mirror of
https://github.com/facebook/rocksdb.git
synced 2024-11-27 02:44:18 +00:00
3d67b5e8e5
Summary: Implement block cache lookup to determine readahead_size during scans. It's enabled if auto_readahead_size, block_cache and iterate_upper_bound - all three are set. Design - 1. Whenever there is a cache miss and FilePrefetchBuffer is called, a callback is made to determine readahead_size for that prefetching. 2. The callback iterates over index and do block cache lookup for each data block handle until existing readahead_size is reached. Then It removes the cache hit data blocks from end to calculate optimized readahead_size. 3. Since index_iter_ is moved, it stores block handles in a queue, and use that queue to get block handle instead of doing index_iter_->Next(). 4. This is for Sync scans. Async scans support is in progress. NOTE: The issue right now is after Seek and Next, if Prev is called, there is no way to do Prev operation. index_iter_ is already pointing to a different block. So it returns "Not supported" in that case with error message - "auto tuning of readahead size is not supported with Prev op" Pull Request resolved: https://github.com/facebook/rocksdb/pull/11860 Test Plan: - Added new unit test - crash_tests - Running scans locally to check for any regression Reviewed By: anand1976 Differential Revision: D49548118 Pulled By: akankshamahajan15 fbshipit-source-id: f1aee409a71b4ad9e5bf3610f43edf30c6630c78
3424 lines
111 KiB
C++
3424 lines
111 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
#include "db/db_test_util.h"
|
|
#include "file/file_prefetch_buffer.h"
|
|
#include "file/file_util.h"
|
|
#include "rocksdb/file_system.h"
|
|
#include "test_util/sync_point.h"
|
|
#ifdef GFLAGS
|
|
#include "tools/io_tracer_parser_tool.h"
|
|
#endif
|
|
#include "util/random.h"
|
|
|
|
namespace {
|
|
static bool enable_io_uring = true;
|
|
extern "C" bool RocksDbIOUringEnable() { return enable_io_uring; }
|
|
} // namespace
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
class MockFS;
|
|
|
|
class MockRandomAccessFile : public FSRandomAccessFileOwnerWrapper {
|
|
public:
|
|
MockRandomAccessFile(std::unique_ptr<FSRandomAccessFile>& file,
|
|
bool support_prefetch, std::atomic_int& prefetch_count,
|
|
bool small_buffer_alignment = false)
|
|
: FSRandomAccessFileOwnerWrapper(std::move(file)),
|
|
support_prefetch_(support_prefetch),
|
|
prefetch_count_(prefetch_count),
|
|
small_buffer_alignment_(small_buffer_alignment) {}
|
|
|
|
IOStatus Prefetch(uint64_t offset, size_t n, const IOOptions& options,
|
|
IODebugContext* dbg) override {
|
|
if (support_prefetch_) {
|
|
prefetch_count_.fetch_add(1);
|
|
return target()->Prefetch(offset, n, options, dbg);
|
|
} else {
|
|
return IOStatus::NotSupported("Prefetch not supported");
|
|
}
|
|
}
|
|
|
|
size_t GetRequiredBufferAlignment() const override {
|
|
return small_buffer_alignment_
|
|
? 1
|
|
: FSRandomAccessFileOwnerWrapper::GetRequiredBufferAlignment();
|
|
}
|
|
|
|
private:
|
|
const bool support_prefetch_;
|
|
std::atomic_int& prefetch_count_;
|
|
const bool small_buffer_alignment_;
|
|
};
|
|
|
|
class MockFS : public FileSystemWrapper {
|
|
public:
|
|
explicit MockFS(const std::shared_ptr<FileSystem>& wrapped,
|
|
bool support_prefetch, bool small_buffer_alignment = false)
|
|
: FileSystemWrapper(wrapped),
|
|
support_prefetch_(support_prefetch),
|
|
small_buffer_alignment_(small_buffer_alignment) {}
|
|
|
|
static const char* kClassName() { return "MockFS"; }
|
|
const char* Name() const override { return kClassName(); }
|
|
|
|
IOStatus NewRandomAccessFile(const std::string& fname,
|
|
const FileOptions& opts,
|
|
std::unique_ptr<FSRandomAccessFile>* result,
|
|
IODebugContext* dbg) override {
|
|
std::unique_ptr<FSRandomAccessFile> file;
|
|
IOStatus s;
|
|
s = target()->NewRandomAccessFile(fname, opts, &file, dbg);
|
|
result->reset(new MockRandomAccessFile(
|
|
file, support_prefetch_, prefetch_count_, small_buffer_alignment_));
|
|
return s;
|
|
}
|
|
|
|
void ClearPrefetchCount() { prefetch_count_ = 0; }
|
|
|
|
bool IsPrefetchCalled() { return prefetch_count_ > 0; }
|
|
|
|
int GetPrefetchCount() {
|
|
return prefetch_count_.load(std::memory_order_relaxed);
|
|
}
|
|
|
|
private:
|
|
const bool support_prefetch_;
|
|
const bool small_buffer_alignment_;
|
|
std::atomic_int prefetch_count_{0};
|
|
};
|
|
|
|
class PrefetchTest
|
|
: public DBTestBase,
|
|
public ::testing::WithParamInterface<std::tuple<bool, bool>> {
|
|
public:
|
|
PrefetchTest() : DBTestBase("prefetch_test", true) {}
|
|
|
|
virtual void SetGenericOptions(Env* env, bool use_direct_io,
|
|
Options& options) {
|
|
options = CurrentOptions();
|
|
options.write_buffer_size = 1024;
|
|
options.create_if_missing = true;
|
|
options.compression = kNoCompression;
|
|
options.env = env;
|
|
options.disable_auto_compactions = true;
|
|
if (use_direct_io) {
|
|
options.use_direct_reads = true;
|
|
options.use_direct_io_for_flush_and_compaction = true;
|
|
}
|
|
}
|
|
|
|
void SetBlockBasedTableOptions(BlockBasedTableOptions& table_options) {
|
|
table_options.no_block_cache = true;
|
|
table_options.cache_index_and_filter_blocks = false;
|
|
table_options.metadata_block_size = 1024;
|
|
table_options.index_type =
|
|
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch;
|
|
}
|
|
};
|
|
|
|
INSTANTIATE_TEST_CASE_P(PrefetchTest, PrefetchTest,
|
|
::testing::Combine(::testing::Bool(),
|
|
::testing::Bool()));
|
|
|
|
std::string BuildKey(int num, std::string postfix = "") {
|
|
return "my_key_" + std::to_string(num) + postfix;
|
|
}
|
|
|
|
// This test verifies the following basic functionalities of prefetching:
|
|
// (1) If underline file system supports prefetch, and directIO is not enabled
|
|
// make sure prefetch() is called and FilePrefetchBuffer is not used.
|
|
// (2) If underline file system doesn't support prefetch, or directIO is
|
|
// enabled, make sure prefetch() is not called and FilePrefetchBuffer is
|
|
// used.
|
|
// (3) Measure read bytes, hit and miss of SST's tail prefetching during table
|
|
// open.
|
|
TEST_P(PrefetchTest, Basic) {
|
|
// First param is if the mockFS support_prefetch or not
|
|
bool support_prefetch =
|
|
std::get<0>(GetParam()) &&
|
|
test::IsPrefetchSupported(env_->GetFileSystem(), dbname_);
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(env_->GetFileSystem(), support_prefetch);
|
|
|
|
// Second param is if directIO is enabled or not
|
|
bool use_direct_io = std::get<1>(GetParam());
|
|
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
Options options;
|
|
SetGenericOptions(env.get(), use_direct_io, options);
|
|
options.statistics = CreateDBStatistics();
|
|
|
|
const int kNumKeys = 1100;
|
|
int buff_prefetch_count = 0;
|
|
SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
Status s = TryReopen(options);
|
|
if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
// create first key range
|
|
WriteBatch batch;
|
|
for (int i = 0; i < kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), "v1"));
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
ASSERT_OK(db_->Flush(FlushOptions()));
|
|
|
|
// create second key range
|
|
batch.Clear();
|
|
for (int i = 0; i < kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i, "key2"), "v2"));
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
ASSERT_OK(db_->Flush(FlushOptions()));
|
|
|
|
// delete second key range
|
|
batch.Clear();
|
|
for (int i = 0; i < kNumKeys; i++) {
|
|
ASSERT_OK(batch.Delete(BuildKey(i, "key2")));
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
ASSERT_OK(db_->Flush(FlushOptions()));
|
|
|
|
std::vector<LiveFileMetaData> metadata;
|
|
db_->GetLiveFilesMetaData(&metadata);
|
|
const size_t num_file = metadata.size();
|
|
// To verify SST file tail prefetch (once per file) during flush output
|
|
// verification
|
|
if (support_prefetch && !use_direct_io) {
|
|
ASSERT_TRUE(fs->IsPrefetchCalled());
|
|
ASSERT_EQ(num_file, fs->GetPrefetchCount());
|
|
ASSERT_EQ(0, buff_prefetch_count);
|
|
fs->ClearPrefetchCount();
|
|
} else {
|
|
ASSERT_FALSE(fs->IsPrefetchCalled());
|
|
ASSERT_EQ(buff_prefetch_count, num_file);
|
|
buff_prefetch_count = 0;
|
|
}
|
|
|
|
// compact database
|
|
std::string start_key = BuildKey(0);
|
|
std::string end_key = BuildKey(kNumKeys - 1);
|
|
Slice least(start_key.data(), start_key.size());
|
|
Slice greatest(end_key.data(), end_key.size());
|
|
|
|
HistogramData prev_table_open_prefetch_tail_read;
|
|
options.statistics->histogramData(TABLE_OPEN_PREFETCH_TAIL_READ_BYTES,
|
|
&prev_table_open_prefetch_tail_read);
|
|
const uint64_t prev_table_open_prefetch_tail_miss =
|
|
options.statistics->getTickerCount(TABLE_OPEN_PREFETCH_TAIL_MISS);
|
|
const uint64_t prev_table_open_prefetch_tail_hit =
|
|
options.statistics->getTickerCount(TABLE_OPEN_PREFETCH_TAIL_HIT);
|
|
|
|
// commenting out the line below causes the example to work correctly
|
|
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest));
|
|
|
|
HistogramData cur_table_open_prefetch_tail_read;
|
|
options.statistics->histogramData(TABLE_OPEN_PREFETCH_TAIL_READ_BYTES,
|
|
&cur_table_open_prefetch_tail_read);
|
|
const uint64_t cur_table_open_prefetch_tail_miss =
|
|
options.statistics->getTickerCount(TABLE_OPEN_PREFETCH_TAIL_MISS);
|
|
const uint64_t cur_table_open_prefetch_tail_hit =
|
|
options.statistics->getTickerCount(TABLE_OPEN_PREFETCH_TAIL_HIT);
|
|
|
|
// To verify prefetch during compaction input read
|
|
if (support_prefetch && !use_direct_io) {
|
|
ASSERT_TRUE(fs->IsPrefetchCalled());
|
|
// To rule out false positive by the SST file tail prefetch during
|
|
// compaction output verification
|
|
ASSERT_GT(fs->GetPrefetchCount(), 1);
|
|
ASSERT_EQ(0, buff_prefetch_count);
|
|
fs->ClearPrefetchCount();
|
|
} else {
|
|
ASSERT_FALSE(fs->IsPrefetchCalled());
|
|
// To rule out false positive by the SST file tail prefetch during
|
|
// compaction output verification
|
|
ASSERT_GT(buff_prefetch_count, 1);
|
|
buff_prefetch_count = 0;
|
|
|
|
ASSERT_GT(cur_table_open_prefetch_tail_read.count,
|
|
prev_table_open_prefetch_tail_read.count);
|
|
ASSERT_GT(cur_table_open_prefetch_tail_hit,
|
|
prev_table_open_prefetch_tail_hit);
|
|
ASSERT_GE(cur_table_open_prefetch_tail_miss,
|
|
prev_table_open_prefetch_tail_miss);
|
|
}
|
|
|
|
// count the keys
|
|
{
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ReadOptions()));
|
|
int num_keys = 0;
|
|
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
|
|
num_keys++;
|
|
}
|
|
(void)num_keys;
|
|
}
|
|
|
|
// To verify prefetch during user scan
|
|
if (support_prefetch && !use_direct_io) {
|
|
ASSERT_TRUE(fs->IsPrefetchCalled());
|
|
fs->ClearPrefetchCount();
|
|
ASSERT_EQ(0, buff_prefetch_count);
|
|
} else {
|
|
ASSERT_FALSE(fs->IsPrefetchCalled());
|
|
ASSERT_GT(buff_prefetch_count, 0);
|
|
buff_prefetch_count = 0;
|
|
}
|
|
Close();
|
|
}
|
|
|
|
class PrefetchTailTest : public PrefetchTest {
|
|
public:
|
|
bool SupportPrefetch() const {
|
|
return std::get<0>(GetParam()) &&
|
|
test::IsPrefetchSupported(env_->GetFileSystem(), dbname_);
|
|
}
|
|
|
|
bool UseDirectIO() const { return std::get<1>(GetParam()); }
|
|
|
|
bool UseFilePrefetchBuffer() const {
|
|
return !SupportPrefetch() || UseDirectIO();
|
|
}
|
|
|
|
Env* GetEnv(bool small_buffer_alignment = false) const {
|
|
std::shared_ptr<MockFS> fs = std::make_shared<MockFS>(
|
|
env_->GetFileSystem(), SupportPrefetch(), small_buffer_alignment);
|
|
|
|
return new CompositeEnvWrapper(env_, fs);
|
|
}
|
|
|
|
void SetGenericOptions(Env* env, bool use_direct_io,
|
|
Options& options) override {
|
|
PrefetchTest::SetGenericOptions(env, use_direct_io, options);
|
|
options.statistics = CreateDBStatistics();
|
|
}
|
|
|
|
void SetBlockBasedTableOptions(
|
|
BlockBasedTableOptions& table_options, bool partition_filters = true,
|
|
uint64_t metadata_block_size =
|
|
BlockBasedTableOptions().metadata_block_size,
|
|
bool use_small_cache = false) {
|
|
table_options.index_type = BlockBasedTableOptions::kTwoLevelIndexSearch;
|
|
table_options.partition_filters = partition_filters;
|
|
if (table_options.partition_filters) {
|
|
table_options.filter_policy.reset(NewBloomFilterPolicy(10, false));
|
|
}
|
|
table_options.metadata_block_size = metadata_block_size;
|
|
|
|
if (use_small_cache) {
|
|
LRUCacheOptions co;
|
|
co.capacity = 1;
|
|
std::shared_ptr<Cache> cache = NewLRUCache(co);
|
|
table_options.block_cache = cache;
|
|
}
|
|
}
|
|
|
|
int64_t GetNumIndexPartition() const {
|
|
int64_t index_partition_counts = 0;
|
|
TablePropertiesCollection all_table_props;
|
|
assert(db_->GetPropertiesOfAllTables(&all_table_props).ok());
|
|
for (const auto& name_and_table_props : all_table_props) {
|
|
const auto& table_props = name_and_table_props.second;
|
|
index_partition_counts += table_props->index_partitions;
|
|
}
|
|
return index_partition_counts;
|
|
}
|
|
};
|
|
|
|
INSTANTIATE_TEST_CASE_P(PrefetchTailTest, PrefetchTailTest,
|
|
::testing::Combine(::testing::Bool(),
|
|
::testing::Bool()));
|
|
|
|
TEST_P(PrefetchTailTest, Basic) {
|
|
std::unique_ptr<Env> env(GetEnv());
|
|
Options options;
|
|
SetGenericOptions(env.get(), UseDirectIO(), options);
|
|
|
|
BlockBasedTableOptions bbto;
|
|
SetBlockBasedTableOptions(bbto);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
|
|
|
|
Status s = TryReopen(options);
|
|
if (UseDirectIO() && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
ROCKSDB_GTEST_BYPASS("Direct IO is not supported");
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
ASSERT_OK(Put("k1", "v1"));
|
|
|
|
HistogramData pre_flush_file_read;
|
|
options.statistics->histogramData(FILE_READ_FLUSH_MICROS,
|
|
&pre_flush_file_read);
|
|
ASSERT_OK(Flush());
|
|
HistogramData post_flush_file_read;
|
|
options.statistics->histogramData(FILE_READ_FLUSH_MICROS,
|
|
&post_flush_file_read);
|
|
if (UseFilePrefetchBuffer()) {
|
|
// `PartitionedFilterBlockReader/PartitionIndexReader::CacheDependencies()`
|
|
// should read from the prefetched tail in file prefetch buffer instead of
|
|
// initiating extra SST reads. Therefore `BlockBasedTable::PrefetchTail()`
|
|
// should be the only SST read in table verification during flush.
|
|
ASSERT_EQ(post_flush_file_read.count - pre_flush_file_read.count, 1);
|
|
} else {
|
|
// Without the prefetched tail in file prefetch buffer,
|
|
// `PartitionedFilterBlockReader/PartitionIndexReader::CacheDependencies()`
|
|
// will initiate extra SST reads
|
|
ASSERT_GT(post_flush_file_read.count - pre_flush_file_read.count, 1);
|
|
}
|
|
ASSERT_OK(Put("k1", "v2"));
|
|
ASSERT_OK(Put("k2", "v2"));
|
|
ASSERT_OK(Flush());
|
|
|
|
CompactRangeOptions cro;
|
|
HistogramData pre_compaction_file_read;
|
|
options.statistics->histogramData(FILE_READ_COMPACTION_MICROS,
|
|
&pre_compaction_file_read);
|
|
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
|
|
HistogramData post_compaction_file_read;
|
|
options.statistics->histogramData(FILE_READ_COMPACTION_MICROS,
|
|
&post_compaction_file_read);
|
|
if (UseFilePrefetchBuffer()) {
|
|
// `PartitionedFilterBlockReader/PartitionIndexReader::CacheDependencies()`
|
|
// should read from the prefetched tail in file prefetch buffer instead of
|
|
// initiating extra SST reads.
|
|
//
|
|
// Therefore the 3 reads are
|
|
// (1) `ProcessKeyValueCompaction()` of input file 1
|
|
// (2) `ProcessKeyValueCompaction()` of input file 2
|
|
// (3) `BlockBasedTable::PrefetchTail()` of output file during table
|
|
// verification in compaction
|
|
ASSERT_EQ(post_compaction_file_read.count - pre_compaction_file_read.count,
|
|
3);
|
|
} else {
|
|
// Without the prefetched tail in file prefetch buffer,
|
|
// `PartitionedFilterBlockReader/PartitionIndexReader::CacheDependencies()`
|
|
// as well as reading other parts of the tail (e.g, footer, table
|
|
// properties..) will initiate extra SST reads
|
|
ASSERT_GT(post_compaction_file_read.count - pre_compaction_file_read.count,
|
|
3);
|
|
}
|
|
Close();
|
|
}
|
|
|
|
TEST_P(PrefetchTailTest, UpgradeToTailSizeInManifest) {
|
|
if (!UseFilePrefetchBuffer()) {
|
|
ROCKSDB_GTEST_BYPASS(
|
|
"Upgrade to tail size in manifest is only relevant when RocksDB file "
|
|
"prefetch buffer is used.");
|
|
}
|
|
if (UseDirectIO()) {
|
|
ROCKSDB_GTEST_BYPASS(
|
|
"To simplify testing logics with setting file's buffer alignment to "
|
|
"be "
|
|
"1, direct IO is required to be disabled.");
|
|
}
|
|
|
|
std::unique_ptr<Env> env(GetEnv(true /* small_buffer_alignment */));
|
|
Options options;
|
|
SetGenericOptions(env.get(), false /* use_direct_io*/, options);
|
|
options.max_open_files = -1;
|
|
options.write_buffer_size = 1024 * 1024;
|
|
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options, false /* partition_filters */,
|
|
1 /* metadata_block_size*/,
|
|
true /* use_small_cache */);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
// To simulate a pre-upgrade DB where file tail size is not recorded in
|
|
// manifest
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FileMetaData::FileMetaData", [&](void* arg) {
|
|
FileMetaData* meta = static_cast<FileMetaData*>(arg);
|
|
meta->tail_size = 0;
|
|
});
|
|
|
|
ASSERT_OK(TryReopen(options));
|
|
for (int i = 0; i < 10000; ++i) {
|
|
ASSERT_OK(Put("k" + std::to_string(i), "v"));
|
|
}
|
|
ASSERT_OK(Flush());
|
|
|
|
SyncPoint::GetInstance()->ClearAllCallBacks();
|
|
|
|
// To simulate a DB undergoing the upgrade where tail size to prefetch is
|
|
// inferred to be a small number for files with no tail size recorded in
|
|
// manifest.
|
|
// "1" is chosen to be such number so that with `small_buffer_alignment ==
|
|
// true` and `use_small_cache == true`, it would have caused one file read
|
|
// per index partition during db open if the upgrade is done wrong.
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"BlockBasedTable::Open::TailPrefetchLen", [&](void* arg) {
|
|
std::pair<size_t*, size_t*>* prefetch_off_len_pair =
|
|
static_cast<std::pair<size_t*, size_t*>*>(arg);
|
|
size_t* prefetch_off = prefetch_off_len_pair->first;
|
|
size_t* tail_size = prefetch_off_len_pair->second;
|
|
const size_t file_size = *prefetch_off + *tail_size;
|
|
|
|
*tail_size = 1;
|
|
*prefetch_off = file_size - (*tail_size);
|
|
});
|
|
|
|
ASSERT_OK(TryReopen(options));
|
|
|
|
SyncPoint::GetInstance()->ClearAllCallBacks();
|
|
SyncPoint::GetInstance()->DisableProcessing();
|
|
|
|
HistogramData db_open_file_read;
|
|
options.statistics->histogramData(FILE_READ_DB_OPEN_MICROS,
|
|
&db_open_file_read);
|
|
|
|
int64_t num_index_partition = GetNumIndexPartition();
|
|
// If the upgrade is done right, db open will prefetch all the index
|
|
// partitions at once, instead of doing one read per partition.
|
|
// That is, together with `metadata_block_size == 1`, there will be more
|
|
// index partitions than number of non index partitions reads.
|
|
ASSERT_LT(db_open_file_read.count, num_index_partition);
|
|
|
|
Close();
|
|
}
|
|
|
|
// This test verifies BlockBasedTableOptions.max_auto_readahead_size is
|
|
// configured dynamically.
|
|
TEST_P(PrefetchTest, ConfigureAutoMaxReadaheadSize) {
|
|
// First param is if the mockFS support_prefetch or not
|
|
bool support_prefetch =
|
|
std::get<0>(GetParam()) &&
|
|
test::IsPrefetchSupported(env_->GetFileSystem(), dbname_);
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(env_->GetFileSystem(), support_prefetch);
|
|
|
|
// Second param is if directIO is enabled or not
|
|
bool use_direct_io = std::get<1>(GetParam());
|
|
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
Options options;
|
|
SetGenericOptions(env.get(), use_direct_io, options);
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
table_options.max_auto_readahead_size = 0;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
int buff_prefetch_count = 0;
|
|
SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
|
|
// DB open will create table readers unless we reduce the table cache
|
|
// capacity. SanitizeOptions will set max_open_files to minimum of 20. Table
|
|
// cache is allocated with max_open_files - 10 as capacity. So override
|
|
// max_open_files to 10 so table cache capacity will become 0. This will
|
|
// prevent file open during DB open and force the file to be opened during
|
|
// Iteration.
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"SanitizeOptions::AfterChangeMaxOpenFiles", [&](void* arg) {
|
|
int* max_open_files = (int*)arg;
|
|
*max_open_files = 11;
|
|
});
|
|
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
Status s = TryReopen(options);
|
|
|
|
if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
Random rnd(309);
|
|
int key_count = 0;
|
|
const int num_keys_per_level = 100;
|
|
// Level 0 : Keys in range [0, 99], Level 1:[100, 199], Level 2:[200, 299].
|
|
for (int level = 2; level >= 0; level--) {
|
|
key_count = level * num_keys_per_level;
|
|
for (int i = 0; i < num_keys_per_level; ++i) {
|
|
ASSERT_OK(Put(Key(key_count++), rnd.RandomString(500)));
|
|
}
|
|
ASSERT_OK(Flush());
|
|
MoveFilesToLevel(level);
|
|
}
|
|
Close();
|
|
std::vector<int> buff_prefectch_level_count = {0, 0, 0};
|
|
ASSERT_OK(TryReopen(options));
|
|
{
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ReadOptions()));
|
|
fs->ClearPrefetchCount();
|
|
buff_prefetch_count = 0;
|
|
|
|
for (int level = 2; level >= 0; level--) {
|
|
key_count = level * num_keys_per_level;
|
|
switch (level) {
|
|
case 0:
|
|
// max_auto_readahead_size is set 0 so data and index blocks are not
|
|
// prefetched.
|
|
ASSERT_OK(db_->SetOptions(
|
|
{{"block_based_table_factory", "{max_auto_readahead_size=0;}"}}));
|
|
break;
|
|
case 1:
|
|
// max_auto_readahead_size is set less than
|
|
// initial_auto_readahead_size. So readahead_size remains equal to
|
|
// max_auto_readahead_size.
|
|
ASSERT_OK(db_->SetOptions({{"block_based_table_factory",
|
|
"{max_auto_readahead_size=4096;}"}}));
|
|
break;
|
|
case 2:
|
|
ASSERT_OK(db_->SetOptions({{"block_based_table_factory",
|
|
"{max_auto_readahead_size=65536;}"}}));
|
|
break;
|
|
default:
|
|
assert(false);
|
|
}
|
|
|
|
for (int i = 0; i < num_keys_per_level; ++i) {
|
|
iter->Seek(Key(key_count++));
|
|
iter->Next();
|
|
}
|
|
|
|
buff_prefectch_level_count[level] = buff_prefetch_count;
|
|
if (support_prefetch && !use_direct_io) {
|
|
if (level == 0) {
|
|
ASSERT_FALSE(fs->IsPrefetchCalled());
|
|
} else {
|
|
ASSERT_TRUE(fs->IsPrefetchCalled());
|
|
}
|
|
fs->ClearPrefetchCount();
|
|
} else {
|
|
ASSERT_FALSE(fs->IsPrefetchCalled());
|
|
if (level == 0) {
|
|
ASSERT_EQ(buff_prefetch_count, 0);
|
|
} else {
|
|
ASSERT_GT(buff_prefetch_count, 0);
|
|
}
|
|
buff_prefetch_count = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!support_prefetch) {
|
|
ASSERT_GT(buff_prefectch_level_count[1], buff_prefectch_level_count[2]);
|
|
}
|
|
|
|
SyncPoint::GetInstance()->DisableProcessing();
|
|
SyncPoint::GetInstance()->ClearAllCallBacks();
|
|
Close();
|
|
}
|
|
|
|
// This test verifies BlockBasedTableOptions.initial_auto_readahead_size is
|
|
// configured dynamically.
|
|
TEST_P(PrefetchTest, ConfigureInternalAutoReadaheadSize) {
|
|
// First param is if the mockFS support_prefetch or not
|
|
bool support_prefetch =
|
|
std::get<0>(GetParam()) &&
|
|
test::IsPrefetchSupported(env_->GetFileSystem(), dbname_);
|
|
|
|
// Second param is if directIO is enabled or not
|
|
bool use_direct_io = std::get<1>(GetParam());
|
|
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(env_->GetFileSystem(), support_prefetch);
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
Options options;
|
|
SetGenericOptions(env.get(), use_direct_io, options);
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
table_options.initial_auto_readahead_size = 0;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
int buff_prefetch_count = 0;
|
|
// DB open will create table readers unless we reduce the table cache
|
|
// capacity. SanitizeOptions will set max_open_files to minimum of 20.
|
|
// Table cache is allocated with max_open_files - 10 as capacity. So
|
|
// override max_open_files to 10 so table cache capacity will become 0.
|
|
// This will prevent file open during DB open and force the file to be
|
|
// opened during Iteration.
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"SanitizeOptions::AfterChangeMaxOpenFiles", [&](void* arg) {
|
|
int* max_open_files = (int*)arg;
|
|
*max_open_files = 11;
|
|
});
|
|
|
|
SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
Status s = TryReopen(options);
|
|
|
|
if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
Random rnd(309);
|
|
int key_count = 0;
|
|
const int num_keys_per_level = 100;
|
|
// Level 0 : Keys in range [0, 99], Level 1:[100, 199], Level 2:[200, 299].
|
|
for (int level = 2; level >= 0; level--) {
|
|
key_count = level * num_keys_per_level;
|
|
for (int i = 0; i < num_keys_per_level; ++i) {
|
|
ASSERT_OK(Put(Key(key_count++), rnd.RandomString(500)));
|
|
}
|
|
ASSERT_OK(Flush());
|
|
MoveFilesToLevel(level);
|
|
}
|
|
Close();
|
|
|
|
ASSERT_OK(TryReopen(options));
|
|
{
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ReadOptions()));
|
|
fs->ClearPrefetchCount();
|
|
buff_prefetch_count = 0;
|
|
std::vector<int> buff_prefetch_level_count = {0, 0, 0};
|
|
|
|
for (int level = 2; level >= 0; level--) {
|
|
key_count = level * num_keys_per_level;
|
|
switch (level) {
|
|
case 0:
|
|
// initial_auto_readahead_size is set 0 so data and index blocks are
|
|
// not prefetched.
|
|
ASSERT_OK(db_->SetOptions({{"block_based_table_factory",
|
|
"{initial_auto_readahead_size=0;}"}}));
|
|
break;
|
|
case 1:
|
|
// intial_auto_readahead_size and max_auto_readahead_size are set
|
|
// same so readahead_size remains same.
|
|
ASSERT_OK(db_->SetOptions({{"block_based_table_factory",
|
|
"{initial_auto_readahead_size=4096;max_"
|
|
"auto_readahead_size=4096;}"}}));
|
|
break;
|
|
case 2:
|
|
ASSERT_OK(
|
|
db_->SetOptions({{"block_based_table_factory",
|
|
"{initial_auto_readahead_size=65536;}"}}));
|
|
break;
|
|
default:
|
|
assert(false);
|
|
}
|
|
|
|
for (int i = 0; i < num_keys_per_level; ++i) {
|
|
iter->Seek(Key(key_count++));
|
|
iter->Next();
|
|
}
|
|
|
|
buff_prefetch_level_count[level] = buff_prefetch_count;
|
|
if (support_prefetch && !use_direct_io) {
|
|
if (level == 0) {
|
|
ASSERT_FALSE(fs->IsPrefetchCalled());
|
|
} else {
|
|
ASSERT_TRUE(fs->IsPrefetchCalled());
|
|
}
|
|
fs->ClearPrefetchCount();
|
|
} else {
|
|
ASSERT_FALSE(fs->IsPrefetchCalled());
|
|
if (level == 0) {
|
|
ASSERT_EQ(buff_prefetch_count, 0);
|
|
} else {
|
|
ASSERT_GT(buff_prefetch_count, 0);
|
|
}
|
|
buff_prefetch_count = 0;
|
|
}
|
|
}
|
|
if (!support_prefetch) {
|
|
ASSERT_GT(buff_prefetch_level_count[1], buff_prefetch_level_count[2]);
|
|
}
|
|
}
|
|
SyncPoint::GetInstance()->DisableProcessing();
|
|
SyncPoint::GetInstance()->ClearAllCallBacks();
|
|
Close();
|
|
}
|
|
|
|
// This test verifies BlockBasedTableOptions.num_file_reads_for_auto_readahead
|
|
// is configured dynamically.
|
|
TEST_P(PrefetchTest, ConfigureNumFilesReadsForReadaheadSize) {
|
|
// First param is if the mockFS support_prefetch or not
|
|
bool support_prefetch =
|
|
std::get<0>(GetParam()) &&
|
|
test::IsPrefetchSupported(env_->GetFileSystem(), dbname_);
|
|
|
|
const int kNumKeys = 2000;
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(env_->GetFileSystem(), support_prefetch);
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
|
|
// Second param is if directIO is enabled or not
|
|
bool use_direct_io = std::get<1>(GetParam());
|
|
|
|
Options options;
|
|
SetGenericOptions(env.get(), use_direct_io, options);
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
table_options.num_file_reads_for_auto_readahead = 0;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
int buff_prefetch_count = 0;
|
|
SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
Status s = TryReopen(options);
|
|
if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
WriteBatch batch;
|
|
Random rnd(309);
|
|
for (int i = 0; i < kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000)));
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
|
|
std::string start_key = BuildKey(0);
|
|
std::string end_key = BuildKey(kNumKeys - 1);
|
|
Slice least(start_key.data(), start_key.size());
|
|
Slice greatest(end_key.data(), end_key.size());
|
|
|
|
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest));
|
|
|
|
Close();
|
|
ASSERT_OK(TryReopen(options));
|
|
|
|
fs->ClearPrefetchCount();
|
|
buff_prefetch_count = 0;
|
|
|
|
{
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ReadOptions()));
|
|
/*
|
|
* Reseek keys from sequential Data Blocks within same partitioned
|
|
* index. It will prefetch the data block at the first seek since
|
|
* num_file_reads_for_auto_readahead = 0. Data Block size is nearly 4076
|
|
* so readahead will fetch 8 * 1024 data more initially (2 more data
|
|
* blocks).
|
|
*/
|
|
iter->Seek(BuildKey(0)); // Prefetch data + index block since
|
|
// num_file_reads_for_auto_readahead = 0.
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1000)); // In buffer
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1004)); // In buffer
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1008)); // Prefetch Data
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1011)); // In buffer
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1015)); // In buffer
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1019)); // In buffer
|
|
ASSERT_TRUE(iter->Valid());
|
|
// Missed 2 blocks but they are already in buffer so no reset.
|
|
iter->Seek(BuildKey(103)); // Already in buffer.
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1033)); // Prefetch Data.
|
|
ASSERT_TRUE(iter->Valid());
|
|
if (support_prefetch && !use_direct_io) {
|
|
ASSERT_EQ(fs->GetPrefetchCount(), 4);
|
|
fs->ClearPrefetchCount();
|
|
} else {
|
|
ASSERT_EQ(buff_prefetch_count, 4);
|
|
buff_prefetch_count = 0;
|
|
}
|
|
}
|
|
|
|
SyncPoint::GetInstance()->DisableProcessing();
|
|
SyncPoint::GetInstance()->ClearAllCallBacks();
|
|
Close();
|
|
}
|
|
|
|
// This test verifies the basic functionality of implicit autoreadahead:
|
|
// - Enable implicit autoreadahead and prefetch only if sequential blocks are
|
|
// read,
|
|
// - If data is already in buffer and few blocks are not requested to read,
|
|
// don't reset,
|
|
// - If data blocks are sequential during read after enabling implicit
|
|
// autoreadahead, reset readahead parameters.
|
|
TEST_P(PrefetchTest, PrefetchWhenReseek) {
|
|
// First param is if the mockFS support_prefetch or not
|
|
bool support_prefetch =
|
|
std::get<0>(GetParam()) &&
|
|
test::IsPrefetchSupported(env_->GetFileSystem(), dbname_);
|
|
|
|
const int kNumKeys = 2000;
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(env_->GetFileSystem(), support_prefetch);
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
|
|
// Second param is if directIO is enabled or not
|
|
bool use_direct_io = std::get<1>(GetParam());
|
|
|
|
Options options;
|
|
SetGenericOptions(env.get(), use_direct_io, options);
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
int buff_prefetch_count = 0;
|
|
SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
Status s = TryReopen(options);
|
|
if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
WriteBatch batch;
|
|
Random rnd(309);
|
|
for (int i = 0; i < kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000)));
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
|
|
std::string start_key = BuildKey(0);
|
|
std::string end_key = BuildKey(kNumKeys - 1);
|
|
Slice least(start_key.data(), start_key.size());
|
|
Slice greatest(end_key.data(), end_key.size());
|
|
|
|
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest));
|
|
|
|
fs->ClearPrefetchCount();
|
|
buff_prefetch_count = 0;
|
|
|
|
{
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ReadOptions()));
|
|
/*
|
|
* Reseek keys from sequential Data Blocks within same partitioned
|
|
* index. After 2 sequential reads it will prefetch the data block.
|
|
* Data Block size is nearly 4076 so readahead will fetch 8 * 1024 data
|
|
* more initially (2 more data blocks).
|
|
*/
|
|
iter->Seek(BuildKey(0));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1000));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1004)); // Prefetch Data
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1008));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1011));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1015)); // Prefetch Data
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1019));
|
|
ASSERT_TRUE(iter->Valid());
|
|
// Missed 2 blocks but they are already in buffer so no reset.
|
|
iter->Seek(BuildKey(103)); // Already in buffer.
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1033)); // Prefetch Data
|
|
ASSERT_TRUE(iter->Valid());
|
|
if (support_prefetch && !use_direct_io) {
|
|
ASSERT_EQ(fs->GetPrefetchCount(), 3);
|
|
fs->ClearPrefetchCount();
|
|
} else {
|
|
ASSERT_EQ(buff_prefetch_count, 3);
|
|
buff_prefetch_count = 0;
|
|
}
|
|
}
|
|
{
|
|
/*
|
|
* Reseek keys from non sequential data blocks within same partitioned
|
|
* index. buff_prefetch_count will be 0 in that case.
|
|
*/
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ReadOptions()));
|
|
iter->Seek(BuildKey(0));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1008));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1019));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1033));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1048));
|
|
ASSERT_TRUE(iter->Valid());
|
|
if (support_prefetch && !use_direct_io) {
|
|
ASSERT_EQ(fs->GetPrefetchCount(), 0);
|
|
fs->ClearPrefetchCount();
|
|
} else {
|
|
ASSERT_EQ(buff_prefetch_count, 0);
|
|
buff_prefetch_count = 0;
|
|
}
|
|
}
|
|
{
|
|
/*
|
|
* Reesek keys from Single Data Block.
|
|
*/
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ReadOptions()));
|
|
iter->Seek(BuildKey(0));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(10));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(100));
|
|
ASSERT_TRUE(iter->Valid());
|
|
if (support_prefetch && !use_direct_io) {
|
|
ASSERT_EQ(fs->GetPrefetchCount(), 0);
|
|
fs->ClearPrefetchCount();
|
|
} else {
|
|
ASSERT_EQ(buff_prefetch_count, 0);
|
|
buff_prefetch_count = 0;
|
|
}
|
|
}
|
|
{
|
|
/*
|
|
* Reseek keys from sequential data blocks to set implicit auto readahead
|
|
* and prefetch data but after that iterate over different (non
|
|
* sequential) data blocks which won't prefetch any data further. So
|
|
* buff_prefetch_count will be 1 for the first one.
|
|
*/
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ReadOptions()));
|
|
iter->Seek(BuildKey(0));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1000));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1004)); // This iteration will prefetch buffer
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1008));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(
|
|
BuildKey(996)); // Reseek won't prefetch any data and
|
|
// readahead_size will be initiallized to 8*1024.
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(992));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(989));
|
|
ASSERT_TRUE(iter->Valid());
|
|
if (support_prefetch && !use_direct_io) {
|
|
ASSERT_EQ(fs->GetPrefetchCount(), 1);
|
|
fs->ClearPrefetchCount();
|
|
} else {
|
|
ASSERT_EQ(buff_prefetch_count, 1);
|
|
buff_prefetch_count = 0;
|
|
}
|
|
|
|
// Read sequentially to confirm readahead_size is reset to initial value
|
|
// (2 more data blocks)
|
|
iter->Seek(BuildKey(1011));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1015));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1019)); // Prefetch Data
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1022));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1026));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(103)); // Prefetch Data
|
|
ASSERT_TRUE(iter->Valid());
|
|
if (support_prefetch && !use_direct_io) {
|
|
ASSERT_EQ(fs->GetPrefetchCount(), 2);
|
|
fs->ClearPrefetchCount();
|
|
} else {
|
|
ASSERT_EQ(buff_prefetch_count, 2);
|
|
buff_prefetch_count = 0;
|
|
}
|
|
}
|
|
{
|
|
/* Reseek keys from sequential partitioned index block. Since partitioned
|
|
* index fetch are sequential, buff_prefetch_count will be 1.
|
|
*/
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ReadOptions()));
|
|
iter->Seek(BuildKey(0));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1167));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1334)); // This iteration will prefetch buffer
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1499));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1667));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1847));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1999));
|
|
ASSERT_TRUE(iter->Valid());
|
|
if (support_prefetch && !use_direct_io) {
|
|
ASSERT_EQ(fs->GetPrefetchCount(), 1);
|
|
fs->ClearPrefetchCount();
|
|
} else {
|
|
ASSERT_EQ(buff_prefetch_count, 1);
|
|
buff_prefetch_count = 0;
|
|
}
|
|
}
|
|
{
|
|
/*
|
|
* Reseek over different keys from different blocks. buff_prefetch_count
|
|
* is set 0.
|
|
*/
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ReadOptions()));
|
|
int i = 0;
|
|
int j = 1000;
|
|
do {
|
|
iter->Seek(BuildKey(i));
|
|
if (!iter->Valid()) {
|
|
break;
|
|
}
|
|
i = i + 100;
|
|
iter->Seek(BuildKey(j));
|
|
j = j + 100;
|
|
} while (i < 1000 && j < kNumKeys && iter->Valid());
|
|
if (support_prefetch && !use_direct_io) {
|
|
ASSERT_EQ(fs->GetPrefetchCount(), 0);
|
|
fs->ClearPrefetchCount();
|
|
} else {
|
|
ASSERT_EQ(buff_prefetch_count, 0);
|
|
buff_prefetch_count = 0;
|
|
}
|
|
}
|
|
{
|
|
/* Iterates sequentially over all keys. It will prefetch the buffer.*/
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ReadOptions()));
|
|
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
|
|
}
|
|
if (support_prefetch && !use_direct_io) {
|
|
ASSERT_EQ(fs->GetPrefetchCount(), 13);
|
|
fs->ClearPrefetchCount();
|
|
} else {
|
|
ASSERT_EQ(buff_prefetch_count, 13);
|
|
buff_prefetch_count = 0;
|
|
}
|
|
}
|
|
|
|
SyncPoint::GetInstance()->DisableProcessing();
|
|
SyncPoint::GetInstance()->ClearAllCallBacks();
|
|
Close();
|
|
}
|
|
|
|
// This test verifies the functionality of implicit autoreadahead when caching
|
|
// is enabled:
|
|
// - If data is already in buffer and few blocks are not requested to read,
|
|
// don't reset,
|
|
// - If block was eligible for prefetching/in buffer but found in cache, don't
|
|
// prefetch and reset.
|
|
TEST_P(PrefetchTest, PrefetchWhenReseekwithCache) {
|
|
// First param is if the mockFS support_prefetch or not
|
|
bool support_prefetch =
|
|
std::get<0>(GetParam()) &&
|
|
test::IsPrefetchSupported(env_->GetFileSystem(), dbname_);
|
|
|
|
const int kNumKeys = 2000;
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(env_->GetFileSystem(), support_prefetch);
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
|
|
// Second param is if directIO is enabled or not
|
|
bool use_direct_io = std::get<1>(GetParam());
|
|
|
|
Options options;
|
|
SetGenericOptions(env.get(), use_direct_io, options);
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
std::shared_ptr<Cache> cache = NewLRUCache(4 * 1024 * 1024, 2); // 8MB
|
|
table_options.block_cache = cache;
|
|
table_options.no_block_cache = false;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
int buff_prefetch_count = 0;
|
|
SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
Status s = TryReopen(options);
|
|
if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
WriteBatch batch;
|
|
Random rnd(309);
|
|
for (int i = 0; i < kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000)));
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
|
|
std::string start_key = BuildKey(0);
|
|
std::string end_key = BuildKey(kNumKeys - 1);
|
|
Slice least(start_key.data(), start_key.size());
|
|
Slice greatest(end_key.data(), end_key.size());
|
|
|
|
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest));
|
|
|
|
fs->ClearPrefetchCount();
|
|
buff_prefetch_count = 0;
|
|
|
|
{
|
|
/*
|
|
* Reseek keys from sequential Data Blocks within same partitioned
|
|
* index. After 2 sequential reads it will prefetch the data block.
|
|
* Data Block size is nearly 4076 so readahead will fetch 8 * 1024 data
|
|
* more initially (2 more data blocks).
|
|
*/
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ReadOptions()));
|
|
// Warm up the cache
|
|
iter->Seek(BuildKey(1011));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1015));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1019));
|
|
ASSERT_TRUE(iter->Valid());
|
|
if (support_prefetch && !use_direct_io) {
|
|
ASSERT_EQ(fs->GetPrefetchCount(), 1);
|
|
fs->ClearPrefetchCount();
|
|
} else {
|
|
ASSERT_EQ(buff_prefetch_count, 1);
|
|
buff_prefetch_count = 0;
|
|
}
|
|
}
|
|
{
|
|
// After caching, blocks will be read from cache (Sequential blocks)
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ReadOptions()));
|
|
iter->Seek(BuildKey(0));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1000));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1004)); // Prefetch data (not in cache).
|
|
ASSERT_TRUE(iter->Valid());
|
|
// Missed one sequential block but next is in already in buffer so
|
|
// readahead will not be reset.
|
|
iter->Seek(BuildKey(1011));
|
|
ASSERT_TRUE(iter->Valid());
|
|
// Prefetch data but blocks are in cache so no prefetch and reset.
|
|
iter->Seek(BuildKey(1015));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1019));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1022));
|
|
ASSERT_TRUE(iter->Valid());
|
|
// Prefetch data with readahead_size = 4 blocks.
|
|
iter->Seek(BuildKey(1026));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(103));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1033));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1037));
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
if (support_prefetch && !use_direct_io) {
|
|
ASSERT_EQ(fs->GetPrefetchCount(), 3);
|
|
fs->ClearPrefetchCount();
|
|
} else {
|
|
ASSERT_EQ(buff_prefetch_count, 2);
|
|
buff_prefetch_count = 0;
|
|
}
|
|
}
|
|
|
|
SyncPoint::GetInstance()->DisableProcessing();
|
|
SyncPoint::GetInstance()->ClearAllCallBacks();
|
|
Close();
|
|
}
|
|
|
|
TEST_P(PrefetchTest, PrefetchWithBlockLookupAutoTuneTest) {
|
|
if (mem_env_ || encrypted_env_) {
|
|
ROCKSDB_GTEST_SKIP("Test requires non-mem or non-encrypted environment");
|
|
return;
|
|
}
|
|
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(FileSystem::Default(), false);
|
|
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
Options options;
|
|
SetGenericOptions(env.get(), /*use_direct_io=*/false, options);
|
|
options.statistics = CreateDBStatistics();
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
Status s = TryReopen(options);
|
|
ASSERT_OK(s);
|
|
|
|
Random rnd(309);
|
|
WriteBatch batch;
|
|
|
|
for (int i = 0; i < 26; i++) {
|
|
std::string key = "my_key_";
|
|
|
|
for (int j = 0; j < 10; j++) {
|
|
key += char('a' + i);
|
|
ASSERT_OK(batch.Put(key, rnd.RandomString(1000)));
|
|
}
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
|
|
std::string start_key = "my_key_a";
|
|
|
|
std::string end_key = "my_key_";
|
|
for (int j = 0; j < 10; j++) {
|
|
end_key += char('a' + 25);
|
|
}
|
|
|
|
Slice least(start_key.data(), start_key.size());
|
|
Slice greatest(end_key.data(), end_key.size());
|
|
|
|
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest));
|
|
|
|
// Try with different num_file_reads_for_auto_readahead from 0 to 3.
|
|
for (size_t i = 0; i < 3; i++) {
|
|
std::shared_ptr<Cache> cache = NewLRUCache(1024 * 1024, 2);
|
|
table_options.block_cache = cache;
|
|
table_options.no_block_cache = false;
|
|
table_options.num_file_reads_for_auto_readahead = i;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
s = TryReopen(options);
|
|
ASSERT_OK(s);
|
|
|
|
// Warm up the cache.
|
|
{
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ReadOptions()));
|
|
|
|
iter->Seek("my_key_bbb");
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
iter->Seek("my_key_ccccccccc");
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
iter->Seek("my_key_ddd");
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
iter->Seek("my_key_ddddddd");
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
iter->Seek("my_key_e");
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
iter->Seek("my_key_eeeee");
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
iter->Seek("my_key_eeeeeeeee");
|
|
ASSERT_TRUE(iter->Valid());
|
|
}
|
|
|
|
ReadOptions ropts;
|
|
ropts.auto_readahead_size = true;
|
|
ReadOptions cmp_ro;
|
|
cmp_ro.auto_readahead_size = false;
|
|
|
|
if (std::get<0>(GetParam())) {
|
|
ropts.readahead_size = cmp_ro.readahead_size = 32768;
|
|
}
|
|
|
|
// With and without tuning readahead_size.
|
|
{
|
|
ASSERT_OK(options.statistics->Reset());
|
|
// Seek.
|
|
{
|
|
Slice ub = Slice("my_key_uuu");
|
|
Slice* ub_ptr = &ub;
|
|
cmp_ro.iterate_upper_bound = ub_ptr;
|
|
ropts.iterate_upper_bound = ub_ptr;
|
|
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ropts));
|
|
auto cmp_iter = std::unique_ptr<Iterator>(db_->NewIterator(cmp_ro));
|
|
|
|
Slice seek_key = Slice("my_key_aaa");
|
|
iter->Seek(seek_key);
|
|
cmp_iter->Seek(seek_key);
|
|
|
|
while (iter->Valid() && cmp_iter->Valid()) {
|
|
if (iter->key() != cmp_iter->key()) {
|
|
// Error
|
|
ASSERT_TRUE(false);
|
|
}
|
|
iter->Next();
|
|
cmp_iter->Next();
|
|
}
|
|
|
|
uint64_t readahead_trimmed =
|
|
options.statistics->getAndResetTickerCount(READAHEAD_TRIMMED);
|
|
ASSERT_GT(readahead_trimmed, 0);
|
|
|
|
ASSERT_OK(cmp_iter->status());
|
|
ASSERT_OK(iter->status());
|
|
}
|
|
|
|
// Reseek with new upper_bound_iterator.
|
|
{
|
|
Slice ub = Slice("my_key_y");
|
|
ropts.iterate_upper_bound = &ub;
|
|
cmp_ro.iterate_upper_bound = &ub;
|
|
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ropts));
|
|
auto cmp_iter = std::unique_ptr<Iterator>(db_->NewIterator(cmp_ro));
|
|
|
|
Slice reseek_key = Slice("my_key_v");
|
|
iter->Seek(reseek_key);
|
|
cmp_iter->Seek(reseek_key);
|
|
|
|
while (iter->Valid() && cmp_iter->Valid()) {
|
|
if (iter->key() != cmp_iter->key()) {
|
|
// Error
|
|
ASSERT_TRUE(false);
|
|
}
|
|
iter->Next();
|
|
cmp_iter->Next();
|
|
}
|
|
|
|
uint64_t readahead_trimmed =
|
|
options.statistics->getAndResetTickerCount(READAHEAD_TRIMMED);
|
|
ASSERT_GT(readahead_trimmed, 0);
|
|
|
|
ASSERT_OK(cmp_iter->status());
|
|
ASSERT_OK(iter->status());
|
|
}
|
|
}
|
|
Close();
|
|
}
|
|
}
|
|
|
|
TEST_F(PrefetchTest, PrefetchWithBlockLookupAutoTuneWithPrev) {
|
|
if (mem_env_ || encrypted_env_) {
|
|
ROCKSDB_GTEST_SKIP("Test requires non-mem or non-encrypted environment");
|
|
return;
|
|
}
|
|
|
|
// First param is if the mockFS support_prefetch or not
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(FileSystem::Default(), false);
|
|
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
Options options;
|
|
SetGenericOptions(env.get(), /*use_direct_io=*/false, options);
|
|
options.statistics = CreateDBStatistics();
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
std::shared_ptr<Cache> cache = NewLRUCache(1024 * 1024, 2);
|
|
table_options.block_cache = cache;
|
|
table_options.no_block_cache = false;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
Status s = TryReopen(options);
|
|
ASSERT_OK(s);
|
|
|
|
Random rnd(309);
|
|
WriteBatch batch;
|
|
|
|
for (int i = 0; i < 26; i++) {
|
|
std::string key = "my_key_";
|
|
|
|
for (int j = 0; j < 10; j++) {
|
|
key += char('a' + i);
|
|
ASSERT_OK(batch.Put(key, rnd.RandomString(1000)));
|
|
}
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
|
|
std::string start_key = "my_key_a";
|
|
|
|
std::string end_key = "my_key_";
|
|
for (int j = 0; j < 10; j++) {
|
|
end_key += char('a' + 25);
|
|
}
|
|
|
|
Slice least(start_key.data(), start_key.size());
|
|
Slice greatest(end_key.data(), end_key.size());
|
|
|
|
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest));
|
|
|
|
ReadOptions ropts;
|
|
ropts.auto_readahead_size = true;
|
|
|
|
{
|
|
// Seek.
|
|
Slice ub = Slice("my_key_uuu");
|
|
Slice* ub_ptr = &ub;
|
|
ropts.iterate_upper_bound = ub_ptr;
|
|
ropts.auto_readahead_size = true;
|
|
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ropts));
|
|
|
|
Slice seek_key = Slice("my_key_bbb");
|
|
iter->Seek(seek_key);
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
// Prev op should fail with auto tuning of readahead_size.
|
|
iter->Prev();
|
|
ASSERT_TRUE(iter->status().IsNotSupported());
|
|
ASSERT_FALSE(iter->Valid());
|
|
|
|
// Reseek would follow as usual.
|
|
iter->Seek(seek_key);
|
|
ASSERT_OK(iter->status());
|
|
ASSERT_TRUE(iter->Valid());
|
|
}
|
|
Close();
|
|
}
|
|
|
|
// This test verifies the functionality of ReadOptions.adaptive_readahead.
|
|
TEST_P(PrefetchTest, DBIterLevelReadAhead) {
|
|
const int kNumKeys = 1000;
|
|
// Set options
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(env_->GetFileSystem(), false);
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
|
|
bool use_direct_io = std::get<0>(GetParam());
|
|
bool is_adaptive_readahead = std::get<1>(GetParam());
|
|
|
|
Options options;
|
|
SetGenericOptions(env.get(), use_direct_io, options);
|
|
options.statistics = CreateDBStatistics();
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
Status s = TryReopen(options);
|
|
if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
WriteBatch batch;
|
|
Random rnd(309);
|
|
int total_keys = 0;
|
|
for (int j = 0; j < 5; j++) {
|
|
for (int i = j * kNumKeys; i < (j + 1) * kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000)));
|
|
total_keys++;
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
ASSERT_OK(Flush());
|
|
}
|
|
MoveFilesToLevel(2);
|
|
int buff_prefetch_count = 0;
|
|
int readahead_carry_over_count = 0;
|
|
int num_sst_files = NumTableFilesAtLevel(2);
|
|
size_t current_readahead_size = 0;
|
|
|
|
// Test - Iterate over the keys sequentially.
|
|
{
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::Prefetch:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
|
|
// The callback checks, since reads are sequential, readahead_size doesn't
|
|
// start from 8KB when iterator moves to next file and its called
|
|
// num_sst_files-1 times (excluding for first file).
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"BlockPrefetcher::SetReadaheadState", [&](void* arg) {
|
|
readahead_carry_over_count++;
|
|
size_t readahead_size = *reinterpret_cast<size_t*>(arg);
|
|
if (readahead_carry_over_count) {
|
|
ASSERT_GT(readahead_size, 8 * 1024);
|
|
}
|
|
});
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::TryReadFromCache", [&](void* arg) {
|
|
current_readahead_size = *reinterpret_cast<size_t*>(arg);
|
|
ASSERT_GT(current_readahead_size, 0);
|
|
});
|
|
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
ReadOptions ro;
|
|
if (is_adaptive_readahead) {
|
|
ro.adaptive_readahead = true;
|
|
}
|
|
|
|
ASSERT_OK(options.statistics->Reset());
|
|
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ro));
|
|
int num_keys = 0;
|
|
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
|
|
ASSERT_OK(iter->status());
|
|
num_keys++;
|
|
}
|
|
ASSERT_EQ(num_keys, total_keys);
|
|
|
|
// For index and data blocks.
|
|
if (is_adaptive_readahead) {
|
|
ASSERT_EQ(readahead_carry_over_count, 2 * (num_sst_files - 1));
|
|
} else {
|
|
ASSERT_GT(buff_prefetch_count, 0);
|
|
ASSERT_EQ(readahead_carry_over_count, 0);
|
|
}
|
|
|
|
SyncPoint::GetInstance()->DisableProcessing();
|
|
SyncPoint::GetInstance()->ClearAllCallBacks();
|
|
}
|
|
Close();
|
|
}
|
|
|
|
// This test verifies the functionality of ReadOptions.adaptive_readahead when
|
|
// async_io is enabled.
|
|
TEST_P(PrefetchTest, DBIterLevelReadAheadWithAsyncIO) {
|
|
if (mem_env_ || encrypted_env_) {
|
|
ROCKSDB_GTEST_BYPASS("Test requires non-mem or non-encrypted environment");
|
|
return;
|
|
}
|
|
const int kNumKeys = 1000;
|
|
// Set options
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(FileSystem::Default(), false);
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
|
|
bool use_direct_io = std::get<0>(GetParam());
|
|
bool is_adaptive_readahead = std::get<1>(GetParam());
|
|
|
|
Options options;
|
|
SetGenericOptions(env.get(), use_direct_io, options);
|
|
options.statistics = CreateDBStatistics();
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
Status s = TryReopen(options);
|
|
if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
WriteBatch batch;
|
|
Random rnd(309);
|
|
int total_keys = 0;
|
|
for (int j = 0; j < 5; j++) {
|
|
for (int i = j * kNumKeys; i < (j + 1) * kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000)));
|
|
total_keys++;
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
ASSERT_OK(Flush());
|
|
}
|
|
MoveFilesToLevel(2);
|
|
int buff_async_prefetch_count = 0;
|
|
int buff_prefetch_count = 0;
|
|
int readahead_carry_over_count = 0;
|
|
int num_sst_files = NumTableFilesAtLevel(2);
|
|
size_t current_readahead_size = 0;
|
|
bool read_async_called = false;
|
|
|
|
// Test - Iterate over the keys sequentially.
|
|
{
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::Prefetch:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::PrefetchAsyncInternal:Start",
|
|
[&](void*) { buff_async_prefetch_count++; });
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"UpdateResults::io_uring_result",
|
|
[&](void* /*arg*/) { read_async_called = true; });
|
|
|
|
// The callback checks, since reads are sequential, readahead_size doesn't
|
|
// start from 8KB when iterator moves to next file and its called
|
|
// num_sst_files-1 times (excluding for first file).
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"BlockPrefetcher::SetReadaheadState", [&](void* arg) {
|
|
readahead_carry_over_count++;
|
|
size_t readahead_size = *reinterpret_cast<size_t*>(arg);
|
|
if (readahead_carry_over_count) {
|
|
ASSERT_GT(readahead_size, 8 * 1024);
|
|
}
|
|
});
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::TryReadFromCache", [&](void* arg) {
|
|
current_readahead_size = *reinterpret_cast<size_t*>(arg);
|
|
ASSERT_GT(current_readahead_size, 0);
|
|
});
|
|
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
ReadOptions ro;
|
|
if (is_adaptive_readahead) {
|
|
ro.adaptive_readahead = true;
|
|
}
|
|
ro.async_io = true;
|
|
|
|
ASSERT_OK(options.statistics->Reset());
|
|
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ro));
|
|
int num_keys = 0;
|
|
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
|
|
ASSERT_OK(iter->status());
|
|
num_keys++;
|
|
}
|
|
ASSERT_EQ(num_keys, total_keys);
|
|
|
|
// For index and data blocks.
|
|
if (is_adaptive_readahead) {
|
|
ASSERT_EQ(readahead_carry_over_count, 2 * (num_sst_files - 1));
|
|
} else {
|
|
ASSERT_EQ(readahead_carry_over_count, 0);
|
|
}
|
|
|
|
// Check stats to make sure async prefetch is done.
|
|
{
|
|
HistogramData async_read_bytes;
|
|
options.statistics->histogramData(ASYNC_READ_BYTES, &async_read_bytes);
|
|
// Not all platforms support iouring. In that case, ReadAsync in posix
|
|
// won't submit async requests.
|
|
if (read_async_called) {
|
|
ASSERT_GT(buff_async_prefetch_count, 0);
|
|
ASSERT_GT(async_read_bytes.count, 0);
|
|
} else {
|
|
ASSERT_GT(buff_prefetch_count, 0);
|
|
ASSERT_EQ(async_read_bytes.count, 0);
|
|
}
|
|
}
|
|
|
|
SyncPoint::GetInstance()->DisableProcessing();
|
|
SyncPoint::GetInstance()->ClearAllCallBacks();
|
|
}
|
|
Close();
|
|
}
|
|
|
|
TEST_P(PrefetchTest, AvoidBlockCacheLookupTwice) {
|
|
const int kNumKeys = 1000;
|
|
// Set options
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(env_->GetFileSystem(), false);
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
|
|
bool use_direct_io = std::get<0>(GetParam());
|
|
bool async_io = std::get<1>(GetParam());
|
|
|
|
Options options;
|
|
SetGenericOptions(env.get(), use_direct_io, options);
|
|
options.statistics = CreateDBStatistics();
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
std::shared_ptr<Cache> cache = NewLRUCache(4 * 1024 * 1024, 2); // 8MB
|
|
table_options.block_cache = cache;
|
|
table_options.no_block_cache = false;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
Status s = TryReopen(options);
|
|
if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
// Write to DB.
|
|
{
|
|
WriteBatch batch;
|
|
Random rnd(309);
|
|
for (int i = 0; i < kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000)));
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
|
|
std::string start_key = BuildKey(0);
|
|
std::string end_key = BuildKey(kNumKeys - 1);
|
|
Slice least(start_key.data(), start_key.size());
|
|
Slice greatest(end_key.data(), end_key.size());
|
|
|
|
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest));
|
|
}
|
|
|
|
ReadOptions ro;
|
|
ro.async_io = async_io;
|
|
// Iterate over the keys.
|
|
{
|
|
// Each block contains around 4 keys.
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ro));
|
|
ASSERT_OK(options.statistics->Reset());
|
|
|
|
iter->Seek(BuildKey(99)); // Prefetch data because of seek parallelization.
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
ASSERT_EQ(options.statistics->getAndResetTickerCount(BLOCK_CACHE_DATA_MISS),
|
|
1);
|
|
}
|
|
|
|
Close();
|
|
}
|
|
|
|
TEST_P(PrefetchTest, DBIterAsyncIONoIOUring) {
|
|
if (mem_env_ || encrypted_env_) {
|
|
ROCKSDB_GTEST_SKIP("Test requires non-mem or non-encrypted environment");
|
|
return;
|
|
}
|
|
|
|
const int kNumKeys = 1000;
|
|
// Set options
|
|
bool use_direct_io = std::get<0>(GetParam());
|
|
bool is_adaptive_readahead = std::get<1>(GetParam());
|
|
|
|
Options options;
|
|
SetGenericOptions(Env::Default(), use_direct_io, options);
|
|
options.statistics = CreateDBStatistics();
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
enable_io_uring = false;
|
|
Status s = TryReopen(options);
|
|
if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
enable_io_uring = true;
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
WriteBatch batch;
|
|
Random rnd(309);
|
|
int total_keys = 0;
|
|
for (int j = 0; j < 5; j++) {
|
|
for (int i = j * kNumKeys; i < (j + 1) * kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000)));
|
|
total_keys++;
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
ASSERT_OK(Flush());
|
|
}
|
|
MoveFilesToLevel(2);
|
|
|
|
// Test - Iterate over the keys sequentially.
|
|
{
|
|
ReadOptions ro;
|
|
if (is_adaptive_readahead) {
|
|
ro.adaptive_readahead = true;
|
|
}
|
|
ro.async_io = true;
|
|
|
|
ASSERT_OK(options.statistics->Reset());
|
|
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ro));
|
|
int num_keys = 0;
|
|
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
|
|
ASSERT_OK(iter->status());
|
|
num_keys++;
|
|
}
|
|
ASSERT_EQ(num_keys, total_keys);
|
|
|
|
// Check stats to make sure async prefetch is done.
|
|
{
|
|
HistogramData async_read_bytes;
|
|
options.statistics->histogramData(ASYNC_READ_BYTES, &async_read_bytes);
|
|
ASSERT_EQ(async_read_bytes.count, 0);
|
|
ASSERT_EQ(options.statistics->getTickerCount(READ_ASYNC_MICROS), 0);
|
|
}
|
|
}
|
|
|
|
{
|
|
ReadOptions ro;
|
|
if (is_adaptive_readahead) {
|
|
ro.adaptive_readahead = true;
|
|
}
|
|
ro.async_io = true;
|
|
ro.tailing = true;
|
|
|
|
ASSERT_OK(options.statistics->Reset());
|
|
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ro));
|
|
int num_keys = 0;
|
|
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
|
|
ASSERT_OK(iter->status());
|
|
num_keys++;
|
|
}
|
|
ASSERT_EQ(num_keys, total_keys);
|
|
|
|
// Check stats to make sure async prefetch is done.
|
|
{
|
|
HistogramData async_read_bytes;
|
|
options.statistics->histogramData(ASYNC_READ_BYTES, &async_read_bytes);
|
|
ASSERT_EQ(async_read_bytes.count, 0);
|
|
ASSERT_EQ(options.statistics->getTickerCount(READ_ASYNC_MICROS), 0);
|
|
}
|
|
}
|
|
Close();
|
|
|
|
enable_io_uring = true;
|
|
}
|
|
|
|
class PrefetchTest1 : public DBTestBase,
|
|
public ::testing::WithParamInterface<bool> {
|
|
public:
|
|
PrefetchTest1() : DBTestBase("prefetch_test1", true) {}
|
|
|
|
virtual void SetGenericOptions(Env* env, bool use_direct_io,
|
|
Options& options) {
|
|
options = CurrentOptions();
|
|
options.write_buffer_size = 1024;
|
|
options.create_if_missing = true;
|
|
options.compression = kNoCompression;
|
|
options.env = env;
|
|
options.disable_auto_compactions = true;
|
|
if (use_direct_io) {
|
|
options.use_direct_reads = true;
|
|
options.use_direct_io_for_flush_and_compaction = true;
|
|
}
|
|
}
|
|
|
|
void SetBlockBasedTableOptions(BlockBasedTableOptions& table_options) {
|
|
table_options.no_block_cache = true;
|
|
table_options.cache_index_and_filter_blocks = false;
|
|
table_options.metadata_block_size = 1024;
|
|
table_options.index_type =
|
|
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch;
|
|
}
|
|
};
|
|
|
|
INSTANTIATE_TEST_CASE_P(PrefetchTest1, PrefetchTest1, ::testing::Bool());
|
|
|
|
TEST_P(PrefetchTest1, SeekWithExtraPrefetchAsyncIO) {
|
|
const int kNumKeys = 2000;
|
|
// Set options
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(env_->GetFileSystem(), false);
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
|
|
Options options;
|
|
SetGenericOptions(env.get(), GetParam(), options);
|
|
options.statistics = CreateDBStatistics();
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
Status s = TryReopen(options);
|
|
if (GetParam() && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
WriteBatch batch;
|
|
Random rnd(309);
|
|
for (int i = 0; i < kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000)));
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
|
|
std::string start_key = BuildKey(0);
|
|
std::string end_key = BuildKey(kNumKeys - 1);
|
|
Slice least(start_key.data(), start_key.size());
|
|
Slice greatest(end_key.data(), end_key.size());
|
|
|
|
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest));
|
|
Close();
|
|
|
|
for (size_t i = 0; i < 3; i++) {
|
|
table_options.num_file_reads_for_auto_readahead = i;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
s = TryReopen(options);
|
|
ASSERT_OK(s);
|
|
|
|
int buff_prefetch_count = 0;
|
|
int extra_prefetch_buff_cnt = 0;
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::PrefetchAsync:ExtraPrefetching",
|
|
[&](void*) { extra_prefetch_buff_cnt++; });
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::PrefetchAsyncInternal:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
ReadOptions ro;
|
|
ro.async_io = true;
|
|
{
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ro));
|
|
// First Seek
|
|
iter->Seek(BuildKey(
|
|
0)); // Prefetch data on seek because of seek parallelization.
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
// Do extra prefetching in Seek only if
|
|
// num_file_reads_for_auto_readahead = 0.
|
|
ASSERT_EQ(extra_prefetch_buff_cnt, (i == 0 ? 1 : 0));
|
|
// buff_prefetch_count is 2 because of index block when
|
|
// num_file_reads_for_auto_readahead = 0.
|
|
// If num_file_reads_for_auto_readahead > 0, index block isn't
|
|
// prefetched.
|
|
ASSERT_EQ(buff_prefetch_count, i == 0 ? 2 : 1);
|
|
|
|
extra_prefetch_buff_cnt = 0;
|
|
buff_prefetch_count = 0;
|
|
// Reset all values of FilePrefetchBuffer on new seek.
|
|
iter->Seek(
|
|
BuildKey(22)); // Prefetch data because of seek parallelization.
|
|
ASSERT_TRUE(iter->Valid());
|
|
// Do extra prefetching in Seek only if
|
|
// num_file_reads_for_auto_readahead = 0.
|
|
ASSERT_EQ(extra_prefetch_buff_cnt, (i == 0 ? 1 : 0));
|
|
ASSERT_EQ(buff_prefetch_count, 1);
|
|
|
|
extra_prefetch_buff_cnt = 0;
|
|
buff_prefetch_count = 0;
|
|
// Reset all values of FilePrefetchBuffer on new seek.
|
|
iter->Seek(
|
|
BuildKey(33)); // Prefetch data because of seek parallelization.
|
|
ASSERT_TRUE(iter->Valid());
|
|
// Do extra prefetching in Seek only if
|
|
// num_file_reads_for_auto_readahead = 0.
|
|
ASSERT_EQ(extra_prefetch_buff_cnt, (i == 0 ? 1 : 0));
|
|
ASSERT_EQ(buff_prefetch_count, 1);
|
|
}
|
|
Close();
|
|
}
|
|
}
|
|
|
|
// This test verifies the functionality of ReadOptions.adaptive_readahead when
|
|
// reads are not sequential.
|
|
TEST_P(PrefetchTest1, NonSequentialReadsWithAdaptiveReadahead) {
|
|
const int kNumKeys = 1000;
|
|
// Set options
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(env_->GetFileSystem(), false);
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
|
|
Options options;
|
|
SetGenericOptions(env.get(), GetParam(), options);
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
Status s = TryReopen(options);
|
|
if (GetParam() && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
WriteBatch batch;
|
|
Random rnd(309);
|
|
for (int j = 0; j < 5; j++) {
|
|
for (int i = j * kNumKeys; i < (j + 1) * kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000)));
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
ASSERT_OK(Flush());
|
|
}
|
|
MoveFilesToLevel(2);
|
|
|
|
int buff_prefetch_count = 0;
|
|
int set_readahead = 0;
|
|
size_t readahead_size = 0;
|
|
|
|
SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"BlockPrefetcher::SetReadaheadState",
|
|
[&](void* /*arg*/) { set_readahead++; });
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::TryReadFromCache",
|
|
[&](void* arg) { readahead_size = *reinterpret_cast<size_t*>(arg); });
|
|
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
{
|
|
// Iterate until prefetch is done.
|
|
ReadOptions ro;
|
|
ro.adaptive_readahead = true;
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ro));
|
|
|
|
iter->SeekToFirst();
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
while (iter->Valid() && buff_prefetch_count == 0) {
|
|
iter->Next();
|
|
}
|
|
|
|
ASSERT_EQ(readahead_size, 8 * 1024);
|
|
ASSERT_EQ(buff_prefetch_count, 1);
|
|
ASSERT_EQ(set_readahead, 0);
|
|
buff_prefetch_count = 0;
|
|
|
|
// Move to last file and check readahead size fallbacks to 8KB. So next
|
|
// readahead size after prefetch should be 8 * 1024;
|
|
iter->Seek(BuildKey(4004));
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
while (iter->Valid() && buff_prefetch_count == 0) {
|
|
iter->Next();
|
|
}
|
|
|
|
ASSERT_EQ(readahead_size, 8 * 1024);
|
|
ASSERT_EQ(set_readahead, 0);
|
|
ASSERT_EQ(buff_prefetch_count, 1);
|
|
}
|
|
Close();
|
|
}
|
|
|
|
// This test verifies the functionality of adaptive_readaheadsize with cache
|
|
// and if block is found in cache, decrease the readahead_size if
|
|
// - its enabled internally by RocksDB (implicit_auto_readahead_) and,
|
|
// - readahead_size is greater than 0 and,
|
|
// - the block would have called prefetch API if not found in cache for
|
|
// which conditions are:
|
|
// - few/no bytes are in buffer and,
|
|
// - block is sequential with the previous read and,
|
|
// - num_file_reads_ + 1 (including this read) >
|
|
// num_file_reads_for_auto_readahead_
|
|
TEST_P(PrefetchTest1, DecreaseReadAheadIfInCache) {
|
|
const int kNumKeys = 2000;
|
|
// Set options
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(env_->GetFileSystem(), false);
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
|
|
Options options;
|
|
SetGenericOptions(env.get(), GetParam(), options);
|
|
options.statistics = CreateDBStatistics();
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
std::shared_ptr<Cache> cache = NewLRUCache(4 * 1024 * 1024, 2); // 8MB
|
|
table_options.block_cache = cache;
|
|
table_options.no_block_cache = false;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
Status s = TryReopen(options);
|
|
if (GetParam() && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
WriteBatch batch;
|
|
Random rnd(309);
|
|
for (int i = 0; i < kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000)));
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
|
|
std::string start_key = BuildKey(0);
|
|
std::string end_key = BuildKey(kNumKeys - 1);
|
|
Slice least(start_key.data(), start_key.size());
|
|
Slice greatest(end_key.data(), end_key.size());
|
|
|
|
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest));
|
|
|
|
int buff_prefetch_count = 0;
|
|
size_t current_readahead_size = 0;
|
|
size_t expected_current_readahead_size = 8 * 1024;
|
|
size_t decrease_readahead_size = 8 * 1024;
|
|
|
|
SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::TryReadFromCache", [&](void* arg) {
|
|
current_readahead_size = *reinterpret_cast<size_t*>(arg);
|
|
});
|
|
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
ReadOptions ro;
|
|
ro.adaptive_readahead = true;
|
|
{
|
|
/*
|
|
* Reseek keys from sequential Data Blocks within same partitioned
|
|
* index. After 2 sequential reads it will prefetch the data block.
|
|
* Data Block size is nearly 4076 so readahead will fetch 8 * 1024 data
|
|
* more initially (2 more data blocks).
|
|
*/
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ro));
|
|
// Warm up the cache
|
|
iter->Seek(BuildKey(1011));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1015));
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Seek(BuildKey(1019));
|
|
ASSERT_TRUE(iter->Valid());
|
|
buff_prefetch_count = 0;
|
|
}
|
|
|
|
{
|
|
ASSERT_OK(options.statistics->Reset());
|
|
// After caching, blocks will be read from cache (Sequential blocks)
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ro));
|
|
iter->Seek(
|
|
BuildKey(0)); // In cache so it will decrease the readahead_size.
|
|
ASSERT_TRUE(iter->Valid());
|
|
expected_current_readahead_size = std::max(
|
|
decrease_readahead_size,
|
|
(expected_current_readahead_size >= decrease_readahead_size
|
|
? (expected_current_readahead_size - decrease_readahead_size)
|
|
: 0));
|
|
|
|
iter->Seek(BuildKey(1000)); // Won't prefetch the block.
|
|
ASSERT_TRUE(iter->Valid());
|
|
ASSERT_EQ(current_readahead_size, expected_current_readahead_size);
|
|
|
|
iter->Seek(BuildKey(1004)); // Prefetch the block.
|
|
ASSERT_TRUE(iter->Valid());
|
|
ASSERT_EQ(current_readahead_size, expected_current_readahead_size);
|
|
expected_current_readahead_size *= 2;
|
|
|
|
iter->Seek(BuildKey(1011));
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
// Eligible to Prefetch data (not in buffer) but block is in cache so no
|
|
// prefetch will happen and will result in decrease in readahead_size.
|
|
// readahead_size will be 8 * 1024
|
|
iter->Seek(BuildKey(1015));
|
|
ASSERT_TRUE(iter->Valid());
|
|
expected_current_readahead_size = std::max(
|
|
decrease_readahead_size,
|
|
(expected_current_readahead_size >= decrease_readahead_size
|
|
? (expected_current_readahead_size - decrease_readahead_size)
|
|
: 0));
|
|
|
|
// 1016 is the same block as 1015. So no change in readahead_size.
|
|
iter->Seek(BuildKey(1016));
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
// Prefetch data (not in buffer) but found in cache. So decrease
|
|
// readahead_size. Since it will 0 after decrementing so readahead_size
|
|
// will be set to initial value.
|
|
iter->Seek(BuildKey(1019));
|
|
ASSERT_TRUE(iter->Valid());
|
|
expected_current_readahead_size = std::max(
|
|
decrease_readahead_size,
|
|
(expected_current_readahead_size >= decrease_readahead_size
|
|
? (expected_current_readahead_size - decrease_readahead_size)
|
|
: 0));
|
|
|
|
// Prefetch next sequential data.
|
|
iter->Seek(BuildKey(1022));
|
|
ASSERT_TRUE(iter->Valid());
|
|
ASSERT_EQ(current_readahead_size, expected_current_readahead_size);
|
|
ASSERT_EQ(buff_prefetch_count, 2);
|
|
|
|
buff_prefetch_count = 0;
|
|
}
|
|
Close();
|
|
}
|
|
|
|
// This test verifies the basic functionality of seek parallelization for
|
|
// async_io.
|
|
TEST_P(PrefetchTest1, SeekParallelizationTest) {
|
|
if (mem_env_ || encrypted_env_) {
|
|
ROCKSDB_GTEST_BYPASS("Test requires non-mem or non-encrypted environment");
|
|
return;
|
|
}
|
|
const int kNumKeys = 2000;
|
|
// Set options
|
|
std::shared_ptr<MockFS> fs = std::make_shared<MockFS>(
|
|
FileSystem::Default(), /*support_prefetch=*/false);
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
|
|
Options options;
|
|
SetGenericOptions(env.get(), GetParam(), options);
|
|
options.statistics = CreateDBStatistics();
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
Status s = TryReopen(options);
|
|
if (GetParam() && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
WriteBatch batch;
|
|
Random rnd(309);
|
|
for (int i = 0; i < kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000)));
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
|
|
std::string start_key = BuildKey(0);
|
|
std::string end_key = BuildKey(kNumKeys - 1);
|
|
Slice least(start_key.data(), start_key.size());
|
|
Slice greatest(end_key.data(), end_key.size());
|
|
|
|
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest));
|
|
|
|
int buff_prefetch_count = 0;
|
|
int buff_prefetch_async_count = 0;
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::PrefetchAsyncInternal:Start",
|
|
[&](void*) { buff_prefetch_async_count++; });
|
|
|
|
SyncPoint::GetInstance()->SetCallBack("FilePrefetchBuffer::Prefetch:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
|
|
bool read_async_called = false;
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"UpdateResults::io_uring_result",
|
|
[&](void* /*arg*/) { read_async_called = true; });
|
|
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
ReadOptions ro;
|
|
ro.adaptive_readahead = true;
|
|
ro.async_io = true;
|
|
|
|
{
|
|
ASSERT_OK(options.statistics->Reset());
|
|
// Each block contains around 4 keys.
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ro));
|
|
iter->Seek(BuildKey(0)); // Prefetch data because of seek parallelization.
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Next();
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Next();
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Next();
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
// New data block. Since num_file_reads in FilePrefetch after this read is
|
|
// 2, it won't go for prefetching.
|
|
iter->Next();
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Next();
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Next();
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Next();
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
// Prefetch data.
|
|
iter->Next();
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
HistogramData async_read_bytes;
|
|
options.statistics->histogramData(ASYNC_READ_BYTES, &async_read_bytes);
|
|
// not all platforms support io_uring. In that case it'll fallback to
|
|
// normal prefetching without async_io.
|
|
if (read_async_called) {
|
|
ASSERT_EQ(buff_prefetch_async_count, 2);
|
|
ASSERT_GT(async_read_bytes.count, 0);
|
|
ASSERT_GT(get_perf_context()->number_async_seek, 0);
|
|
} else {
|
|
ASSERT_EQ(buff_prefetch_count, 1);
|
|
}
|
|
}
|
|
Close();
|
|
}
|
|
|
|
// This test checks if readahead_size is trimmed when upper_bound is reached.
|
|
// It tests with different combinations of async_io disabled/enabled,
|
|
// readahead_size (implicit and explicit), and num_file_reads_for_auto_readahead
|
|
// from 0 to 2.
|
|
TEST_P(PrefetchTest, IterReadAheadSizeWithUpperBound) {
|
|
if (mem_env_ || encrypted_env_) {
|
|
ROCKSDB_GTEST_SKIP("Test requires non-mem or non-encrypted environment");
|
|
return;
|
|
}
|
|
|
|
// First param is if the mockFS support_prefetch or not
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(FileSystem::Default(), false);
|
|
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
Options options;
|
|
SetGenericOptions(env.get(), /*use_direct_io=*/false, options);
|
|
options.statistics = CreateDBStatistics();
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
Status s = TryReopen(options);
|
|
ASSERT_OK(s);
|
|
|
|
Random rnd(309);
|
|
WriteBatch batch;
|
|
|
|
for (int i = 0; i < 26; i++) {
|
|
std::string key = "my_key_";
|
|
|
|
for (int j = 0; j < 10; j++) {
|
|
key += char('a' + i);
|
|
ASSERT_OK(batch.Put(key, rnd.RandomString(1000)));
|
|
}
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
|
|
std::string start_key = "my_key_a";
|
|
|
|
std::string end_key = "my_key_";
|
|
for (int j = 0; j < 10; j++) {
|
|
end_key += char('a' + 25);
|
|
}
|
|
|
|
Slice least(start_key.data(), start_key.size());
|
|
Slice greatest(end_key.data(), end_key.size());
|
|
|
|
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest));
|
|
|
|
int buff_prefetch_count = 0;
|
|
|
|
// Try with different num_file_reads_for_auto_readahead from 0 to 3.
|
|
for (size_t i = 0; i < 3; i++) {
|
|
table_options.num_file_reads_for_auto_readahead = i;
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
s = TryReopen(options);
|
|
ASSERT_OK(s);
|
|
|
|
int buff_count_with_tuning = 0, buff_count_without_tuning = 0;
|
|
int keys_with_tuning = 0, keys_without_tuning = 0;
|
|
int reseek_keys_with_tuning = 0, reseek_keys_without_tuning = 0;
|
|
buff_prefetch_count = 0;
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::Prefetch:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::PrefetchAsyncInternal:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
ReadOptions ropts;
|
|
if (std::get<0>(GetParam())) {
|
|
ropts.readahead_size = 32768;
|
|
}
|
|
if (std::get<1>(GetParam())) {
|
|
ropts.async_io = true;
|
|
}
|
|
|
|
// With tuning readahead_size.
|
|
{
|
|
ASSERT_OK(options.statistics->Reset());
|
|
Slice ub = Slice("my_key_uuu");
|
|
Slice* ub_ptr = &ub;
|
|
ropts.iterate_upper_bound = ub_ptr;
|
|
ropts.auto_readahead_size = true;
|
|
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ropts));
|
|
|
|
// Seek.
|
|
{
|
|
Slice seek_key = Slice("my_key_aaa");
|
|
iter->Seek(seek_key);
|
|
|
|
while (iter->Valid()) {
|
|
keys_with_tuning++;
|
|
iter->Next();
|
|
}
|
|
|
|
uint64_t readahead_trimmed =
|
|
options.statistics->getAndResetTickerCount(READAHEAD_TRIMMED);
|
|
ASSERT_GT(readahead_trimmed, 0);
|
|
buff_count_with_tuning = buff_prefetch_count;
|
|
}
|
|
|
|
// Reseek with new upper_bound_iterator.
|
|
{
|
|
ub = Slice("my_key_y");
|
|
Slice reseek_key = Slice("my_key_v");
|
|
iter->Seek(reseek_key);
|
|
|
|
while (iter->Valid()) {
|
|
iter->Next();
|
|
reseek_keys_with_tuning++;
|
|
}
|
|
|
|
uint64_t readahead_trimmed =
|
|
options.statistics->getAndResetTickerCount(READAHEAD_TRIMMED);
|
|
ASSERT_GT(readahead_trimmed, 0);
|
|
ASSERT_GT(reseek_keys_with_tuning, 0);
|
|
}
|
|
}
|
|
|
|
// Without tuning readahead_size
|
|
{
|
|
Slice ub = Slice("my_key_uuu");
|
|
Slice* ub_ptr = &ub;
|
|
ropts.iterate_upper_bound = ub_ptr;
|
|
buff_prefetch_count = 0;
|
|
ASSERT_OK(options.statistics->Reset());
|
|
ropts.auto_readahead_size = false;
|
|
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ropts));
|
|
|
|
// Seek.
|
|
{
|
|
Slice seek_key = Slice("my_key_aaa");
|
|
iter->Seek(seek_key);
|
|
|
|
while (iter->Valid()) {
|
|
keys_without_tuning++;
|
|
iter->Next();
|
|
}
|
|
buff_count_without_tuning = buff_prefetch_count;
|
|
uint64_t readahead_trimmed =
|
|
options.statistics->getAndResetTickerCount(READAHEAD_TRIMMED);
|
|
ASSERT_EQ(readahead_trimmed, 0);
|
|
}
|
|
|
|
// Reseek with new upper_bound_iterator.
|
|
{
|
|
ub = Slice("my_key_y");
|
|
Slice reseek_key = Slice("my_key_v");
|
|
iter->Seek(reseek_key);
|
|
|
|
while (iter->Valid()) {
|
|
iter->Next();
|
|
reseek_keys_without_tuning++;
|
|
}
|
|
|
|
uint64_t readahead_trimmed =
|
|
options.statistics->getAndResetTickerCount(READAHEAD_TRIMMED);
|
|
ASSERT_EQ(readahead_trimmed, 0);
|
|
ASSERT_GT(reseek_keys_without_tuning, 0);
|
|
}
|
|
}
|
|
|
|
{
|
|
// Verify results with and without tuning.
|
|
if (std::get<1>(GetParam())) {
|
|
// In case of async_io.
|
|
ASSERT_GE(buff_count_with_tuning, buff_count_without_tuning);
|
|
} else {
|
|
ASSERT_EQ(buff_count_without_tuning, buff_count_with_tuning);
|
|
}
|
|
// Prefetching should happen.
|
|
ASSERT_GT(buff_count_without_tuning, 0);
|
|
ASSERT_GT(buff_count_with_tuning, 0);
|
|
// No of keys should be equal.
|
|
ASSERT_EQ(keys_without_tuning, keys_with_tuning);
|
|
// No of keys after reseek with new upper bound should be equal.
|
|
ASSERT_EQ(reseek_keys_without_tuning, reseek_keys_with_tuning);
|
|
}
|
|
Close();
|
|
}
|
|
}
|
|
|
|
// This test checks if readahead_size is trimmed when upper_bound is reached
|
|
// during Seek in async_io and it goes for polling without any extra
|
|
// prefetching.
|
|
TEST_P(PrefetchTest, IterReadAheadSizeWithUpperBoundSeekOnly) {
|
|
if (mem_env_ || encrypted_env_) {
|
|
ROCKSDB_GTEST_SKIP("Test requires non-mem or non-encrypted environment");
|
|
return;
|
|
}
|
|
|
|
// First param is if the mockFS support_prefetch or not
|
|
std::shared_ptr<MockFS> fs =
|
|
std::make_shared<MockFS>(FileSystem::Default(), false);
|
|
|
|
bool use_direct_io = false;
|
|
if (std::get<0>(GetParam())) {
|
|
use_direct_io = true;
|
|
}
|
|
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
Options options;
|
|
SetGenericOptions(env.get(), use_direct_io, options);
|
|
options.statistics = CreateDBStatistics();
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
Status s = TryReopen(options);
|
|
if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
Random rnd(309);
|
|
WriteBatch batch;
|
|
|
|
for (int i = 0; i < 26; i++) {
|
|
std::string key = "my_key_";
|
|
|
|
for (int j = 0; j < 10; j++) {
|
|
key += char('a' + i);
|
|
ASSERT_OK(batch.Put(key, rnd.RandomString(1000)));
|
|
}
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
|
|
std::string start_key = "my_key_a";
|
|
|
|
std::string end_key = "my_key_";
|
|
for (int j = 0; j < 10; j++) {
|
|
end_key += char('a' + 25);
|
|
}
|
|
|
|
Slice least(start_key.data(), start_key.size());
|
|
Slice greatest(end_key.data(), end_key.size());
|
|
|
|
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest));
|
|
|
|
s = TryReopen(options);
|
|
ASSERT_OK(s);
|
|
|
|
int buff_count_with_tuning = 0;
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::PrefetchAsyncInternal:Start",
|
|
[&](void*) { buff_count_with_tuning++; });
|
|
|
|
bool read_async_called = false;
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"UpdateResults::io_uring_result",
|
|
[&](void* /*arg*/) { read_async_called = true; });
|
|
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
ReadOptions ropts;
|
|
if (std::get<1>(GetParam())) {
|
|
ropts.readahead_size = 32768;
|
|
}
|
|
ropts.async_io = true;
|
|
|
|
Slice ub = Slice("my_key_aaa");
|
|
ropts.iterate_upper_bound = &ub;
|
|
Slice seek_key = Slice("my_key_aaa");
|
|
|
|
// With tuning readahead_size.
|
|
{
|
|
ASSERT_OK(options.statistics->Reset());
|
|
ropts.auto_readahead_size = true;
|
|
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ropts));
|
|
|
|
iter->Seek(seek_key);
|
|
|
|
ASSERT_OK(iter->status());
|
|
|
|
// Verify results.
|
|
uint64_t readhahead_trimmed =
|
|
options.statistics->getAndResetTickerCount(READAHEAD_TRIMMED);
|
|
// Readahead got trimmed.
|
|
if (read_async_called) {
|
|
ASSERT_GT(readhahead_trimmed, 0);
|
|
// Seek called PrefetchAsync to poll the data.
|
|
ASSERT_EQ(1, buff_count_with_tuning);
|
|
} else {
|
|
// async_io disabled.
|
|
ASSERT_GE(readhahead_trimmed, 0);
|
|
ASSERT_EQ(0, buff_count_with_tuning);
|
|
}
|
|
}
|
|
Close();
|
|
}
|
|
|
|
namespace {
|
|
#ifdef GFLAGS
|
|
const int kMaxArgCount = 100;
|
|
const size_t kArgBufferSize = 100000;
|
|
|
|
void RunIOTracerParserTool(std::string trace_file) {
|
|
std::vector<std::string> params = {"./io_tracer_parser",
|
|
"-io_trace_file=" + trace_file};
|
|
|
|
char arg_buffer[kArgBufferSize];
|
|
char* argv[kMaxArgCount];
|
|
int argc = 0;
|
|
int cursor = 0;
|
|
for (const auto& arg : params) {
|
|
ASSERT_LE(cursor + arg.size() + 1, kArgBufferSize);
|
|
ASSERT_LE(argc + 1, kMaxArgCount);
|
|
|
|
snprintf(arg_buffer + cursor, arg.size() + 1, "%s", arg.c_str());
|
|
|
|
argv[argc++] = arg_buffer + cursor;
|
|
cursor += static_cast<int>(arg.size()) + 1;
|
|
}
|
|
ASSERT_EQ(0, ROCKSDB_NAMESPACE::io_tracer_parser(argc, argv));
|
|
}
|
|
#endif // GFLAGS
|
|
} // namespace
|
|
|
|
// Tests the default implementation of ReadAsync API with PosixFileSystem during
|
|
// prefetching.
|
|
TEST_P(PrefetchTest, ReadAsyncWithPosixFS) {
|
|
if (mem_env_ || encrypted_env_) {
|
|
ROCKSDB_GTEST_SKIP("Test requires non-mem or non-encrypted environment");
|
|
return;
|
|
}
|
|
|
|
const int kNumKeys = 1000;
|
|
std::shared_ptr<MockFS> fs = std::make_shared<MockFS>(
|
|
FileSystem::Default(), /*support_prefetch=*/false);
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
|
|
bool use_direct_io = std::get<0>(GetParam());
|
|
Options options;
|
|
SetGenericOptions(env.get(), use_direct_io, options);
|
|
options.statistics = CreateDBStatistics();
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
Status s = TryReopen(options);
|
|
if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
int total_keys = 0;
|
|
// Write the keys.
|
|
{
|
|
WriteBatch batch;
|
|
Random rnd(309);
|
|
for (int j = 0; j < 5; j++) {
|
|
for (int i = j * kNumKeys; i < (j + 1) * kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000)));
|
|
total_keys++;
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
ASSERT_OK(Flush());
|
|
}
|
|
MoveFilesToLevel(2);
|
|
}
|
|
|
|
int buff_prefetch_count = 0;
|
|
bool read_async_called = false;
|
|
ReadOptions ro;
|
|
ro.adaptive_readahead = true;
|
|
ro.async_io = true;
|
|
|
|
if (std::get<1>(GetParam())) {
|
|
ro.readahead_size = 16 * 1024;
|
|
}
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::PrefetchAsyncInternal:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"UpdateResults::io_uring_result",
|
|
[&](void* /*arg*/) { read_async_called = true; });
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
// Read the keys.
|
|
{
|
|
ASSERT_OK(options.statistics->Reset());
|
|
get_perf_context()->Reset();
|
|
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ro));
|
|
int num_keys = 0;
|
|
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
|
|
ASSERT_OK(iter->status());
|
|
num_keys++;
|
|
}
|
|
|
|
if (read_async_called) {
|
|
ASSERT_EQ(num_keys, total_keys);
|
|
ASSERT_GT(buff_prefetch_count, 0);
|
|
// Check stats to make sure async prefetch is done.
|
|
HistogramData async_read_bytes;
|
|
options.statistics->histogramData(ASYNC_READ_BYTES, &async_read_bytes);
|
|
HistogramData prefetched_bytes_discarded;
|
|
options.statistics->histogramData(PREFETCHED_BYTES_DISCARDED,
|
|
&prefetched_bytes_discarded);
|
|
ASSERT_GT(async_read_bytes.count, 0);
|
|
ASSERT_GT(prefetched_bytes_discarded.count, 0);
|
|
ASSERT_EQ(get_perf_context()->number_async_seek, 0);
|
|
} else {
|
|
// Not all platforms support iouring. In that case, ReadAsync in posix
|
|
// won't submit async requests.
|
|
ASSERT_EQ(num_keys, total_keys);
|
|
ASSERT_EQ(buff_prefetch_count, 0);
|
|
}
|
|
}
|
|
|
|
SyncPoint::GetInstance()->DisableProcessing();
|
|
SyncPoint::GetInstance()->ClearAllCallBacks();
|
|
|
|
Close();
|
|
}
|
|
|
|
// This test verifies implementation of seek parallelization with
|
|
// PosixFileSystem during prefetching.
|
|
TEST_P(PrefetchTest, MultipleSeekWithPosixFS) {
|
|
if (mem_env_ || encrypted_env_) {
|
|
ROCKSDB_GTEST_SKIP("Test requires non-mem or non-encrypted environment");
|
|
return;
|
|
}
|
|
|
|
const int kNumKeys = 1000;
|
|
std::shared_ptr<MockFS> fs = std::make_shared<MockFS>(
|
|
FileSystem::Default(), /*support_prefetch=*/false);
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
|
|
bool use_direct_io = std::get<0>(GetParam());
|
|
Options options;
|
|
SetGenericOptions(env.get(), use_direct_io, options);
|
|
options.statistics = CreateDBStatistics();
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
Status s = TryReopen(options);
|
|
if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
int total_keys = 0;
|
|
// Write the keys.
|
|
{
|
|
WriteBatch batch;
|
|
Random rnd(309);
|
|
for (int j = 0; j < 5; j++) {
|
|
for (int i = j * kNumKeys; i < (j + 1) * kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000)));
|
|
total_keys++;
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
ASSERT_OK(Flush());
|
|
}
|
|
MoveFilesToLevel(2);
|
|
}
|
|
(void)total_keys;
|
|
|
|
int num_keys_first_batch = 0;
|
|
int num_keys_second_batch = 0;
|
|
// Calculate number of keys without async_io for correctness validation.
|
|
{
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ReadOptions()));
|
|
// First Seek.
|
|
iter->Seek(BuildKey(450));
|
|
while (iter->Valid() && num_keys_first_batch < 100) {
|
|
ASSERT_OK(iter->status());
|
|
num_keys_first_batch++;
|
|
iter->Next();
|
|
}
|
|
ASSERT_OK(iter->status());
|
|
|
|
iter->Seek(BuildKey(942));
|
|
while (iter->Valid()) {
|
|
ASSERT_OK(iter->status());
|
|
num_keys_second_batch++;
|
|
iter->Next();
|
|
}
|
|
ASSERT_OK(iter->status());
|
|
}
|
|
|
|
int buff_prefetch_count = 0;
|
|
bool read_async_called = false;
|
|
ReadOptions ro;
|
|
ro.adaptive_readahead = true;
|
|
ro.async_io = true;
|
|
|
|
if (std::get<1>(GetParam())) {
|
|
ro.readahead_size = 16 * 1024;
|
|
}
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::PrefetchAsyncInternal:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"UpdateResults::io_uring_result",
|
|
[&](void* /*arg*/) { read_async_called = true; });
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
// Read the keys using seek.
|
|
{
|
|
ASSERT_OK(options.statistics->Reset());
|
|
get_perf_context()->Reset();
|
|
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ro));
|
|
int num_keys = 0;
|
|
// First Seek.
|
|
{
|
|
iter->Seek(BuildKey(450));
|
|
while (iter->Valid() && num_keys < 100) {
|
|
ASSERT_OK(iter->status());
|
|
num_keys++;
|
|
iter->Next();
|
|
}
|
|
|
|
ASSERT_OK(iter->status());
|
|
ASSERT_EQ(num_keys, num_keys_first_batch);
|
|
// Check stats to make sure async prefetch is done.
|
|
HistogramData async_read_bytes;
|
|
options.statistics->histogramData(ASYNC_READ_BYTES, &async_read_bytes);
|
|
if (read_async_called) {
|
|
ASSERT_GT(async_read_bytes.count, 0);
|
|
ASSERT_GT(get_perf_context()->number_async_seek, 0);
|
|
} else {
|
|
// Not all platforms support iouring. In that case, ReadAsync in posix
|
|
// won't submit async requests.
|
|
ASSERT_EQ(async_read_bytes.count, 0);
|
|
ASSERT_EQ(get_perf_context()->number_async_seek, 0);
|
|
}
|
|
}
|
|
|
|
// Second Seek.
|
|
{
|
|
num_keys = 0;
|
|
ASSERT_OK(options.statistics->Reset());
|
|
get_perf_context()->Reset();
|
|
|
|
iter->Seek(BuildKey(942));
|
|
while (iter->Valid()) {
|
|
ASSERT_OK(iter->status());
|
|
num_keys++;
|
|
iter->Next();
|
|
}
|
|
|
|
ASSERT_OK(iter->status());
|
|
ASSERT_EQ(num_keys, num_keys_second_batch);
|
|
HistogramData async_read_bytes;
|
|
options.statistics->histogramData(ASYNC_READ_BYTES, &async_read_bytes);
|
|
HistogramData prefetched_bytes_discarded;
|
|
options.statistics->histogramData(PREFETCHED_BYTES_DISCARDED,
|
|
&prefetched_bytes_discarded);
|
|
ASSERT_GT(prefetched_bytes_discarded.count, 0);
|
|
|
|
if (read_async_called) {
|
|
ASSERT_GT(buff_prefetch_count, 0);
|
|
|
|
// Check stats to make sure async prefetch is done.
|
|
ASSERT_GT(async_read_bytes.count, 0);
|
|
ASSERT_GT(get_perf_context()->number_async_seek, 0);
|
|
} else {
|
|
// Not all platforms support iouring. In that case, ReadAsync in posix
|
|
// won't submit async requests.
|
|
ASSERT_EQ(async_read_bytes.count, 0);
|
|
ASSERT_EQ(get_perf_context()->number_async_seek, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
SyncPoint::GetInstance()->DisableProcessing();
|
|
SyncPoint::GetInstance()->ClearAllCallBacks();
|
|
Close();
|
|
}
|
|
|
|
// This test verifies implementation of seek parallelization with
|
|
// PosixFileSystem during prefetching.
|
|
TEST_P(PrefetchTest, SeekParallelizationTestWithPosix) {
|
|
if (mem_env_ || encrypted_env_) {
|
|
ROCKSDB_GTEST_SKIP("Test requires non-mem or non-encrypted environment");
|
|
return;
|
|
}
|
|
const int kNumKeys = 2000;
|
|
// Set options
|
|
std::shared_ptr<MockFS> fs = std::make_shared<MockFS>(
|
|
FileSystem::Default(), /*support_prefetch=*/false);
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
|
|
bool use_direct_io = std::get<0>(GetParam());
|
|
Options options;
|
|
SetGenericOptions(env.get(), use_direct_io, options);
|
|
options.statistics = CreateDBStatistics();
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
Status s = TryReopen(options);
|
|
if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
WriteBatch batch;
|
|
Random rnd(309);
|
|
for (int i = 0; i < kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000)));
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
|
|
std::string start_key = BuildKey(0);
|
|
std::string end_key = BuildKey(kNumKeys - 1);
|
|
Slice least(start_key.data(), start_key.size());
|
|
Slice greatest(end_key.data(), end_key.size());
|
|
|
|
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &least, &greatest));
|
|
|
|
int buff_prefetch_count = 0;
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::PrefetchAsyncInternal:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
|
|
bool read_async_called = false;
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"UpdateResults::io_uring_result",
|
|
[&](void* /*arg*/) { read_async_called = true; });
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
ReadOptions ro;
|
|
ro.adaptive_readahead = true;
|
|
ro.async_io = true;
|
|
|
|
if (std::get<1>(GetParam())) {
|
|
ro.readahead_size = 16 * 1024;
|
|
}
|
|
|
|
{
|
|
ASSERT_OK(options.statistics->Reset());
|
|
// Each block contains around 4 keys.
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ro));
|
|
iter->Seek(BuildKey(0)); // Prefetch data because of seek parallelization.
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Next();
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Next();
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Next();
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
// New data block. Since num_file_reads in FilePrefetch after this read is
|
|
// 2, it won't go for prefetching.
|
|
iter->Next();
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Next();
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Next();
|
|
ASSERT_TRUE(iter->Valid());
|
|
iter->Next();
|
|
ASSERT_TRUE(iter->Valid());
|
|
|
|
// Prefetch data.
|
|
iter->Next();
|
|
|
|
ASSERT_TRUE(iter->Valid());
|
|
HistogramData async_read_bytes;
|
|
options.statistics->histogramData(ASYNC_READ_BYTES, &async_read_bytes);
|
|
if (read_async_called) {
|
|
ASSERT_GT(async_read_bytes.count, 0);
|
|
ASSERT_GT(get_perf_context()->number_async_seek, 0);
|
|
if (std::get<1>(GetParam())) {
|
|
ASSERT_EQ(buff_prefetch_count, 1);
|
|
} else {
|
|
ASSERT_EQ(buff_prefetch_count, 2);
|
|
}
|
|
} else {
|
|
// Not all platforms support iouring. In that case, ReadAsync in posix
|
|
// won't submit async requests.
|
|
ASSERT_EQ(async_read_bytes.count, 0);
|
|
ASSERT_EQ(get_perf_context()->number_async_seek, 0);
|
|
}
|
|
}
|
|
Close();
|
|
}
|
|
|
|
#ifdef GFLAGS
|
|
// This test verifies io_tracing with PosixFileSystem during prefetching.
|
|
TEST_P(PrefetchTest, TraceReadAsyncWithCallbackWrapper) {
|
|
if (mem_env_ || encrypted_env_) {
|
|
ROCKSDB_GTEST_SKIP("Test requires non-mem or non-encrypted environment");
|
|
return;
|
|
}
|
|
|
|
const int kNumKeys = 1000;
|
|
std::shared_ptr<MockFS> fs = std::make_shared<MockFS>(
|
|
FileSystem::Default(), /*support_prefetch=*/false);
|
|
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
|
|
|
|
bool use_direct_io = std::get<0>(GetParam());
|
|
Options options;
|
|
SetGenericOptions(env.get(), use_direct_io, options);
|
|
options.statistics = CreateDBStatistics();
|
|
BlockBasedTableOptions table_options;
|
|
SetBlockBasedTableOptions(table_options);
|
|
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
|
|
|
|
Status s = TryReopen(options);
|
|
if (use_direct_io && (s.IsNotSupported() || s.IsInvalidArgument())) {
|
|
// If direct IO is not supported, skip the test
|
|
return;
|
|
} else {
|
|
ASSERT_OK(s);
|
|
}
|
|
|
|
int total_keys = 0;
|
|
// Write the keys.
|
|
{
|
|
WriteBatch batch;
|
|
Random rnd(309);
|
|
for (int j = 0; j < 5; j++) {
|
|
for (int i = j * kNumKeys; i < (j + 1) * kNumKeys; i++) {
|
|
ASSERT_OK(batch.Put(BuildKey(i), rnd.RandomString(1000)));
|
|
total_keys++;
|
|
}
|
|
ASSERT_OK(db_->Write(WriteOptions(), &batch));
|
|
ASSERT_OK(Flush());
|
|
}
|
|
MoveFilesToLevel(2);
|
|
}
|
|
|
|
int buff_prefetch_count = 0;
|
|
bool read_async_called = false;
|
|
ReadOptions ro;
|
|
ro.adaptive_readahead = true;
|
|
ro.async_io = true;
|
|
|
|
if (std::get<1>(GetParam())) {
|
|
ro.readahead_size = 16 * 1024;
|
|
}
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::PrefetchAsyncInternal:Start",
|
|
[&](void*) { buff_prefetch_count++; });
|
|
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"UpdateResults::io_uring_result",
|
|
[&](void* /*arg*/) { read_async_called = true; });
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
// Read the keys.
|
|
{
|
|
// Start io_tracing.
|
|
WriteOptions write_opt;
|
|
TraceOptions trace_opt;
|
|
std::unique_ptr<TraceWriter> trace_writer;
|
|
std::string trace_file_path = dbname_ + "/io_trace_file";
|
|
|
|
ASSERT_OK(
|
|
NewFileTraceWriter(env_, EnvOptions(), trace_file_path, &trace_writer));
|
|
ASSERT_OK(db_->StartIOTrace(trace_opt, std::move(trace_writer)));
|
|
ASSERT_OK(options.statistics->Reset());
|
|
|
|
auto iter = std::unique_ptr<Iterator>(db_->NewIterator(ro));
|
|
int num_keys = 0;
|
|
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
|
|
ASSERT_OK(iter->status());
|
|
num_keys++;
|
|
}
|
|
|
|
// End the tracing.
|
|
ASSERT_OK(db_->EndIOTrace());
|
|
ASSERT_OK(env_->FileExists(trace_file_path));
|
|
|
|
ASSERT_EQ(num_keys, total_keys);
|
|
HistogramData async_read_bytes;
|
|
options.statistics->histogramData(ASYNC_READ_BYTES, &async_read_bytes);
|
|
if (read_async_called) {
|
|
ASSERT_GT(buff_prefetch_count, 0);
|
|
// Check stats to make sure async prefetch is done.
|
|
ASSERT_GT(async_read_bytes.count, 0);
|
|
} else {
|
|
// Not all platforms support iouring. In that case, ReadAsync in posix
|
|
// won't submit async requests.
|
|
ASSERT_EQ(async_read_bytes.count, 0);
|
|
}
|
|
|
|
// Check the file to see if ReadAsync is logged.
|
|
RunIOTracerParserTool(trace_file_path);
|
|
}
|
|
|
|
SyncPoint::GetInstance()->DisableProcessing();
|
|
SyncPoint::GetInstance()->ClearAllCallBacks();
|
|
|
|
Close();
|
|
}
|
|
#endif // GFLAGS
|
|
|
|
class FilePrefetchBufferTest : public testing::Test {
|
|
public:
|
|
void SetUp() override {
|
|
SetupSyncPointsToMockDirectIO();
|
|
env_ = Env::Default();
|
|
fs_ = FileSystem::Default();
|
|
test_dir_ = test::PerThreadDBPath("file_prefetch_buffer_test");
|
|
ASSERT_OK(fs_->CreateDir(test_dir_, IOOptions(), nullptr));
|
|
stats_ = CreateDBStatistics();
|
|
}
|
|
|
|
void TearDown() override { EXPECT_OK(DestroyDir(env_, test_dir_)); }
|
|
|
|
void Write(const std::string& fname, const std::string& content) {
|
|
std::unique_ptr<FSWritableFile> f;
|
|
ASSERT_OK(fs_->NewWritableFile(Path(fname), FileOptions(), &f, nullptr));
|
|
ASSERT_OK(f->Append(content, IOOptions(), nullptr));
|
|
ASSERT_OK(f->Close(IOOptions(), nullptr));
|
|
}
|
|
|
|
void Read(const std::string& fname, const FileOptions& opts,
|
|
std::unique_ptr<RandomAccessFileReader>* reader) {
|
|
std::string fpath = Path(fname);
|
|
std::unique_ptr<FSRandomAccessFile> f;
|
|
ASSERT_OK(fs_->NewRandomAccessFile(fpath, opts, &f, nullptr));
|
|
reader->reset(new RandomAccessFileReader(
|
|
std::move(f), fpath, env_->GetSystemClock().get(),
|
|
/*io_tracer=*/nullptr, stats_.get()));
|
|
}
|
|
|
|
void AssertResult(const std::string& content,
|
|
const std::vector<FSReadRequest>& reqs) {
|
|
for (const auto& r : reqs) {
|
|
ASSERT_OK(r.status);
|
|
ASSERT_EQ(r.len, r.result.size());
|
|
ASSERT_EQ(content.substr(r.offset, r.len), r.result.ToString());
|
|
}
|
|
}
|
|
|
|
FileSystem* fs() { return fs_.get(); }
|
|
Statistics* stats() { return stats_.get(); }
|
|
|
|
private:
|
|
Env* env_;
|
|
std::shared_ptr<FileSystem> fs_;
|
|
std::string test_dir_;
|
|
std::shared_ptr<Statistics> stats_;
|
|
|
|
std::string Path(const std::string& fname) { return test_dir_ + "/" + fname; }
|
|
};
|
|
|
|
TEST_F(FilePrefetchBufferTest, SeekWithBlockCacheHit) {
|
|
std::string fname = "seek-with-block-cache-hit";
|
|
Random rand(0);
|
|
std::string content = rand.RandomString(32768);
|
|
Write(fname, content);
|
|
|
|
FileOptions opts;
|
|
std::unique_ptr<RandomAccessFileReader> r;
|
|
Read(fname, opts, &r);
|
|
|
|
FilePrefetchBuffer fpb(16384, 16384, true, false, false, 0, 0, 0, fs());
|
|
Slice result;
|
|
// Simulate a seek of 4096 bytes at offset 0. Due to the readahead settings,
|
|
// it will do two reads of 4096+8192 and 8192
|
|
Status s = fpb.PrefetchAsync(IOOptions(), r.get(), 0, 4096, &result);
|
|
|
|
// Platforms that don't have IO uring may not support async IO.
|
|
if (s.IsNotSupported()) {
|
|
return;
|
|
}
|
|
|
|
ASSERT_TRUE(s.IsTryAgain());
|
|
// Simulate a block cache hit
|
|
fpb.UpdateReadPattern(0, 4096, false);
|
|
// Now read some data that straddles the two prefetch buffers - offset 8192 to
|
|
// 16384
|
|
IOOptions io_opts;
|
|
io_opts.rate_limiter_priority = Env::IOPriority::IO_LOW;
|
|
ASSERT_TRUE(
|
|
fpb.TryReadFromCacheAsync(io_opts, r.get(), 8192, 8192, &result, &s));
|
|
}
|
|
|
|
// Test to ensure when PrefetchAsync is called during seek, it doesn't do any
|
|
// alignment or prefetch extra if readahead is not enabled during seek.
|
|
TEST_F(FilePrefetchBufferTest, SeekWithoutAlignment) {
|
|
std::string fname = "seek-wwithout-alignment";
|
|
Random rand(0);
|
|
std::string content = rand.RandomString(32768);
|
|
Write(fname, content);
|
|
|
|
FileOptions opts;
|
|
std::unique_ptr<RandomAccessFileReader> r;
|
|
Read(fname, opts, &r);
|
|
|
|
size_t alignment = r->file()->GetRequiredBufferAlignment();
|
|
size_t n = alignment / 2;
|
|
|
|
int read_async_called = 0;
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::ReadAsync",
|
|
[&](void* /*arg*/) { read_async_called++; });
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
// Without readahead enabled, there will be no alignment and offset of buffer
|
|
// will be n.
|
|
{
|
|
FilePrefetchBuffer fpb(
|
|
/*readahead_size=*/8192, /*max_readahead_size=*/16384, /*enable=*/true,
|
|
/*track_min_offset=*/false, /*implicit_auto_readahead=*/true,
|
|
/*num_file_reads=*/0, /*num_file_reads_for_auto_readahead=*/2,
|
|
/*upper_bound_offset=*/0, fs());
|
|
|
|
Slice result;
|
|
// Simulate a seek of half of alignment bytes at offset n. Due to the
|
|
// readahead settings, it won't prefetch extra or do any alignment and
|
|
// offset of buffer will be n.
|
|
Status s = fpb.PrefetchAsync(IOOptions(), r.get(), n, n, &result);
|
|
|
|
// Platforms that don't have IO uring may not support async IO.
|
|
if (s.IsNotSupported()) {
|
|
return;
|
|
}
|
|
|
|
ASSERT_TRUE(s.IsTryAgain());
|
|
|
|
IOOptions io_opts;
|
|
io_opts.rate_limiter_priority = Env::IOPriority::IO_LOW;
|
|
ASSERT_TRUE(fpb.TryReadFromCacheAsync(io_opts, r.get(), n, n, &result, &s));
|
|
|
|
if (read_async_called) {
|
|
ASSERT_EQ(fpb.GetPrefetchOffset(), n);
|
|
}
|
|
}
|
|
|
|
// With readahead enabled, it will do the alignment and prefetch and offset of
|
|
// buffer will be 0.
|
|
{
|
|
read_async_called = false;
|
|
FilePrefetchBuffer fpb(
|
|
/*readahead_size=*/16384, /*max_readahead_size=*/16384, /*enable=*/true,
|
|
/*track_min_offset=*/false, /*implicit_auto_readahead=*/false,
|
|
/*num_file_reads=*/0, /*num_file_reads_for_auto_readahead=*/2,
|
|
/*upper_bound_offset=*/0, fs());
|
|
|
|
Slice result;
|
|
// Simulate a seek of half of alignment bytes at offset n.
|
|
Status s = fpb.PrefetchAsync(IOOptions(), r.get(), n, n, &result);
|
|
|
|
// Platforms that don't have IO uring may not support async IO.
|
|
if (s.IsNotSupported()) {
|
|
return;
|
|
}
|
|
|
|
ASSERT_TRUE(s.IsTryAgain());
|
|
|
|
IOOptions io_opts;
|
|
io_opts.rate_limiter_priority = Env::IOPriority::IO_LOW;
|
|
ASSERT_TRUE(fpb.TryReadFromCacheAsync(io_opts, r.get(), n, n, &result, &s));
|
|
|
|
if (read_async_called) {
|
|
ASSERT_EQ(fpb.GetPrefetchOffset(), 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(FilePrefetchBufferTest, NoSyncWithAsyncIO) {
|
|
std::string fname = "seek-with-block-cache-hit";
|
|
Random rand(0);
|
|
std::string content = rand.RandomString(32768);
|
|
Write(fname, content);
|
|
|
|
FileOptions opts;
|
|
std::unique_ptr<RandomAccessFileReader> r;
|
|
Read(fname, opts, &r);
|
|
|
|
FilePrefetchBuffer fpb(
|
|
/*readahead_size=*/8192, /*max_readahead_size=*/16384, /*enable=*/true,
|
|
/*track_min_offset=*/false, /*implicit_auto_readahead=*/false,
|
|
/*num_file_reads=*/0, /*num_file_reads_for_auto_readahead=*/0,
|
|
/*upper_bound_offset=*/0, fs());
|
|
|
|
int read_async_called = 0;
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::ReadAsync",
|
|
[&](void* /*arg*/) { read_async_called++; });
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
Slice async_result;
|
|
// Simulate a seek of 4000 bytes at offset 3000. Due to the readahead
|
|
// settings, it will do two reads of 4000+4096 and 4096
|
|
Status s = fpb.PrefetchAsync(IOOptions(), r.get(), 3000, 4000, &async_result);
|
|
|
|
// Platforms that don't have IO uring may not support async IO
|
|
if (s.IsNotSupported()) {
|
|
return;
|
|
}
|
|
|
|
ASSERT_TRUE(s.IsTryAgain());
|
|
IOOptions io_opts;
|
|
io_opts.rate_limiter_priority = Env::IOPriority::IO_LOW;
|
|
ASSERT_TRUE(fpb.TryReadFromCacheAsync(io_opts, r.get(), /*offset=*/3000,
|
|
/*length=*/4000, &async_result, &s));
|
|
// No sync call should be made.
|
|
HistogramData sst_read_micros;
|
|
stats()->histogramData(SST_READ_MICROS, &sst_read_micros);
|
|
ASSERT_EQ(sst_read_micros.count, 0);
|
|
|
|
// Number of async calls should be.
|
|
ASSERT_EQ(read_async_called, 2);
|
|
// Length should be 4000.
|
|
ASSERT_EQ(async_result.size(), 4000);
|
|
// Data correctness.
|
|
Slice result(&content[3000], 4000);
|
|
ASSERT_EQ(result.size(), 4000);
|
|
ASSERT_EQ(result, async_result);
|
|
}
|
|
|
|
// This test checks if during seek in async_io, if first buffer already
|
|
// prefetched the data till upper_bound offset, second buffer shouldn't go for
|
|
// prefetching.
|
|
TEST_F(FilePrefetchBufferTest, IterateUpperBoundTest1) {
|
|
std::string fname = "iterate-upperbound-test1";
|
|
Random rand(0);
|
|
std::string content = rand.RandomString(32768);
|
|
Write(fname, content);
|
|
|
|
FileOptions opts;
|
|
std::unique_ptr<RandomAccessFileReader> r;
|
|
Read(fname, opts, &r);
|
|
|
|
FilePrefetchBuffer fpb(
|
|
/*readahead_size=*/8192, /*max_readahead_size=*/16384, /*enable=*/true,
|
|
/*track_min_offset=*/false, /*implicit_auto_readahead=*/false,
|
|
/*num_file_reads=*/0, /*num_file_reads_for_auto_readahead=*/0,
|
|
/*upper_bound_offset=*/8000, fs());
|
|
|
|
int read_async_called = 0;
|
|
SyncPoint::GetInstance()->SetCallBack(
|
|
"FilePrefetchBuffer::ReadAsync",
|
|
[&](void* /*arg*/) { read_async_called++; });
|
|
SyncPoint::GetInstance()->EnableProcessing();
|
|
|
|
Slice async_result;
|
|
// Simulate a seek of 4000 bytes at offset 3000. Due to the readahead
|
|
// settings, it will do 1 read of 4000+1000 (till 8000 - upper bound).
|
|
Status s = fpb.PrefetchAsync(IOOptions(), r.get(), 3000, 4000, &async_result);
|
|
|
|
// Platforms that don't have IO uring may not support async IO
|
|
if (s.IsNotSupported()) {
|
|
return;
|
|
}
|
|
|
|
ASSERT_TRUE(s.IsTryAgain());
|
|
IOOptions io_opts;
|
|
io_opts.rate_limiter_priority = Env::IOPriority::IO_LOW;
|
|
ASSERT_TRUE(fpb.TryReadFromCacheAsync(io_opts, r.get(), /*offset=*/3000,
|
|
/*length=*/4000, &async_result, &s));
|
|
// No sync call should be made.
|
|
HistogramData sst_read_micros;
|
|
stats()->histogramData(SST_READ_MICROS, &sst_read_micros);
|
|
ASSERT_EQ(sst_read_micros.count, 0);
|
|
|
|
// Number of async calls should be 1.
|
|
// No Prefetching should happen in second buffer as first buffer has already
|
|
// prefetched till offset.
|
|
ASSERT_EQ(read_async_called, 1);
|
|
// Length should be 4000.
|
|
ASSERT_EQ(async_result.size(), 4000);
|
|
// Data correctness.
|
|
Slice result(&content[3000], 4000);
|
|
ASSERT_EQ(result.size(), 4000);
|
|
ASSERT_EQ(result, async_result);
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|
|
int main(int argc, char** argv) {
|
|
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
|
|
return RUN_ALL_TESTS();
|
|
}
|