 range tombstone |2262 (± 33) |2353 (± 20) |+4.02% | | 100 |1696 (± 26) |1926 (± 18) |+13.56% | | 1000 |410 (± 6) |1255 (± 29) |+206.1% | | 10000 |25 |414 |+1556.0% | | 1 range tombstone |1957 (± 30) |2185 (± 44) |+11.65% | - Microbench does not show significant regression: https://gist.github.com/cbi42/59f280f85a59b678e7e5d8561e693b61 Reviewed By: ajkr Differential Revision: D38450331 Pulled By: cbi42 fbshipit-source-id: b5ef12e8d8c289ed2e163ccdf277f5039b511fca
987 lines
36 KiB
C++
987 lines
36 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
#include "db/memtable_list.h"
|
|
|
|
#include <algorithm>
|
|
#include <cinttypes>
|
|
#include <limits>
|
|
#include <queue>
|
|
#include <string>
|
|
|
|
#include "db/db_impl/db_impl.h"
|
|
#include "db/memtable.h"
|
|
#include "db/range_tombstone_fragmenter.h"
|
|
#include "db/version_set.h"
|
|
#include "logging/log_buffer.h"
|
|
#include "logging/logging.h"
|
|
#include "monitoring/thread_status_util.h"
|
|
#include "rocksdb/db.h"
|
|
#include "rocksdb/env.h"
|
|
#include "rocksdb/iterator.h"
|
|
#include "table/merging_iterator.h"
|
|
#include "test_util/sync_point.h"
|
|
#include "util/coding.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
class InternalKeyComparator;
|
|
class Mutex;
|
|
class VersionSet;
|
|
|
|
void MemTableListVersion::AddMemTable(MemTable* m) {
|
|
memlist_.push_front(m);
|
|
*parent_memtable_list_memory_usage_ += m->ApproximateMemoryUsage();
|
|
}
|
|
|
|
void MemTableListVersion::UnrefMemTable(autovector<MemTable*>* to_delete,
|
|
MemTable* m) {
|
|
if (m->Unref()) {
|
|
to_delete->push_back(m);
|
|
assert(*parent_memtable_list_memory_usage_ >= m->ApproximateMemoryUsage());
|
|
*parent_memtable_list_memory_usage_ -= m->ApproximateMemoryUsage();
|
|
}
|
|
}
|
|
|
|
MemTableListVersion::MemTableListVersion(
|
|
size_t* parent_memtable_list_memory_usage, const MemTableListVersion& old)
|
|
: max_write_buffer_number_to_maintain_(
|
|
old.max_write_buffer_number_to_maintain_),
|
|
max_write_buffer_size_to_maintain_(
|
|
old.max_write_buffer_size_to_maintain_),
|
|
parent_memtable_list_memory_usage_(parent_memtable_list_memory_usage) {
|
|
memlist_ = old.memlist_;
|
|
for (auto& m : memlist_) {
|
|
m->Ref();
|
|
}
|
|
|
|
memlist_history_ = old.memlist_history_;
|
|
for (auto& m : memlist_history_) {
|
|
m->Ref();
|
|
}
|
|
}
|
|
|
|
MemTableListVersion::MemTableListVersion(
|
|
size_t* parent_memtable_list_memory_usage,
|
|
int max_write_buffer_number_to_maintain,
|
|
int64_t max_write_buffer_size_to_maintain)
|
|
: max_write_buffer_number_to_maintain_(max_write_buffer_number_to_maintain),
|
|
max_write_buffer_size_to_maintain_(max_write_buffer_size_to_maintain),
|
|
parent_memtable_list_memory_usage_(parent_memtable_list_memory_usage) {}
|
|
|
|
void MemTableListVersion::Ref() { ++refs_; }
|
|
|
|
// called by superversion::clean()
|
|
void MemTableListVersion::Unref(autovector<MemTable*>* to_delete) {
|
|
assert(refs_ >= 1);
|
|
--refs_;
|
|
if (refs_ == 0) {
|
|
// if to_delete is equal to nullptr it means we're confident
|
|
// that refs_ will not be zero
|
|
assert(to_delete != nullptr);
|
|
for (const auto& m : memlist_) {
|
|
UnrefMemTable(to_delete, m);
|
|
}
|
|
for (const auto& m : memlist_history_) {
|
|
UnrefMemTable(to_delete, m);
|
|
}
|
|
delete this;
|
|
}
|
|
}
|
|
|
|
int MemTableList::NumNotFlushed() const {
|
|
int size = static_cast<int>(current_->memlist_.size());
|
|
assert(num_flush_not_started_ <= size);
|
|
return size;
|
|
}
|
|
|
|
int MemTableList::NumFlushed() const {
|
|
return static_cast<int>(current_->memlist_history_.size());
|
|
}
|
|
|
|
// Search all the memtables starting from the most recent one.
|
|
// Return the most recent value found, if any.
|
|
// Operands stores the list of merge operations to apply, so far.
|
|
bool MemTableListVersion::Get(const LookupKey& key, std::string* value,
|
|
PinnableWideColumns* columns,
|
|
std::string* timestamp, Status* s,
|
|
MergeContext* merge_context,
|
|
SequenceNumber* max_covering_tombstone_seq,
|
|
SequenceNumber* seq, const ReadOptions& read_opts,
|
|
ReadCallback* callback, bool* is_blob_index) {
|
|
return GetFromList(&memlist_, key, value, columns, timestamp, s,
|
|
merge_context, max_covering_tombstone_seq, seq, read_opts,
|
|
callback, is_blob_index);
|
|
}
|
|
|
|
void MemTableListVersion::MultiGet(const ReadOptions& read_options,
|
|
MultiGetRange* range,
|
|
ReadCallback* callback) {
|
|
for (auto memtable : memlist_) {
|
|
memtable->MultiGet(read_options, range, callback,
|
|
true /* immutable_memtable */);
|
|
if (range->empty()) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool MemTableListVersion::GetMergeOperands(
|
|
const LookupKey& key, Status* s, MergeContext* merge_context,
|
|
SequenceNumber* max_covering_tombstone_seq, const ReadOptions& read_opts) {
|
|
for (MemTable* memtable : memlist_) {
|
|
bool done = memtable->Get(
|
|
key, /*value=*/nullptr, /*columns=*/nullptr, /*timestamp=*/nullptr, s,
|
|
merge_context, max_covering_tombstone_seq, read_opts,
|
|
true /* immutable_memtable */, nullptr, nullptr, false);
|
|
if (done) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MemTableListVersion::GetFromHistory(
|
|
const LookupKey& key, std::string* value, PinnableWideColumns* columns,
|
|
std::string* timestamp, Status* s, MergeContext* merge_context,
|
|
SequenceNumber* max_covering_tombstone_seq, SequenceNumber* seq,
|
|
const ReadOptions& read_opts, bool* is_blob_index) {
|
|
return GetFromList(&memlist_history_, key, value, columns, timestamp, s,
|
|
merge_context, max_covering_tombstone_seq, seq, read_opts,
|
|
nullptr /*read_callback*/, is_blob_index);
|
|
}
|
|
|
|
bool MemTableListVersion::GetFromList(
|
|
std::list<MemTable*>* list, const LookupKey& key, std::string* value,
|
|
PinnableWideColumns* columns, std::string* timestamp, Status* s,
|
|
MergeContext* merge_context, SequenceNumber* max_covering_tombstone_seq,
|
|
SequenceNumber* seq, const ReadOptions& read_opts, ReadCallback* callback,
|
|
bool* is_blob_index) {
|
|
*seq = kMaxSequenceNumber;
|
|
|
|
for (auto& memtable : *list) {
|
|
assert(memtable->IsFragmentedRangeTombstonesConstructed());
|
|
SequenceNumber current_seq = kMaxSequenceNumber;
|
|
|
|
bool done =
|
|
memtable->Get(key, value, columns, timestamp, s, merge_context,
|
|
max_covering_tombstone_seq, ¤t_seq, read_opts,
|
|
true /* immutable_memtable */, callback, is_blob_index);
|
|
if (*seq == kMaxSequenceNumber) {
|
|
// Store the most recent sequence number of any operation on this key.
|
|
// Since we only care about the most recent change, we only need to
|
|
// return the first operation found when searching memtables in
|
|
// reverse-chronological order.
|
|
// current_seq would be equal to kMaxSequenceNumber if the value was to be
|
|
// skipped. This allows seq to be assigned again when the next value is
|
|
// read.
|
|
*seq = current_seq;
|
|
}
|
|
|
|
if (done) {
|
|
assert(*seq != kMaxSequenceNumber || s->IsNotFound());
|
|
return true;
|
|
}
|
|
if (!done && !s->ok() && !s->IsMergeInProgress() && !s->IsNotFound()) {
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Status MemTableListVersion::AddRangeTombstoneIterators(
|
|
const ReadOptions& read_opts, Arena* /*arena*/,
|
|
RangeDelAggregator* range_del_agg) {
|
|
assert(range_del_agg != nullptr);
|
|
// Except for snapshot read, using kMaxSequenceNumber is OK because these
|
|
// are immutable memtables.
|
|
SequenceNumber read_seq = read_opts.snapshot != nullptr
|
|
? read_opts.snapshot->GetSequenceNumber()
|
|
: kMaxSequenceNumber;
|
|
for (auto& m : memlist_) {
|
|
assert(m->IsFragmentedRangeTombstonesConstructed());
|
|
std::unique_ptr<FragmentedRangeTombstoneIterator> range_del_iter(
|
|
m->NewRangeTombstoneIterator(read_opts, read_seq,
|
|
true /* immutable_memtable */));
|
|
range_del_agg->AddTombstones(std::move(range_del_iter));
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
Status MemTableListVersion::AddRangeTombstoneIterators(
|
|
const ReadOptions& read_opts, Arena* /*arena*/,
|
|
MergeIteratorBuilder& builder) {
|
|
// Except for snapshot read, using kMaxSequenceNumber is OK because these
|
|
// are immutable memtables.
|
|
SequenceNumber read_seq = read_opts.snapshot != nullptr
|
|
? read_opts.snapshot->GetSequenceNumber()
|
|
: kMaxSequenceNumber;
|
|
for (auto& m : memlist_) {
|
|
auto range_del_iter = m->NewRangeTombstoneIterator(
|
|
read_opts, read_seq, true /* immutale_memtable */);
|
|
if (range_del_iter == nullptr || range_del_iter->empty()) {
|
|
delete range_del_iter;
|
|
builder.AddRangeTombstoneIterator(nullptr);
|
|
} else {
|
|
builder.AddRangeTombstoneIterator(new TruncatedRangeDelIterator(
|
|
std::unique_ptr<FragmentedRangeTombstoneIterator>(range_del_iter),
|
|
&m->GetInternalKeyComparator(), nullptr /* smallest */,
|
|
nullptr /* largest */));
|
|
}
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
void MemTableListVersion::AddIterators(
|
|
const ReadOptions& options, std::vector<InternalIterator*>* iterator_list,
|
|
Arena* arena) {
|
|
for (auto& m : memlist_) {
|
|
iterator_list->push_back(m->NewIterator(options, arena));
|
|
}
|
|
}
|
|
|
|
void MemTableListVersion::AddIterators(
|
|
const ReadOptions& options, MergeIteratorBuilder* merge_iter_builder) {
|
|
for (auto& m : memlist_) {
|
|
merge_iter_builder->AddIterator(
|
|
m->NewIterator(options, merge_iter_builder->GetArena()));
|
|
}
|
|
}
|
|
|
|
uint64_t MemTableListVersion::GetTotalNumEntries() const {
|
|
uint64_t total_num = 0;
|
|
for (auto& m : memlist_) {
|
|
total_num += m->num_entries();
|
|
}
|
|
return total_num;
|
|
}
|
|
|
|
MemTable::MemTableStats MemTableListVersion::ApproximateStats(
|
|
const Slice& start_ikey, const Slice& end_ikey) {
|
|
MemTable::MemTableStats total_stats = {0, 0};
|
|
for (auto& m : memlist_) {
|
|
auto mStats = m->ApproximateStats(start_ikey, end_ikey);
|
|
total_stats.size += mStats.size;
|
|
total_stats.count += mStats.count;
|
|
}
|
|
return total_stats;
|
|
}
|
|
|
|
uint64_t MemTableListVersion::GetTotalNumDeletes() const {
|
|
uint64_t total_num = 0;
|
|
for (auto& m : memlist_) {
|
|
total_num += m->num_deletes();
|
|
}
|
|
return total_num;
|
|
}
|
|
|
|
SequenceNumber MemTableListVersion::GetEarliestSequenceNumber(
|
|
bool include_history) const {
|
|
if (include_history && !memlist_history_.empty()) {
|
|
return memlist_history_.back()->GetEarliestSequenceNumber();
|
|
} else if (!memlist_.empty()) {
|
|
return memlist_.back()->GetEarliestSequenceNumber();
|
|
} else {
|
|
return kMaxSequenceNumber;
|
|
}
|
|
}
|
|
|
|
SequenceNumber MemTableListVersion::GetFirstSequenceNumber() const {
|
|
SequenceNumber min_first_seqno = kMaxSequenceNumber;
|
|
// The first memtable in the list might not be the oldest one with mempurge
|
|
for (const auto& m : memlist_) {
|
|
min_first_seqno = std::min(m->GetFirstSequenceNumber(), min_first_seqno);
|
|
}
|
|
return min_first_seqno;
|
|
}
|
|
|
|
// caller is responsible for referencing m
|
|
void MemTableListVersion::Add(MemTable* m, autovector<MemTable*>* to_delete) {
|
|
assert(refs_ == 1); // only when refs_ == 1 is MemTableListVersion mutable
|
|
AddMemTable(m);
|
|
// m->MemoryAllocatedBytes() is added in MemoryAllocatedBytesExcludingLast
|
|
TrimHistory(to_delete, 0);
|
|
}
|
|
|
|
// Removes m from list of memtables not flushed. Caller should NOT Unref m.
|
|
void MemTableListVersion::Remove(MemTable* m,
|
|
autovector<MemTable*>* to_delete) {
|
|
assert(refs_ == 1); // only when refs_ == 1 is MemTableListVersion mutable
|
|
memlist_.remove(m);
|
|
|
|
m->MarkFlushed();
|
|
if (max_write_buffer_size_to_maintain_ > 0 ||
|
|
max_write_buffer_number_to_maintain_ > 0) {
|
|
memlist_history_.push_front(m);
|
|
// Unable to get size of mutable memtable at this point, pass 0 to
|
|
// TrimHistory as a best effort.
|
|
TrimHistory(to_delete, 0);
|
|
} else {
|
|
UnrefMemTable(to_delete, m);
|
|
}
|
|
}
|
|
|
|
// return the total memory usage assuming the oldest flushed memtable is dropped
|
|
size_t MemTableListVersion::MemoryAllocatedBytesExcludingLast() const {
|
|
size_t total_memtable_size = 0;
|
|
for (auto& memtable : memlist_) {
|
|
total_memtable_size += memtable->MemoryAllocatedBytes();
|
|
}
|
|
for (auto& memtable : memlist_history_) {
|
|
total_memtable_size += memtable->MemoryAllocatedBytes();
|
|
}
|
|
if (!memlist_history_.empty()) {
|
|
total_memtable_size -= memlist_history_.back()->MemoryAllocatedBytes();
|
|
}
|
|
return total_memtable_size;
|
|
}
|
|
|
|
bool MemTableListVersion::MemtableLimitExceeded(size_t usage) {
|
|
if (max_write_buffer_size_to_maintain_ > 0) {
|
|
// calculate the total memory usage after dropping the oldest flushed
|
|
// memtable, compare with max_write_buffer_size_to_maintain_ to decide
|
|
// whether to trim history
|
|
return MemoryAllocatedBytesExcludingLast() + usage >=
|
|
static_cast<size_t>(max_write_buffer_size_to_maintain_);
|
|
} else if (max_write_buffer_number_to_maintain_ > 0) {
|
|
return memlist_.size() + memlist_history_.size() >
|
|
static_cast<size_t>(max_write_buffer_number_to_maintain_);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Make sure we don't use up too much space in history
|
|
bool MemTableListVersion::TrimHistory(autovector<MemTable*>* to_delete,
|
|
size_t usage) {
|
|
bool ret = false;
|
|
while (MemtableLimitExceeded(usage) && !memlist_history_.empty()) {
|
|
MemTable* x = memlist_history_.back();
|
|
memlist_history_.pop_back();
|
|
|
|
UnrefMemTable(to_delete, x);
|
|
ret = true;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Returns true if there is at least one memtable on which flush has
|
|
// not yet started.
|
|
bool MemTableList::IsFlushPending() const {
|
|
if ((flush_requested_ && num_flush_not_started_ > 0) ||
|
|
(num_flush_not_started_ >= min_write_buffer_number_to_merge_)) {
|
|
assert(imm_flush_needed.load(std::memory_order_relaxed));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MemTableList::IsFlushPendingOrRunning() const {
|
|
if (current_->memlist_.size() - num_flush_not_started_ > 0) {
|
|
// Flush is already running on at least one memtable
|
|
return true;
|
|
}
|
|
return IsFlushPending();
|
|
}
|
|
|
|
// Returns the memtables that need to be flushed.
|
|
void MemTableList::PickMemtablesToFlush(uint64_t max_memtable_id,
|
|
autovector<MemTable*>* ret,
|
|
uint64_t* max_next_log_number) {
|
|
AutoThreadOperationStageUpdater stage_updater(
|
|
ThreadStatus::STAGE_PICK_MEMTABLES_TO_FLUSH);
|
|
const auto& memlist = current_->memlist_;
|
|
bool atomic_flush = false;
|
|
|
|
// Note: every time MemTableList::Add(mem) is called, it adds the new mem
|
|
// at the FRONT of the memlist (memlist.push_front(mem)). Therefore, by
|
|
// iterating through the memlist starting at the end, the vector<MemTable*>
|
|
// ret is filled with memtables already sorted in increasing MemTable ID.
|
|
// However, when the mempurge feature is activated, new memtables with older
|
|
// IDs will be added to the memlist.
|
|
for (auto it = memlist.rbegin(); it != memlist.rend(); ++it) {
|
|
MemTable* m = *it;
|
|
if (!atomic_flush && m->atomic_flush_seqno_ != kMaxSequenceNumber) {
|
|
atomic_flush = true;
|
|
}
|
|
if (m->GetID() > max_memtable_id) {
|
|
break;
|
|
}
|
|
if (!m->flush_in_progress_) {
|
|
assert(!m->flush_completed_);
|
|
num_flush_not_started_--;
|
|
if (num_flush_not_started_ == 0) {
|
|
imm_flush_needed.store(false, std::memory_order_release);
|
|
}
|
|
m->flush_in_progress_ = true; // flushing will start very soon
|
|
if (max_next_log_number) {
|
|
*max_next_log_number =
|
|
std::max(m->GetNextLogNumber(), *max_next_log_number);
|
|
}
|
|
ret->push_back(m);
|
|
}
|
|
}
|
|
if (!atomic_flush || num_flush_not_started_ == 0) {
|
|
flush_requested_ = false; // start-flush request is complete
|
|
}
|
|
}
|
|
|
|
void MemTableList::RollbackMemtableFlush(const autovector<MemTable*>& mems,
|
|
uint64_t /*file_number*/) {
|
|
AutoThreadOperationStageUpdater stage_updater(
|
|
ThreadStatus::STAGE_MEMTABLE_ROLLBACK);
|
|
assert(!mems.empty());
|
|
|
|
// If the flush was not successful, then just reset state.
|
|
// Maybe a succeeding attempt to flush will be successful.
|
|
for (MemTable* m : mems) {
|
|
assert(m->flush_in_progress_);
|
|
assert(m->file_number_ == 0);
|
|
|
|
m->flush_in_progress_ = false;
|
|
m->flush_completed_ = false;
|
|
m->edit_.Clear();
|
|
num_flush_not_started_++;
|
|
}
|
|
imm_flush_needed.store(true, std::memory_order_release);
|
|
}
|
|
|
|
// Try record a successful flush in the manifest file. It might just return
|
|
// Status::OK letting a concurrent flush to do actual the recording..
|
|
Status MemTableList::TryInstallMemtableFlushResults(
|
|
ColumnFamilyData* cfd, const MutableCFOptions& mutable_cf_options,
|
|
const autovector<MemTable*>& mems, LogsWithPrepTracker* prep_tracker,
|
|
VersionSet* vset, InstrumentedMutex* mu, uint64_t file_number,
|
|
autovector<MemTable*>* to_delete, FSDirectory* db_directory,
|
|
LogBuffer* log_buffer,
|
|
std::list<std::unique_ptr<FlushJobInfo>>* committed_flush_jobs_info,
|
|
bool write_edits) {
|
|
AutoThreadOperationStageUpdater stage_updater(
|
|
ThreadStatus::STAGE_MEMTABLE_INSTALL_FLUSH_RESULTS);
|
|
mu->AssertHeld();
|
|
|
|
// Flush was successful
|
|
// Record the status on the memtable object. Either this call or a call by a
|
|
// concurrent flush thread will read the status and write it to manifest.
|
|
for (size_t i = 0; i < mems.size(); ++i) {
|
|
// All the edits are associated with the first memtable of this batch.
|
|
assert(i == 0 || mems[i]->GetEdits()->NumEntries() == 0);
|
|
|
|
mems[i]->flush_completed_ = true;
|
|
mems[i]->file_number_ = file_number;
|
|
}
|
|
|
|
// if some other thread is already committing, then return
|
|
Status s;
|
|
if (commit_in_progress_) {
|
|
TEST_SYNC_POINT("MemTableList::TryInstallMemtableFlushResults:InProgress");
|
|
return s;
|
|
}
|
|
|
|
// Only a single thread can be executing this piece of code
|
|
commit_in_progress_ = true;
|
|
|
|
// Retry until all completed flushes are committed. New flushes can finish
|
|
// while the current thread is writing manifest where mutex is released.
|
|
while (s.ok()) {
|
|
auto& memlist = current_->memlist_;
|
|
// The back is the oldest; if flush_completed_ is not set to it, it means
|
|
// that we were assigned a more recent memtable. The memtables' flushes must
|
|
// be recorded in manifest in order. A concurrent flush thread, who is
|
|
// assigned to flush the oldest memtable, will later wake up and does all
|
|
// the pending writes to manifest, in order.
|
|
if (memlist.empty() || !memlist.back()->flush_completed_) {
|
|
break;
|
|
}
|
|
// scan all memtables from the earliest, and commit those
|
|
// (in that order) that have finished flushing. Memtables
|
|
// are always committed in the order that they were created.
|
|
uint64_t batch_file_number = 0;
|
|
size_t batch_count = 0;
|
|
autovector<VersionEdit*> edit_list;
|
|
autovector<MemTable*> memtables_to_flush;
|
|
// enumerate from the last (earliest) element to see how many batch finished
|
|
for (auto it = memlist.rbegin(); it != memlist.rend(); ++it) {
|
|
MemTable* m = *it;
|
|
if (!m->flush_completed_) {
|
|
break;
|
|
}
|
|
if (it == memlist.rbegin() || batch_file_number != m->file_number_) {
|
|
batch_file_number = m->file_number_;
|
|
if (m->edit_.GetBlobFileAdditions().empty()) {
|
|
ROCKS_LOG_BUFFER(log_buffer,
|
|
"[%s] Level-0 commit table #%" PRIu64 " started",
|
|
cfd->GetName().c_str(), m->file_number_);
|
|
} else {
|
|
ROCKS_LOG_BUFFER(log_buffer,
|
|
"[%s] Level-0 commit table #%" PRIu64
|
|
" (+%zu blob files) started",
|
|
cfd->GetName().c_str(), m->file_number_,
|
|
m->edit_.GetBlobFileAdditions().size());
|
|
}
|
|
|
|
edit_list.push_back(&m->edit_);
|
|
memtables_to_flush.push_back(m);
|
|
#ifndef ROCKSDB_LITE
|
|
std::unique_ptr<FlushJobInfo> info = m->ReleaseFlushJobInfo();
|
|
if (info != nullptr) {
|
|
committed_flush_jobs_info->push_back(std::move(info));
|
|
}
|
|
#else
|
|
(void)committed_flush_jobs_info;
|
|
#endif // !ROCKSDB_LITE
|
|
}
|
|
batch_count++;
|
|
}
|
|
|
|
// TODO(myabandeh): Not sure how batch_count could be 0 here.
|
|
if (batch_count > 0) {
|
|
uint64_t min_wal_number_to_keep = 0;
|
|
assert(edit_list.size() > 0);
|
|
if (vset->db_options()->allow_2pc) {
|
|
// Note that if mempurge is successful, the edit_list will
|
|
// not be applicable (contains info of new min_log number to keep,
|
|
// and level 0 file path of SST file created during normal flush,
|
|
// so both pieces of information are irrelevant after a successful
|
|
// mempurge operation).
|
|
min_wal_number_to_keep = PrecomputeMinLogNumberToKeep2PC(
|
|
vset, *cfd, edit_list, memtables_to_flush, prep_tracker);
|
|
|
|
// We piggyback the information of earliest log file to keep in the
|
|
// manifest entry for the last file flushed.
|
|
} else {
|
|
min_wal_number_to_keep =
|
|
PrecomputeMinLogNumberToKeepNon2PC(vset, *cfd, edit_list);
|
|
}
|
|
|
|
VersionEdit wal_deletion;
|
|
wal_deletion.SetMinLogNumberToKeep(min_wal_number_to_keep);
|
|
if (vset->db_options()->track_and_verify_wals_in_manifest) {
|
|
if (min_wal_number_to_keep >
|
|
vset->GetWalSet().GetMinWalNumberToKeep()) {
|
|
wal_deletion.DeleteWalsBefore(min_wal_number_to_keep);
|
|
}
|
|
TEST_SYNC_POINT_CALLBACK(
|
|
"MemTableList::TryInstallMemtableFlushResults:"
|
|
"AfterComputeMinWalToKeep",
|
|
nullptr);
|
|
}
|
|
edit_list.push_back(&wal_deletion);
|
|
|
|
const auto manifest_write_cb = [this, cfd, batch_count, log_buffer,
|
|
to_delete, mu](const Status& status) {
|
|
RemoveMemTablesOrRestoreFlags(status, cfd, batch_count, log_buffer,
|
|
to_delete, mu);
|
|
};
|
|
if (write_edits) {
|
|
// this can release and reacquire the mutex.
|
|
s = vset->LogAndApply(cfd, mutable_cf_options, edit_list, mu,
|
|
db_directory, /*new_descriptor_log=*/false,
|
|
/*column_family_options=*/nullptr,
|
|
manifest_write_cb);
|
|
} else {
|
|
// If write_edit is false (e.g: successful mempurge),
|
|
// then remove old memtables, wake up manifest write queue threads,
|
|
// and don't commit anything to the manifest file.
|
|
RemoveMemTablesOrRestoreFlags(s, cfd, batch_count, log_buffer,
|
|
to_delete, mu);
|
|
// Note: cfd->SetLogNumber is only called when a VersionEdit
|
|
// is written to MANIFEST. When mempurge is succesful, we skip
|
|
// this step, therefore cfd->GetLogNumber is always is
|
|
// earliest log with data unflushed.
|
|
// Notify new head of manifest write queue.
|
|
// wake up all the waiting writers
|
|
// TODO(bjlemaire): explain full reason WakeUpWaitingManifestWriters
|
|
// needed or investigate more.
|
|
vset->WakeUpWaitingManifestWriters();
|
|
}
|
|
}
|
|
}
|
|
commit_in_progress_ = false;
|
|
return s;
|
|
}
|
|
|
|
// New memtables are inserted at the front of the list.
|
|
void MemTableList::Add(MemTable* m, autovector<MemTable*>* to_delete) {
|
|
assert(static_cast<int>(current_->memlist_.size()) >= num_flush_not_started_);
|
|
InstallNewVersion();
|
|
// this method is used to move mutable memtable into an immutable list.
|
|
// since mutable memtable is already refcounted by the DBImpl,
|
|
// and when moving to the immutable list we don't unref it,
|
|
// we don't have to ref the memtable here. we just take over the
|
|
// reference from the DBImpl.
|
|
current_->Add(m, to_delete);
|
|
m->MarkImmutable();
|
|
num_flush_not_started_++;
|
|
if (num_flush_not_started_ == 1) {
|
|
imm_flush_needed.store(true, std::memory_order_release);
|
|
}
|
|
UpdateCachedValuesFromMemTableListVersion();
|
|
ResetTrimHistoryNeeded();
|
|
}
|
|
|
|
bool MemTableList::TrimHistory(autovector<MemTable*>* to_delete, size_t usage) {
|
|
InstallNewVersion();
|
|
bool ret = current_->TrimHistory(to_delete, usage);
|
|
UpdateCachedValuesFromMemTableListVersion();
|
|
ResetTrimHistoryNeeded();
|
|
return ret;
|
|
}
|
|
|
|
// Returns an estimate of the number of bytes of data in use.
|
|
size_t MemTableList::ApproximateUnflushedMemTablesMemoryUsage() {
|
|
size_t total_size = 0;
|
|
for (auto& memtable : current_->memlist_) {
|
|
total_size += memtable->ApproximateMemoryUsage();
|
|
}
|
|
return total_size;
|
|
}
|
|
|
|
size_t MemTableList::ApproximateMemoryUsage() { return current_memory_usage_; }
|
|
|
|
size_t MemTableList::MemoryAllocatedBytesExcludingLast() const {
|
|
const size_t usage = current_memory_allocted_bytes_excluding_last_.load(
|
|
std::memory_order_relaxed);
|
|
return usage;
|
|
}
|
|
|
|
bool MemTableList::HasHistory() const {
|
|
const bool has_history = current_has_history_.load(std::memory_order_relaxed);
|
|
return has_history;
|
|
}
|
|
|
|
void MemTableList::UpdateCachedValuesFromMemTableListVersion() {
|
|
const size_t total_memtable_size =
|
|
current_->MemoryAllocatedBytesExcludingLast();
|
|
current_memory_allocted_bytes_excluding_last_.store(
|
|
total_memtable_size, std::memory_order_relaxed);
|
|
|
|
const bool has_history = current_->HasHistory();
|
|
current_has_history_.store(has_history, std::memory_order_relaxed);
|
|
}
|
|
|
|
uint64_t MemTableList::ApproximateOldestKeyTime() const {
|
|
if (!current_->memlist_.empty()) {
|
|
return current_->memlist_.back()->ApproximateOldestKeyTime();
|
|
}
|
|
return std::numeric_limits<uint64_t>::max();
|
|
}
|
|
|
|
void MemTableList::InstallNewVersion() {
|
|
if (current_->refs_ == 1) {
|
|
// we're the only one using the version, just keep using it
|
|
} else {
|
|
// somebody else holds the current version, we need to create new one
|
|
MemTableListVersion* version = current_;
|
|
current_ = new MemTableListVersion(¤t_memory_usage_, *version);
|
|
current_->Ref();
|
|
version->Unref();
|
|
}
|
|
}
|
|
|
|
void MemTableList::RemoveMemTablesOrRestoreFlags(
|
|
const Status& s, ColumnFamilyData* cfd, size_t batch_count,
|
|
LogBuffer* log_buffer, autovector<MemTable*>* to_delete,
|
|
InstrumentedMutex* mu) {
|
|
assert(mu);
|
|
mu->AssertHeld();
|
|
assert(to_delete);
|
|
// we will be changing the version in the next code path,
|
|
// so we better create a new one, since versions are immutable
|
|
InstallNewVersion();
|
|
|
|
// All the later memtables that have the same filenum
|
|
// are part of the same batch. They can be committed now.
|
|
uint64_t mem_id = 1; // how many memtables have been flushed.
|
|
|
|
// commit new state only if the column family is NOT dropped.
|
|
// The reason is as follows (refer to
|
|
// ColumnFamilyTest.FlushAndDropRaceCondition).
|
|
// If the column family is dropped, then according to LogAndApply, its
|
|
// corresponding flush operation is NOT written to the MANIFEST. This
|
|
// means the DB is not aware of the L0 files generated from the flush.
|
|
// By committing the new state, we remove the memtable from the memtable
|
|
// list. Creating an iterator on this column family will not be able to
|
|
// read full data since the memtable is removed, and the DB is not aware
|
|
// of the L0 files, causing MergingIterator unable to build child
|
|
// iterators. RocksDB contract requires that the iterator can be created
|
|
// on a dropped column family, and we must be able to
|
|
// read full data as long as column family handle is not deleted, even if
|
|
// the column family is dropped.
|
|
if (s.ok() && !cfd->IsDropped()) { // commit new state
|
|
while (batch_count-- > 0) {
|
|
MemTable* m = current_->memlist_.back();
|
|
if (m->edit_.GetBlobFileAdditions().empty()) {
|
|
ROCKS_LOG_BUFFER(log_buffer,
|
|
"[%s] Level-0 commit table #%" PRIu64
|
|
": memtable #%" PRIu64 " done",
|
|
cfd->GetName().c_str(), m->file_number_, mem_id);
|
|
} else {
|
|
ROCKS_LOG_BUFFER(log_buffer,
|
|
"[%s] Level-0 commit table #%" PRIu64
|
|
" (+%zu blob files)"
|
|
": memtable #%" PRIu64 " done",
|
|
cfd->GetName().c_str(), m->file_number_,
|
|
m->edit_.GetBlobFileAdditions().size(), mem_id);
|
|
}
|
|
|
|
assert(m->file_number_ > 0);
|
|
current_->Remove(m, to_delete);
|
|
UpdateCachedValuesFromMemTableListVersion();
|
|
ResetTrimHistoryNeeded();
|
|
++mem_id;
|
|
}
|
|
} else {
|
|
for (auto it = current_->memlist_.rbegin(); batch_count-- > 0; ++it) {
|
|
MemTable* m = *it;
|
|
// commit failed. setup state so that we can flush again.
|
|
if (m->edit_.GetBlobFileAdditions().empty()) {
|
|
ROCKS_LOG_BUFFER(log_buffer,
|
|
"Level-0 commit table #%" PRIu64 ": memtable #%" PRIu64
|
|
" failed",
|
|
m->file_number_, mem_id);
|
|
} else {
|
|
ROCKS_LOG_BUFFER(log_buffer,
|
|
"Level-0 commit table #%" PRIu64
|
|
" (+%zu blob files)"
|
|
": memtable #%" PRIu64 " failed",
|
|
m->file_number_,
|
|
m->edit_.GetBlobFileAdditions().size(), mem_id);
|
|
}
|
|
|
|
m->flush_completed_ = false;
|
|
m->flush_in_progress_ = false;
|
|
m->edit_.Clear();
|
|
num_flush_not_started_++;
|
|
m->file_number_ = 0;
|
|
imm_flush_needed.store(true, std::memory_order_release);
|
|
++mem_id;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t MemTableList::PrecomputeMinLogContainingPrepSection(
|
|
const std::unordered_set<MemTable*>* memtables_to_flush) {
|
|
uint64_t min_log = 0;
|
|
|
|
for (auto& m : current_->memlist_) {
|
|
if (memtables_to_flush && memtables_to_flush->count(m)) {
|
|
continue;
|
|
}
|
|
|
|
auto log = m->GetMinLogContainingPrepSection();
|
|
|
|
if (log > 0 && (min_log == 0 || log < min_log)) {
|
|
min_log = log;
|
|
}
|
|
}
|
|
|
|
return min_log;
|
|
}
|
|
|
|
// Commit a successful atomic flush in the manifest file.
|
|
Status InstallMemtableAtomicFlushResults(
|
|
const autovector<MemTableList*>* imm_lists,
|
|
const autovector<ColumnFamilyData*>& cfds,
|
|
const autovector<const MutableCFOptions*>& mutable_cf_options_list,
|
|
const autovector<const autovector<MemTable*>*>& mems_list, VersionSet* vset,
|
|
LogsWithPrepTracker* prep_tracker, InstrumentedMutex* mu,
|
|
const autovector<FileMetaData*>& file_metas,
|
|
const autovector<std::list<std::unique_ptr<FlushJobInfo>>*>&
|
|
committed_flush_jobs_info,
|
|
autovector<MemTable*>* to_delete, FSDirectory* db_directory,
|
|
LogBuffer* log_buffer) {
|
|
AutoThreadOperationStageUpdater stage_updater(
|
|
ThreadStatus::STAGE_MEMTABLE_INSTALL_FLUSH_RESULTS);
|
|
mu->AssertHeld();
|
|
|
|
size_t num = mems_list.size();
|
|
assert(cfds.size() == num);
|
|
if (imm_lists != nullptr) {
|
|
assert(imm_lists->size() == num);
|
|
}
|
|
if (num == 0) {
|
|
return Status::OK();
|
|
}
|
|
|
|
for (size_t k = 0; k != num; ++k) {
|
|
#ifndef NDEBUG
|
|
const auto* imm =
|
|
(imm_lists == nullptr) ? cfds[k]->imm() : imm_lists->at(k);
|
|
if (!mems_list[k]->empty()) {
|
|
assert((*mems_list[k])[0]->GetID() == imm->GetEarliestMemTableID());
|
|
}
|
|
#endif
|
|
assert(nullptr != file_metas[k]);
|
|
for (size_t i = 0; i != mems_list[k]->size(); ++i) {
|
|
assert(i == 0 || (*mems_list[k])[i]->GetEdits()->NumEntries() == 0);
|
|
(*mems_list[k])[i]->SetFlushCompleted(true);
|
|
(*mems_list[k])[i]->SetFileNumber(file_metas[k]->fd.GetNumber());
|
|
}
|
|
#ifndef ROCKSDB_LITE
|
|
if (committed_flush_jobs_info[k]) {
|
|
assert(!mems_list[k]->empty());
|
|
assert((*mems_list[k])[0]);
|
|
std::unique_ptr<FlushJobInfo> flush_job_info =
|
|
(*mems_list[k])[0]->ReleaseFlushJobInfo();
|
|
committed_flush_jobs_info[k]->push_back(std::move(flush_job_info));
|
|
}
|
|
#else //! ROCKSDB_LITE
|
|
(void)committed_flush_jobs_info;
|
|
#endif // ROCKSDB_LITE
|
|
}
|
|
|
|
Status s;
|
|
|
|
autovector<autovector<VersionEdit*>> edit_lists;
|
|
uint32_t num_entries = 0;
|
|
for (const auto mems : mems_list) {
|
|
assert(mems != nullptr);
|
|
autovector<VersionEdit*> edits;
|
|
assert(!mems->empty());
|
|
edits.emplace_back((*mems)[0]->GetEdits());
|
|
++num_entries;
|
|
edit_lists.emplace_back(edits);
|
|
}
|
|
|
|
WalNumber min_wal_number_to_keep = 0;
|
|
if (vset->db_options()->allow_2pc) {
|
|
min_wal_number_to_keep = PrecomputeMinLogNumberToKeep2PC(
|
|
vset, cfds, edit_lists, mems_list, prep_tracker);
|
|
} else {
|
|
min_wal_number_to_keep =
|
|
PrecomputeMinLogNumberToKeepNon2PC(vset, cfds, edit_lists);
|
|
}
|
|
|
|
VersionEdit wal_deletion;
|
|
wal_deletion.SetMinLogNumberToKeep(min_wal_number_to_keep);
|
|
if (vset->db_options()->track_and_verify_wals_in_manifest &&
|
|
min_wal_number_to_keep > vset->GetWalSet().GetMinWalNumberToKeep()) {
|
|
wal_deletion.DeleteWalsBefore(min_wal_number_to_keep);
|
|
}
|
|
edit_lists.back().push_back(&wal_deletion);
|
|
++num_entries;
|
|
|
|
// Mark the version edits as an atomic group if the number of version edits
|
|
// exceeds 1.
|
|
if (cfds.size() > 1) {
|
|
for (size_t i = 0; i < edit_lists.size(); i++) {
|
|
assert((edit_lists[i].size() == 1) ||
|
|
((edit_lists[i].size() == 2) && (i == edit_lists.size() - 1)));
|
|
for (auto& e : edit_lists[i]) {
|
|
e->MarkAtomicGroup(--num_entries);
|
|
}
|
|
}
|
|
assert(0 == num_entries);
|
|
}
|
|
|
|
// this can release and reacquire the mutex.
|
|
s = vset->LogAndApply(cfds, mutable_cf_options_list, edit_lists, mu,
|
|
db_directory);
|
|
|
|
for (size_t k = 0; k != cfds.size(); ++k) {
|
|
auto* imm = (imm_lists == nullptr) ? cfds[k]->imm() : imm_lists->at(k);
|
|
imm->InstallNewVersion();
|
|
}
|
|
|
|
if (s.ok() || s.IsColumnFamilyDropped()) {
|
|
for (size_t i = 0; i != cfds.size(); ++i) {
|
|
if (cfds[i]->IsDropped()) {
|
|
continue;
|
|
}
|
|
auto* imm = (imm_lists == nullptr) ? cfds[i]->imm() : imm_lists->at(i);
|
|
for (auto m : *mems_list[i]) {
|
|
assert(m->GetFileNumber() > 0);
|
|
uint64_t mem_id = m->GetID();
|
|
|
|
const VersionEdit* const edit = m->GetEdits();
|
|
assert(edit);
|
|
|
|
if (edit->GetBlobFileAdditions().empty()) {
|
|
ROCKS_LOG_BUFFER(log_buffer,
|
|
"[%s] Level-0 commit table #%" PRIu64
|
|
": memtable #%" PRIu64 " done",
|
|
cfds[i]->GetName().c_str(), m->GetFileNumber(),
|
|
mem_id);
|
|
} else {
|
|
ROCKS_LOG_BUFFER(log_buffer,
|
|
"[%s] Level-0 commit table #%" PRIu64
|
|
" (+%zu blob files)"
|
|
": memtable #%" PRIu64 " done",
|
|
cfds[i]->GetName().c_str(), m->GetFileNumber(),
|
|
edit->GetBlobFileAdditions().size(), mem_id);
|
|
}
|
|
|
|
imm->current_->Remove(m, to_delete);
|
|
imm->UpdateCachedValuesFromMemTableListVersion();
|
|
imm->ResetTrimHistoryNeeded();
|
|
}
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i != cfds.size(); ++i) {
|
|
auto* imm = (imm_lists == nullptr) ? cfds[i]->imm() : imm_lists->at(i);
|
|
for (auto m : *mems_list[i]) {
|
|
uint64_t mem_id = m->GetID();
|
|
|
|
const VersionEdit* const edit = m->GetEdits();
|
|
assert(edit);
|
|
|
|
if (edit->GetBlobFileAdditions().empty()) {
|
|
ROCKS_LOG_BUFFER(log_buffer,
|
|
"[%s] Level-0 commit table #%" PRIu64
|
|
": memtable #%" PRIu64 " failed",
|
|
cfds[i]->GetName().c_str(), m->GetFileNumber(),
|
|
mem_id);
|
|
} else {
|
|
ROCKS_LOG_BUFFER(log_buffer,
|
|
"[%s] Level-0 commit table #%" PRIu64
|
|
" (+%zu blob files)"
|
|
": memtable #%" PRIu64 " failed",
|
|
cfds[i]->GetName().c_str(), m->GetFileNumber(),
|
|
edit->GetBlobFileAdditions().size(), mem_id);
|
|
}
|
|
|
|
m->SetFlushCompleted(false);
|
|
m->SetFlushInProgress(false);
|
|
m->GetEdits()->Clear();
|
|
m->SetFileNumber(0);
|
|
imm->num_flush_not_started_++;
|
|
}
|
|
imm->imm_flush_needed.store(true, std::memory_order_release);
|
|
}
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
void MemTableList::RemoveOldMemTables(uint64_t log_number,
|
|
autovector<MemTable*>* to_delete) {
|
|
assert(to_delete != nullptr);
|
|
InstallNewVersion();
|
|
auto& memlist = current_->memlist_;
|
|
autovector<MemTable*> old_memtables;
|
|
for (auto it = memlist.rbegin(); it != memlist.rend(); ++it) {
|
|
MemTable* mem = *it;
|
|
if (mem->GetNextLogNumber() > log_number) {
|
|
break;
|
|
}
|
|
old_memtables.push_back(mem);
|
|
}
|
|
|
|
for (auto it = old_memtables.begin(); it != old_memtables.end(); ++it) {
|
|
MemTable* mem = *it;
|
|
current_->Remove(mem, to_delete);
|
|
--num_flush_not_started_;
|
|
if (0 == num_flush_not_started_) {
|
|
imm_flush_needed.store(false, std::memory_order_release);
|
|
}
|
|
}
|
|
|
|
UpdateCachedValuesFromMemTableListVersion();
|
|
ResetTrimHistoryNeeded();
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|