mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-27 02:44:18 +00:00
ad5325a736
Summary: * New public header unique_id.h and function GetUniqueIdFromTableProperties which computes a universally unique identifier based on table properties of table files from recent RocksDB versions. * Generation of DB session IDs is refactored so that they are guaranteed unique in the lifetime of a process running RocksDB. (SemiStructuredUniqueIdGen, new test included.) Along with file numbers, this enables SST unique IDs to be guaranteed unique among SSTs generated in a single process, and "better than random" between processes. See https://github.com/pdillinger/unique_id * In addition to public API producing 'external' unique IDs, there is a function for producing 'internal' unique IDs, with functions for converting between the two. In short, the external ID is "safe" for things people might do with it, and the internal ID enables more "power user" features for the future. Specifically, the external ID goes through a hashing layer so that any subset of bits in the external ID can be used as a hash of the full ID, while also preserving uniqueness guarantees in the first 128 bits (bijective both on first 128 bits and on full 192 bits). Intended follow-up: * Use the internal unique IDs in cache keys. (Avoid conflicts with https://github.com/facebook/rocksdb/issues/8912) (The file offset can be XORed into the third 64-bit value of the unique ID.) * Publish the external unique IDs in FileStorageInfo (https://github.com/facebook/rocksdb/issues/8968) Pull Request resolved: https://github.com/facebook/rocksdb/pull/8990 Test Plan: Unit tests added, and checking of unique ids in stress test. NOTE in stress test we do not generate nearly enough files to thoroughly stress uniqueness, but the test trims off pieces of the ID to check for uniqueness so that we can infer (with some assumptions) stronger properties in the aggregate. Reviewed By: zhichao-cao, mrambacher Differential Revision: D31582865 Pulled By: pdillinger fbshipit-source-id: 1f620c4c86af9abe2a8d177b9ccf2ad2b9f48243
202 lines
7 KiB
C++
202 lines
7 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "util/hash.h"
|
|
|
|
#include <string>
|
|
|
|
#include "port/lang.h"
|
|
#include "util/coding.h"
|
|
#include "util/hash128.h"
|
|
#include "util/math128.h"
|
|
#include "util/xxhash.h"
|
|
#include "util/xxph3.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
uint64_t (*kGetSliceNPHash64UnseededFnPtr)(const Slice&) = &GetSliceHash64;
|
|
|
|
uint32_t Hash(const char* data, size_t n, uint32_t seed) {
|
|
// MurmurHash1 - fast but mediocre quality
|
|
// https://github.com/aappleby/smhasher/wiki/MurmurHash1
|
|
//
|
|
const uint32_t m = 0xc6a4a793;
|
|
const uint32_t r = 24;
|
|
const char* limit = data + n;
|
|
uint32_t h = static_cast<uint32_t>(seed ^ (n * m));
|
|
|
|
// Pick up four bytes at a time
|
|
while (data + 4 <= limit) {
|
|
uint32_t w = DecodeFixed32(data);
|
|
data += 4;
|
|
h += w;
|
|
h *= m;
|
|
h ^= (h >> 16);
|
|
}
|
|
|
|
// Pick up remaining bytes
|
|
switch (limit - data) {
|
|
// Note: The original hash implementation used data[i] << shift, which
|
|
// promotes the char to int and then performs the shift. If the char is
|
|
// negative, the shift is undefined behavior in C++. The hash algorithm is
|
|
// part of the format definition, so we cannot change it; to obtain the same
|
|
// behavior in a legal way we just cast to uint32_t, which will do
|
|
// sign-extension. To guarantee compatibility with architectures where chars
|
|
// are unsigned we first cast the char to int8_t.
|
|
case 3:
|
|
h += static_cast<uint32_t>(static_cast<int8_t>(data[2])) << 16;
|
|
FALLTHROUGH_INTENDED;
|
|
case 2:
|
|
h += static_cast<uint32_t>(static_cast<int8_t>(data[1])) << 8;
|
|
FALLTHROUGH_INTENDED;
|
|
case 1:
|
|
h += static_cast<uint32_t>(static_cast<int8_t>(data[0]));
|
|
h *= m;
|
|
h ^= (h >> r);
|
|
break;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
// We are standardizing on a preview release of XXH3, because that's
|
|
// the best available at time of standardizing.
|
|
//
|
|
// In testing (mostly Intel Skylake), this hash function is much more
|
|
// thorough than Hash32 and is almost universally faster. Hash() only
|
|
// seems faster when passing runtime-sized keys of the same small size
|
|
// (less than about 24 bytes) thousands of times in a row; this seems
|
|
// to allow the branch predictor to work some magic. XXH3's speed is
|
|
// much less dependent on branch prediction.
|
|
//
|
|
// Hashing with a prefix extractor is potentially a common case of
|
|
// hashing objects of small, predictable size. We could consider
|
|
// bundling hash functions specialized for particular lengths with
|
|
// the prefix extractors.
|
|
uint64_t Hash64(const char* data, size_t n, uint64_t seed) {
|
|
return XXPH3_64bits_withSeed(data, n, seed);
|
|
}
|
|
|
|
uint64_t Hash64(const char* data, size_t n) {
|
|
// Same as seed = 0
|
|
return XXPH3_64bits(data, n);
|
|
}
|
|
|
|
uint64_t GetSlicePartsNPHash64(const SliceParts& data, uint64_t seed) {
|
|
// TODO(ajkr): use XXH3 streaming APIs to avoid the copy/allocation.
|
|
size_t concat_len = 0;
|
|
for (int i = 0; i < data.num_parts; ++i) {
|
|
concat_len += data.parts[i].size();
|
|
}
|
|
std::string concat_data;
|
|
concat_data.reserve(concat_len);
|
|
for (int i = 0; i < data.num_parts; ++i) {
|
|
concat_data.append(data.parts[i].data(), data.parts[i].size());
|
|
}
|
|
assert(concat_data.size() == concat_len);
|
|
return NPHash64(concat_data.data(), concat_len, seed);
|
|
}
|
|
|
|
Unsigned128 Hash128(const char* data, size_t n, uint64_t seed) {
|
|
auto h = XXH3_128bits_withSeed(data, n, seed);
|
|
return (Unsigned128{h.high64} << 64) | (h.low64);
|
|
}
|
|
|
|
Unsigned128 Hash128(const char* data, size_t n) {
|
|
// Same as seed = 0
|
|
auto h = XXH3_128bits(data, n);
|
|
return (Unsigned128{h.high64} << 64) | (h.low64);
|
|
}
|
|
|
|
void Hash2x64(const char* data, size_t n, uint64_t* high64, uint64_t* low64) {
|
|
// Same as seed = 0
|
|
auto h = XXH3_128bits(data, n);
|
|
*high64 = h.high64;
|
|
*low64 = h.low64;
|
|
}
|
|
|
|
void Hash2x64(const char* data, size_t n, uint64_t seed, uint64_t* high64,
|
|
uint64_t* low64) {
|
|
auto h = XXH3_128bits_withSeed(data, n, seed);
|
|
*high64 = h.high64;
|
|
*low64 = h.low64;
|
|
}
|
|
|
|
namespace {
|
|
|
|
inline uint64_t XXH3_avalanche(uint64_t h64) {
|
|
h64 ^= h64 >> 37;
|
|
h64 *= 0x165667919E3779F9U;
|
|
h64 ^= h64 >> 32;
|
|
return h64;
|
|
}
|
|
|
|
inline uint64_t XXH3_unavalanche(uint64_t h64) {
|
|
h64 ^= h64 >> 32;
|
|
h64 *= 0x8da8ee41d6df849U; // inverse of 0x165667919E3779F9U
|
|
h64 ^= h64 >> 37;
|
|
return h64;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void BijectiveHash2x64(uint64_t in_high64, uint64_t in_low64, uint64_t seed,
|
|
uint64_t* out_high64, uint64_t* out_low64) {
|
|
// Adapted from XXH3_len_9to16_128b
|
|
const uint64_t bitflipl = /*secret part*/ 0x59973f0033362349U - seed;
|
|
const uint64_t bitfliph = /*secret part*/ 0xc202797692d63d58U + seed;
|
|
Unsigned128 tmp128 =
|
|
Multiply64to128(in_low64 ^ in_high64 ^ bitflipl, 0x9E3779B185EBCA87U);
|
|
uint64_t lo = Lower64of128(tmp128);
|
|
uint64_t hi = Upper64of128(tmp128);
|
|
lo += 0x3c0000000000000U; // (len - 1) << 54
|
|
in_high64 ^= bitfliph;
|
|
hi += in_high64 + (Lower32of64(in_high64) * uint64_t{0x85EBCA76});
|
|
lo ^= EndianSwapValue(hi);
|
|
tmp128 = Multiply64to128(lo, 0xC2B2AE3D27D4EB4FU);
|
|
lo = Lower64of128(tmp128);
|
|
hi = Upper64of128(tmp128) + (hi * 0xC2B2AE3D27D4EB4FU);
|
|
*out_low64 = XXH3_avalanche(lo);
|
|
*out_high64 = XXH3_avalanche(hi);
|
|
}
|
|
|
|
void BijectiveUnhash2x64(uint64_t in_high64, uint64_t in_low64, uint64_t seed,
|
|
uint64_t* out_high64, uint64_t* out_low64) {
|
|
// Inverted above (also consulting XXH3_len_9to16_128b)
|
|
const uint64_t bitflipl = /*secret part*/ 0x59973f0033362349U - seed;
|
|
const uint64_t bitfliph = /*secret part*/ 0xc202797692d63d58U + seed;
|
|
uint64_t lo = XXH3_unavalanche(in_low64);
|
|
uint64_t hi = XXH3_unavalanche(in_high64);
|
|
lo *= 0xba79078168d4baf; // inverse of 0xC2B2AE3D27D4EB4FU
|
|
hi -= Upper64of128(Multiply64to128(lo, 0xC2B2AE3D27D4EB4FU));
|
|
hi *= 0xba79078168d4baf; // inverse of 0xC2B2AE3D27D4EB4FU
|
|
lo ^= EndianSwapValue(hi);
|
|
lo -= 0x3c0000000000000U;
|
|
lo *= 0x887493432badb37U; // inverse of 0x9E3779B185EBCA87U
|
|
hi -= Upper64of128(Multiply64to128(lo, 0x9E3779B185EBCA87U));
|
|
uint32_t tmp32 = Lower32of64(hi) * 0xb6c92f47; // inverse of 0x85EBCA77
|
|
hi -= tmp32;
|
|
hi = (hi & 0xFFFFFFFF00000000U) -
|
|
((tmp32 * uint64_t{0x85EBCA76}) & 0xFFFFFFFF00000000U) + tmp32;
|
|
hi ^= bitfliph;
|
|
lo ^= hi ^ bitflipl;
|
|
*out_high64 = hi;
|
|
*out_low64 = lo;
|
|
}
|
|
|
|
void BijectiveHash2x64(uint64_t in_high64, uint64_t in_low64,
|
|
uint64_t* out_high64, uint64_t* out_low64) {
|
|
BijectiveHash2x64(in_high64, in_low64, /*seed*/ 0, out_high64, out_low64);
|
|
}
|
|
|
|
void BijectiveUnhash2x64(uint64_t in_high64, uint64_t in_low64,
|
|
uint64_t* out_high64, uint64_t* out_low64) {
|
|
BijectiveUnhash2x64(in_high64, in_low64, /*seed*/ 0, out_high64, out_low64);
|
|
}
|
|
} // namespace ROCKSDB_NAMESPACE
|