mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-26 07:30:54 +00:00
1026e794a3
Summary: Dynamic adjustment of rate limit according to demand for background I/O. It increases by a factor when limiter is drained too frequently, and decreases by the same factor when limiter is not drained frequently enough. The parameters for this behavior are fixed in `GenericRateLimiter::Tune`. Other changes: - make rate limiter's `Env*` configurable for testing - track num drain intervals in RateLimiter so we don't have to rely on stats, which may be shared across different DB instances from the ones that share the RateLimiter. Closes https://github.com/facebook/rocksdb/pull/2899 Differential Revision: D5858704 Pulled By: ajkr fbshipit-source-id: cc2bac30f85e7f6fd63655d0a6732ef9ed7403b1
340 lines
12 KiB
C++
340 lines
12 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "util/rate_limiter.h"
|
|
#include "monitoring/statistics.h"
|
|
#include "port/port.h"
|
|
#include "rocksdb/env.h"
|
|
#include "util/aligned_buffer.h"
|
|
#include "util/sync_point.h"
|
|
|
|
namespace rocksdb {
|
|
|
|
size_t RateLimiter::RequestToken(size_t bytes, size_t alignment,
|
|
Env::IOPriority io_priority, Statistics* stats,
|
|
RateLimiter::OpType op_type) {
|
|
if (io_priority < Env::IO_TOTAL && IsRateLimited(op_type)) {
|
|
bytes = std::min(bytes, static_cast<size_t>(GetSingleBurstBytes()));
|
|
|
|
if (alignment > 0) {
|
|
// Here we may actually require more than burst and block
|
|
// but we can not write less than one page at a time on direct I/O
|
|
// thus we may want not to use ratelimiter
|
|
bytes = std::max(alignment, TruncateToPageBoundary(alignment, bytes));
|
|
}
|
|
Request(bytes, io_priority, stats, op_type);
|
|
}
|
|
return bytes;
|
|
}
|
|
|
|
// Pending request
|
|
struct GenericRateLimiter::Req {
|
|
explicit Req(int64_t _bytes, port::Mutex* _mu)
|
|
: request_bytes(_bytes), bytes(_bytes), cv(_mu), granted(false) {}
|
|
int64_t request_bytes;
|
|
int64_t bytes;
|
|
port::CondVar cv;
|
|
bool granted;
|
|
};
|
|
|
|
GenericRateLimiter::GenericRateLimiter(int64_t rate_bytes_per_sec,
|
|
int64_t refill_period_us,
|
|
int32_t fairness, RateLimiter::Mode mode,
|
|
Env* env, bool auto_tuned)
|
|
: RateLimiter(mode),
|
|
refill_period_us_(refill_period_us),
|
|
rate_bytes_per_sec_(auto_tuned ? rate_bytes_per_sec / 2
|
|
: rate_bytes_per_sec),
|
|
refill_bytes_per_period_(
|
|
CalculateRefillBytesPerPeriod(rate_bytes_per_sec_)),
|
|
env_(env),
|
|
stop_(false),
|
|
exit_cv_(&request_mutex_),
|
|
requests_to_wait_(0),
|
|
available_bytes_(0),
|
|
next_refill_us_(NowMicrosMonotonic(env_)),
|
|
fairness_(fairness > 100 ? 100 : fairness),
|
|
rnd_((uint32_t)time(nullptr)),
|
|
leader_(nullptr),
|
|
auto_tuned_(auto_tuned),
|
|
num_drains_(0),
|
|
prev_num_drains_(0),
|
|
max_bytes_per_sec_(rate_bytes_per_sec),
|
|
tuned_time_(NowMicrosMonotonic(env_)) {
|
|
total_requests_[0] = 0;
|
|
total_requests_[1] = 0;
|
|
total_bytes_through_[0] = 0;
|
|
total_bytes_through_[1] = 0;
|
|
}
|
|
|
|
GenericRateLimiter::~GenericRateLimiter() {
|
|
MutexLock g(&request_mutex_);
|
|
stop_ = true;
|
|
requests_to_wait_ = static_cast<int32_t>(queue_[Env::IO_LOW].size() +
|
|
queue_[Env::IO_HIGH].size());
|
|
for (auto& r : queue_[Env::IO_HIGH]) {
|
|
r->cv.Signal();
|
|
}
|
|
for (auto& r : queue_[Env::IO_LOW]) {
|
|
r->cv.Signal();
|
|
}
|
|
while (requests_to_wait_ > 0) {
|
|
exit_cv_.Wait();
|
|
}
|
|
}
|
|
|
|
// This API allows user to dynamically change rate limiter's bytes per second.
|
|
void GenericRateLimiter::SetBytesPerSecond(int64_t bytes_per_second) {
|
|
assert(bytes_per_second > 0);
|
|
rate_bytes_per_sec_ = bytes_per_second;
|
|
refill_bytes_per_period_.store(
|
|
CalculateRefillBytesPerPeriod(bytes_per_second),
|
|
std::memory_order_relaxed);
|
|
}
|
|
|
|
void GenericRateLimiter::Request(int64_t bytes, const Env::IOPriority pri,
|
|
Statistics* stats) {
|
|
assert(bytes <= refill_bytes_per_period_.load(std::memory_order_relaxed));
|
|
TEST_SYNC_POINT("GenericRateLimiter::Request");
|
|
TEST_SYNC_POINT_CALLBACK("GenericRateLimiter::Request:1",
|
|
&rate_bytes_per_sec_);
|
|
MutexLock g(&request_mutex_);
|
|
|
|
if (auto_tuned_) {
|
|
static const int kRefillsPerTune = 100;
|
|
std::chrono::microseconds now(NowMicrosMonotonic(env_));
|
|
if (now - tuned_time_ >=
|
|
kRefillsPerTune * std::chrono::microseconds(refill_period_us_)) {
|
|
Tune();
|
|
}
|
|
}
|
|
|
|
if (stop_) {
|
|
return;
|
|
}
|
|
|
|
++total_requests_[pri];
|
|
|
|
if (available_bytes_ >= bytes) {
|
|
// Refill thread assigns quota and notifies requests waiting on
|
|
// the queue under mutex. So if we get here, that means nobody
|
|
// is waiting?
|
|
available_bytes_ -= bytes;
|
|
total_bytes_through_[pri] += bytes;
|
|
return;
|
|
}
|
|
|
|
// Request cannot be satisfied at this moment, enqueue
|
|
Req r(bytes, &request_mutex_);
|
|
queue_[pri].push_back(&r);
|
|
|
|
do {
|
|
bool timedout = false;
|
|
// Leader election, candidates can be:
|
|
// (1) a new incoming request,
|
|
// (2) a previous leader, whose quota has not been not assigned yet due
|
|
// to lower priority
|
|
// (3) a previous waiter at the front of queue, who got notified by
|
|
// previous leader
|
|
if (leader_ == nullptr &&
|
|
((!queue_[Env::IO_HIGH].empty() &&
|
|
&r == queue_[Env::IO_HIGH].front()) ||
|
|
(!queue_[Env::IO_LOW].empty() &&
|
|
&r == queue_[Env::IO_LOW].front()))) {
|
|
leader_ = &r;
|
|
int64_t delta = next_refill_us_ - NowMicrosMonotonic(env_);
|
|
delta = delta > 0 ? delta : 0;
|
|
if (delta == 0) {
|
|
timedout = true;
|
|
} else {
|
|
int64_t wait_until = env_->NowMicros() + delta;
|
|
RecordTick(stats, NUMBER_RATE_LIMITER_DRAINS);
|
|
++num_drains_;
|
|
timedout = r.cv.TimedWait(wait_until);
|
|
}
|
|
} else {
|
|
// Not at the front of queue or an leader has already been elected
|
|
r.cv.Wait();
|
|
}
|
|
|
|
// request_mutex_ is held from now on
|
|
if (stop_) {
|
|
--requests_to_wait_;
|
|
exit_cv_.Signal();
|
|
return;
|
|
}
|
|
|
|
// Make sure the waken up request is always the header of its queue
|
|
assert(r.granted ||
|
|
(!queue_[Env::IO_HIGH].empty() &&
|
|
&r == queue_[Env::IO_HIGH].front()) ||
|
|
(!queue_[Env::IO_LOW].empty() &&
|
|
&r == queue_[Env::IO_LOW].front()));
|
|
assert(leader_ == nullptr ||
|
|
(!queue_[Env::IO_HIGH].empty() &&
|
|
leader_ == queue_[Env::IO_HIGH].front()) ||
|
|
(!queue_[Env::IO_LOW].empty() &&
|
|
leader_ == queue_[Env::IO_LOW].front()));
|
|
|
|
if (leader_ == &r) {
|
|
// Waken up from TimedWait()
|
|
if (timedout) {
|
|
// Time to do refill!
|
|
Refill();
|
|
|
|
// Re-elect a new leader regardless. This is to simplify the
|
|
// election handling.
|
|
leader_ = nullptr;
|
|
|
|
// Notify the header of queue if current leader is going away
|
|
if (r.granted) {
|
|
// Current leader already got granted with quota. Notify header
|
|
// of waiting queue to participate next round of election.
|
|
assert((queue_[Env::IO_HIGH].empty() ||
|
|
&r != queue_[Env::IO_HIGH].front()) &&
|
|
(queue_[Env::IO_LOW].empty() ||
|
|
&r != queue_[Env::IO_LOW].front()));
|
|
if (!queue_[Env::IO_HIGH].empty()) {
|
|
queue_[Env::IO_HIGH].front()->cv.Signal();
|
|
} else if (!queue_[Env::IO_LOW].empty()) {
|
|
queue_[Env::IO_LOW].front()->cv.Signal();
|
|
}
|
|
// Done
|
|
break;
|
|
}
|
|
} else {
|
|
// Spontaneous wake up, need to continue to wait
|
|
assert(!r.granted);
|
|
leader_ = nullptr;
|
|
}
|
|
} else {
|
|
// Waken up by previous leader:
|
|
// (1) if requested quota is granted, it is done.
|
|
// (2) if requested quota is not granted, this means current thread
|
|
// was picked as a new leader candidate (previous leader got quota).
|
|
// It needs to participate leader election because a new request may
|
|
// come in before this thread gets waken up. So it may actually need
|
|
// to do Wait() again.
|
|
assert(!timedout);
|
|
}
|
|
} while (!r.granted);
|
|
}
|
|
|
|
void GenericRateLimiter::Refill() {
|
|
TEST_SYNC_POINT("GenericRateLimiter::Refill");
|
|
next_refill_us_ = NowMicrosMonotonic(env_) + refill_period_us_;
|
|
// Carry over the left over quota from the last period
|
|
auto refill_bytes_per_period =
|
|
refill_bytes_per_period_.load(std::memory_order_relaxed);
|
|
if (available_bytes_ < refill_bytes_per_period) {
|
|
available_bytes_ += refill_bytes_per_period;
|
|
}
|
|
|
|
int use_low_pri_first = rnd_.OneIn(fairness_) ? 0 : 1;
|
|
for (int q = 0; q < 2; ++q) {
|
|
auto use_pri = (use_low_pri_first == q) ? Env::IO_LOW : Env::IO_HIGH;
|
|
auto* queue = &queue_[use_pri];
|
|
while (!queue->empty()) {
|
|
auto* next_req = queue->front();
|
|
if (available_bytes_ < next_req->request_bytes) {
|
|
// avoid starvation
|
|
next_req->request_bytes -= available_bytes_;
|
|
available_bytes_ = 0;
|
|
break;
|
|
}
|
|
available_bytes_ -= next_req->request_bytes;
|
|
next_req->request_bytes = 0;
|
|
total_bytes_through_[use_pri] += next_req->bytes;
|
|
queue->pop_front();
|
|
|
|
next_req->granted = true;
|
|
if (next_req != leader_) {
|
|
// Quota granted, signal the thread
|
|
next_req->cv.Signal();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int64_t GenericRateLimiter::CalculateRefillBytesPerPeriod(
|
|
int64_t rate_bytes_per_sec) {
|
|
if (port::kMaxInt64 / rate_bytes_per_sec < refill_period_us_) {
|
|
// Avoid unexpected result in the overflow case. The result now is still
|
|
// inaccurate but is a number that is large enough.
|
|
return port::kMaxInt64 / 1000000;
|
|
} else {
|
|
return std::max(kMinRefillBytesPerPeriod,
|
|
rate_bytes_per_sec * refill_period_us_ / 1000000);
|
|
}
|
|
}
|
|
|
|
Status GenericRateLimiter::Tune() {
|
|
const int kLowWatermarkPct = 50;
|
|
const int kHighWatermarkPct = 90;
|
|
const int kAdjustFactorPct = 5;
|
|
// computed rate limit will be in
|
|
// `[max_bytes_per_sec_ / kAllowedRangeFactor, max_bytes_per_sec_]`.
|
|
const int kAllowedRangeFactor = 20;
|
|
|
|
std::chrono::microseconds prev_tuned_time = tuned_time_;
|
|
tuned_time_ = std::chrono::microseconds(NowMicrosMonotonic(env_));
|
|
|
|
int64_t elapsed_intervals = (tuned_time_ - prev_tuned_time +
|
|
std::chrono::microseconds(refill_period_us_) -
|
|
std::chrono::microseconds(1)) /
|
|
std::chrono::microseconds(refill_period_us_);
|
|
// We tune every kRefillsPerTune intervals, so the overflow and division-by-
|
|
// zero conditions should never happen.
|
|
assert(num_drains_ - prev_num_drains_ <= port::kMaxInt64 / 100);
|
|
assert(elapsed_intervals > 0);
|
|
int64_t drained_pct =
|
|
(num_drains_ - prev_num_drains_) * 100 / elapsed_intervals;
|
|
|
|
int64_t prev_bytes_per_sec = GetBytesPerSecond();
|
|
int64_t new_bytes_per_sec;
|
|
if (drained_pct == 0) {
|
|
new_bytes_per_sec = max_bytes_per_sec_ / kAllowedRangeFactor;
|
|
} else if (drained_pct < kLowWatermarkPct) {
|
|
// sanitize to prevent overflow
|
|
int64_t sanitized_prev_bytes_per_sec =
|
|
std::min(prev_bytes_per_sec, port::kMaxInt64 / 100);
|
|
new_bytes_per_sec =
|
|
std::max(max_bytes_per_sec_ / kAllowedRangeFactor,
|
|
sanitized_prev_bytes_per_sec * 100 / (100 + kAdjustFactorPct));
|
|
} else if (drained_pct > kHighWatermarkPct) {
|
|
// sanitize to prevent overflow
|
|
int64_t sanitized_prev_bytes_per_sec = std::min(
|
|
prev_bytes_per_sec, port::kMaxInt64 / (100 + kAdjustFactorPct));
|
|
new_bytes_per_sec =
|
|
std::min(max_bytes_per_sec_,
|
|
sanitized_prev_bytes_per_sec * (100 + kAdjustFactorPct) / 100);
|
|
} else {
|
|
new_bytes_per_sec = prev_bytes_per_sec;
|
|
}
|
|
if (new_bytes_per_sec != prev_bytes_per_sec) {
|
|
SetBytesPerSecond(new_bytes_per_sec);
|
|
}
|
|
num_drains_ = prev_num_drains_;
|
|
return Status::OK();
|
|
}
|
|
|
|
RateLimiter* NewGenericRateLimiter(
|
|
int64_t rate_bytes_per_sec, int64_t refill_period_us /* = 100 * 1000 */,
|
|
int32_t fairness /* = 10 */,
|
|
RateLimiter::Mode mode /* = RateLimiter::Mode::kWritesOnly */,
|
|
bool auto_tuned /* = false */) {
|
|
assert(rate_bytes_per_sec > 0);
|
|
assert(refill_period_us > 0);
|
|
assert(fairness > 0);
|
|
return new GenericRateLimiter(rate_bytes_per_sec, refill_period_us, fairness,
|
|
mode, Env::Default(), auto_tuned);
|
|
}
|
|
|
|
} // namespace rocksdb
|