rocksdb/db_stress_tool/cf_consistency_stress.cc

890 lines
30 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#ifdef GFLAGS
#include "db_stress_tool/db_stress_common.h"
#include "file/file_util.h"
namespace ROCKSDB_NAMESPACE {
class CfConsistencyStressTest : public StressTest {
public:
CfConsistencyStressTest() : batch_id_(0) {}
~CfConsistencyStressTest() override {}
bool IsStateTracked() const override { return false; }
Status TestPut(ThreadState* thread, WriteOptions& write_opts,
const ReadOptions& /* read_opts */,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys,
char (&value)[100]) override {
assert(!rand_column_families.empty());
assert(!rand_keys.empty());
const std::string k = Key(rand_keys[0]);
const uint32_t value_base = batch_id_.fetch_add(1);
const size_t sz = GenerateValue(value_base, value, sizeof(value));
const Slice v(value, sz);
WriteBatch batch;
for (auto cf : rand_column_families) {
ColumnFamilyHandle* const cfh = column_families_[cf];
assert(cfh);
if (FLAGS_use_put_entity_one_in > 0 &&
(value_base % FLAGS_use_put_entity_one_in) == 0) {
batch.PutEntity(cfh, k, GenerateWideColumns(value_base, v));
} else if (FLAGS_use_merge) {
batch.Merge(cfh, k, v);
} else {
batch.Put(cfh, k, v);
}
}
Status s = db_->Write(write_opts, &batch);
if (!s.ok()) {
fprintf(stderr, "multi put or merge error: %s\n", s.ToString().c_str());
thread->stats.AddErrors(1);
} else {
auto num = static_cast<long>(rand_column_families.size());
thread->stats.AddBytesForWrites(num, (sz + 1) * num);
}
return s;
}
Status TestDelete(ThreadState* thread, WriteOptions& write_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
std::string key_str = Key(rand_keys[0]);
Slice key = key_str;
WriteBatch batch;
for (auto cf : rand_column_families) {
ColumnFamilyHandle* cfh = column_families_[cf];
batch.Delete(cfh, key);
}
Status s = db_->Write(write_opts, &batch);
if (!s.ok()) {
fprintf(stderr, "multidel error: %s\n", s.ToString().c_str());
thread->stats.AddErrors(1);
} else {
thread->stats.AddDeletes(static_cast<long>(rand_column_families.size()));
}
return s;
}
Status TestDeleteRange(ThreadState* thread, WriteOptions& write_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
int64_t rand_key = rand_keys[0];
auto shared = thread->shared;
int64_t max_key = shared->GetMaxKey();
if (rand_key > max_key - FLAGS_range_deletion_width) {
rand_key =
thread->rand.Next() % (max_key - FLAGS_range_deletion_width + 1);
}
std::string key_str = Key(rand_key);
Slice key = key_str;
std::string end_key_str = Key(rand_key + FLAGS_range_deletion_width);
Slice end_key = end_key_str;
WriteBatch batch;
for (auto cf : rand_column_families) {
ColumnFamilyHandle* cfh = column_families_[rand_column_families[cf]];
batch.DeleteRange(cfh, key, end_key);
}
Status s = db_->Write(write_opts, &batch);
if (!s.ok()) {
fprintf(stderr, "multi del range error: %s\n", s.ToString().c_str());
thread->stats.AddErrors(1);
} else {
thread->stats.AddRangeDeletions(
static_cast<long>(rand_column_families.size()));
}
return s;
}
void TestIngestExternalFile(
ThreadState* /* thread */,
const std::vector<int>& /* rand_column_families */,
const std::vector<int64_t>& /* rand_keys */) override {
assert(false);
fprintf(stderr,
"CfConsistencyStressTest does not support TestIngestExternalFile "
"because it's not possible to verify the result\n");
std::terminate();
}
Status TestGet(ThreadState* thread, const ReadOptions& readoptions,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
std::string key_str = Key(rand_keys[0]);
Slice key = key_str;
Status s;
bool is_consistent = true;
if (thread->rand.OneIn(2)) {
// 1/2 chance, does a random read from random CF
auto cfh =
column_families_[rand_column_families[thread->rand.Next() %
rand_column_families.size()]];
std::string from_db;
s = db_->Get(readoptions, cfh, key, &from_db);
} else {
// 1/2 chance, comparing one key is the same across all CFs
const Snapshot* snapshot = db_->GetSnapshot();
ReadOptions readoptionscopy = readoptions;
readoptionscopy.snapshot = snapshot;
std::string value0;
s = db_->Get(readoptionscopy, column_families_[rand_column_families[0]],
key, &value0);
if (s.ok() || s.IsNotFound()) {
bool found = s.ok();
for (size_t i = 1; i < rand_column_families.size(); i++) {
std::string value1;
s = db_->Get(readoptionscopy,
column_families_[rand_column_families[i]], key, &value1);
if (!s.ok() && !s.IsNotFound()) {
break;
}
if (!found && s.ok()) {
fprintf(stderr, "Get() return different results with key %s\n",
Slice(key_str).ToString(true).c_str());
fprintf(stderr, "CF %s is not found\n",
column_family_names_[0].c_str());
fprintf(stderr, "CF %s returns value %s\n",
column_family_names_[i].c_str(),
Slice(value1).ToString(true).c_str());
is_consistent = false;
} else if (found && s.IsNotFound()) {
fprintf(stderr, "Get() return different results with key %s\n",
Slice(key_str).ToString(true).c_str());
fprintf(stderr, "CF %s returns value %s\n",
column_family_names_[0].c_str(),
Slice(value0).ToString(true).c_str());
fprintf(stderr, "CF %s is not found\n",
column_family_names_[i].c_str());
is_consistent = false;
} else if (s.ok() && value0 != value1) {
fprintf(stderr, "Get() return different results with key %s\n",
Slice(key_str).ToString(true).c_str());
fprintf(stderr, "CF %s returns value %s\n",
column_family_names_[0].c_str(),
Slice(value0).ToString(true).c_str());
fprintf(stderr, "CF %s returns value %s\n",
column_family_names_[i].c_str(),
Slice(value1).ToString(true).c_str());
is_consistent = false;
}
if (!is_consistent) {
break;
}
}
}
db_->ReleaseSnapshot(snapshot);
}
if (!is_consistent) {
fprintf(stderr, "TestGet error: is_consistent is false\n");
thread->stats.AddErrors(1);
// Fail fast to preserve the DB state.
thread->shared->SetVerificationFailure();
} else if (s.ok()) {
thread->stats.AddGets(1, 1);
} else if (s.IsNotFound()) {
thread->stats.AddGets(1, 0);
} else {
fprintf(stderr, "TestGet error: %s\n", s.ToString().c_str());
thread->stats.AddErrors(1);
}
return s;
}
std::vector<Status> TestMultiGet(
ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
size_t num_keys = rand_keys.size();
std::vector<std::string> key_str;
std::vector<Slice> keys;
keys.reserve(num_keys);
key_str.reserve(num_keys);
std::vector<PinnableSlice> values(num_keys);
std::vector<Status> statuses(num_keys);
ColumnFamilyHandle* cfh = column_families_[rand_column_families[0]];
ReadOptions readoptionscopy = read_opts;
readoptionscopy.rate_limiter_priority =
FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
for (size_t i = 0; i < num_keys; ++i) {
key_str.emplace_back(Key(rand_keys[i]));
keys.emplace_back(key_str.back());
}
db_->MultiGet(readoptionscopy, cfh, num_keys, keys.data(), values.data(),
statuses.data());
for (auto s : statuses) {
if (s.ok()) {
// found case
thread->stats.AddGets(1, 1);
} else if (s.IsNotFound()) {
// not found case
thread->stats.AddGets(1, 0);
} else {
// errors case
fprintf(stderr, "MultiGet error: %s\n", s.ToString().c_str());
thread->stats.AddErrors(1);
}
}
return statuses;
}
void TestGetEntity(ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
assert(thread);
assert(!rand_column_families.empty());
assert(!rand_keys.empty());
const std::string key = Key(rand_keys[0]);
Status s;
bool is_consistent = true;
if (thread->rand.OneIn(2)) {
// With a 1/2 chance, do a random read from a random CF
const size_t cf_id = thread->rand.Next() % rand_column_families.size();
assert(rand_column_families[cf_id] >= 0);
assert(rand_column_families[cf_id] <
static_cast<int>(column_families_.size()));
ColumnFamilyHandle* const cfh =
column_families_[rand_column_families[cf_id]];
assert(cfh);
PinnableWideColumns result;
s = db_->GetEntity(read_opts, cfh, key, &result);
if (s.ok()) {
if (!VerifyWideColumns(result.columns())) {
fprintf(
stderr,
"GetEntity error: inconsistent columns for key %s, entity %s\n",
StringToHex(key).c_str(),
WideColumnsToHex(result.columns()).c_str());
is_consistent = false;
}
}
} else {
// With a 1/2 chance, compare one key across all CFs
ManagedSnapshot snapshot_guard(db_);
ReadOptions read_opts_copy = read_opts;
read_opts_copy.snapshot = snapshot_guard.snapshot();
assert(rand_column_families[0] >= 0);
assert(rand_column_families[0] <
static_cast<int>(column_families_.size()));
PinnableWideColumns cmp_result;
s = db_->GetEntity(read_opts_copy,
column_families_[rand_column_families[0]], key,
&cmp_result);
if (s.ok() || s.IsNotFound()) {
const bool cmp_found = s.ok();
if (cmp_found) {
if (!VerifyWideColumns(cmp_result.columns())) {
fprintf(stderr,
"GetEntity error: inconsistent columns for key %s, "
"entity %s\n",
StringToHex(key).c_str(),
WideColumnsToHex(cmp_result.columns()).c_str());
is_consistent = false;
}
}
if (is_consistent) {
for (size_t i = 1; i < rand_column_families.size(); ++i) {
assert(rand_column_families[i] >= 0);
assert(rand_column_families[i] <
static_cast<int>(column_families_.size()));
PinnableWideColumns result;
s = db_->GetEntity(read_opts_copy,
column_families_[rand_column_families[i]], key,
&result);
if (!s.ok() && !s.IsNotFound()) {
break;
}
const bool found = s.ok();
assert(!column_family_names_.empty());
assert(i < column_family_names_.size());
if (!cmp_found && found) {
fprintf(stderr,
"GetEntity returns different results for key %s: CF %s "
"returns not found, CF %s returns entity %s\n",
StringToHex(key).c_str(), column_family_names_[0].c_str(),
column_family_names_[i].c_str(),
WideColumnsToHex(result.columns()).c_str());
is_consistent = false;
break;
}
if (cmp_found && !found) {
fprintf(stderr,
"GetEntity returns different results for key %s: CF %s "
"returns entity %s, CF %s returns not found\n",
StringToHex(key).c_str(), column_family_names_[0].c_str(),
WideColumnsToHex(cmp_result.columns()).c_str(),
column_family_names_[i].c_str());
is_consistent = false;
break;
}
if (found && result != cmp_result) {
fprintf(stderr,
"GetEntity returns different results for key %s: CF %s "
"returns entity %s, CF %s returns entity %s\n",
StringToHex(key).c_str(), column_family_names_[0].c_str(),
WideColumnsToHex(cmp_result.columns()).c_str(),
column_family_names_[i].c_str(),
WideColumnsToHex(result.columns()).c_str());
is_consistent = false;
break;
}
}
}
}
}
if (!is_consistent) {
fprintf(stderr, "TestGetEntity error: results are not consistent\n");
thread->stats.AddErrors(1);
// Fail fast to preserve the DB state.
thread->shared->SetVerificationFailure();
} else if (s.ok()) {
thread->stats.AddGets(1, 1);
} else if (s.IsNotFound()) {
thread->stats.AddGets(1, 0);
} else {
fprintf(stderr, "TestGetEntity error: %s\n", s.ToString().c_str());
thread->stats.AddErrors(1);
}
}
void TestMultiGetEntity(ThreadState* thread, const ReadOptions& read_opts,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
assert(thread);
assert(thread->shared);
assert(!rand_column_families.empty());
assert(!rand_keys.empty());
ManagedSnapshot snapshot_guard(db_);
ReadOptions read_opts_copy = read_opts;
read_opts_copy.snapshot = snapshot_guard.snapshot();
const size_t num_cfs = rand_column_families.size();
std::vector<ColumnFamilyHandle*> cfhs;
cfhs.reserve(num_cfs);
for (size_t j = 0; j < num_cfs; ++j) {
assert(rand_column_families[j] >= 0);
assert(rand_column_families[j] <
static_cast<int>(column_families_.size()));
ColumnFamilyHandle* const cfh = column_families_[rand_column_families[j]];
assert(cfh);
cfhs.emplace_back(cfh);
}
const size_t num_keys = rand_keys.size();
for (size_t i = 0; i < num_keys; ++i) {
const std::string key = Key(rand_keys[i]);
std::vector<Slice> key_slices(num_cfs, key);
std::vector<PinnableWideColumns> results(num_cfs);
std::vector<Status> statuses(num_cfs);
db_->MultiGetEntity(read_opts_copy, num_cfs, cfhs.data(),
key_slices.data(), results.data(), statuses.data());
bool is_consistent = true;
for (size_t j = 0; j < num_cfs; ++j) {
const Status& s = statuses[j];
const Status& cmp_s = statuses[0];
const WideColumns& columns = results[j].columns();
const WideColumns& cmp_columns = results[0].columns();
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "TestMultiGetEntity error: %s\n",
s.ToString().c_str());
thread->stats.AddErrors(1);
break;
}
assert(cmp_s.ok() || cmp_s.IsNotFound());
if (s.IsNotFound()) {
if (cmp_s.ok()) {
fprintf(
stderr,
"MultiGetEntity returns different results for key %s: CF %s "
"returns entity %s, CF %s returns not found\n",
StringToHex(key).c_str(), column_family_names_[0].c_str(),
WideColumnsToHex(cmp_columns).c_str(),
column_family_names_[j].c_str());
is_consistent = false;
break;
}
continue;
}
assert(s.ok());
if (cmp_s.IsNotFound()) {
fprintf(stderr,
"MultiGetEntity returns different results for key %s: CF %s "
"returns not found, CF %s returns entity %s\n",
StringToHex(key).c_str(), column_family_names_[0].c_str(),
column_family_names_[j].c_str(),
WideColumnsToHex(columns).c_str());
is_consistent = false;
break;
}
if (columns != cmp_columns) {
fprintf(stderr,
"MultiGetEntity returns different results for key %s: CF %s "
"returns entity %s, CF %s returns entity %s\n",
StringToHex(key).c_str(), column_family_names_[0].c_str(),
WideColumnsToHex(cmp_columns).c_str(),
column_family_names_[j].c_str(),
WideColumnsToHex(columns).c_str());
is_consistent = false;
break;
}
if (!VerifyWideColumns(columns)) {
fprintf(stderr,
"MultiGetEntity error: inconsistent columns for key %s, "
"entity %s\n",
StringToHex(key).c_str(), WideColumnsToHex(columns).c_str());
is_consistent = false;
break;
}
}
if (!is_consistent) {
fprintf(stderr,
"TestMultiGetEntity error: results are not consistent\n");
thread->stats.AddErrors(1);
// Fail fast to preserve the DB state.
thread->shared->SetVerificationFailure();
break;
} else if (statuses[0].ok()) {
thread->stats.AddGets(1, 1);
} else if (statuses[0].IsNotFound()) {
thread->stats.AddGets(1, 0);
}
}
}
Status TestPrefixScan(ThreadState* thread, const ReadOptions& readoptions,
const std::vector<int>& rand_column_families,
const std::vector<int64_t>& rand_keys) override {
assert(!rand_column_families.empty());
assert(!rand_keys.empty());
const std::string key = Key(rand_keys[0]);
const size_t prefix_to_use =
(FLAGS_prefix_size < 0) ? 7 : static_cast<size_t>(FLAGS_prefix_size);
const Slice prefix(key.data(), prefix_to_use);
std::string upper_bound;
Slice ub_slice;
ReadOptions ro_copy = readoptions;
// Get the next prefix first and then see if we want to set upper bound.
// We'll use the next prefix in an assertion later on
if (GetNextPrefix(prefix, &upper_bound) && thread->rand.OneIn(2)) {
ub_slice = Slice(upper_bound);
ro_copy.iterate_upper_bound = &ub_slice;
}
ColumnFamilyHandle* const cfh =
column_families_[rand_column_families[thread->rand.Uniform(
static_cast<int>(rand_column_families.size()))]];
assert(cfh);
std::unique_ptr<Iterator> iter(db_->NewIterator(ro_copy, cfh));
uint64_t count = 0;
Status s;
for (iter->Seek(prefix); iter->Valid() && iter->key().starts_with(prefix);
iter->Next()) {
++count;
if (!VerifyWideColumns(iter->value(), iter->columns())) {
s = Status::Corruption("Value and columns inconsistent",
DebugString(iter->value(), iter->columns()));
break;
}
}
assert(prefix_to_use == 0 ||
count <= GetPrefixKeyCount(prefix.ToString(), upper_bound));
if (s.ok()) {
s = iter->status();
}
if (!s.ok()) {
fprintf(stderr, "TestPrefixScan error: %s\n", s.ToString().c_str());
thread->stats.AddErrors(1);
return s;
}
thread->stats.AddPrefixes(1, count);
return Status::OK();
}
ColumnFamilyHandle* GetControlCfh(ThreadState* thread,
int /*column_family_id*/
) override {
// All column families should contain the same data. Randomly pick one.
return column_families_[thread->rand.Next() % column_families_.size()];
}
void VerifyDb(ThreadState* thread) const override {
// This `ReadOptions` is for validation purposes. Ignore
// `FLAGS_rate_limit_user_ops` to avoid slowing any validation.
ReadOptions options(FLAGS_verify_checksum, true);
// We must set total_order_seek to true because we are doing a SeekToFirst
// on a column family whose memtables may support (by default) prefix-based
// iterator. In this case, NewIterator with options.total_order_seek being
// false returns a prefix-based iterator. Calling SeekToFirst using this
// iterator causes the iterator to become invalid. That means we cannot
// iterate the memtable using this iterator any more, although the memtable
// contains the most up-to-date key-values.
options.total_order_seek = true;
ManagedSnapshot snapshot_guard(db_);
options.snapshot = snapshot_guard.snapshot();
const size_t num = column_families_.size();
std::vector<std::unique_ptr<Iterator>> iters;
iters.reserve(num);
for (size_t i = 0; i < num; ++i) {
iters.emplace_back(db_->NewIterator(options, column_families_[i]));
iters.back()->SeekToFirst();
}
std::vector<Status> statuses(num, Status::OK());
assert(thread);
auto shared = thread->shared;
assert(shared);
do {
if (shared->HasVerificationFailedYet()) {
break;
}
size_t valid_cnt = 0;
for (size_t i = 0; i < num; ++i) {
const auto& iter = iters[i];
assert(iter);
if (iter->Valid()) {
if (!VerifyWideColumns(iter->value(), iter->columns())) {
statuses[i] =
Status::Corruption("Value and columns inconsistent",
DebugString(iter->value(), iter->columns()));
} else {
++valid_cnt;
}
} else {
statuses[i] = iter->status();
}
}
if (valid_cnt == 0) {
for (size_t i = 0; i < num; ++i) {
const auto& s = statuses[i];
if (!s.ok()) {
fprintf(stderr, "Iterator on cf %s has error: %s\n",
column_families_[i]->GetName().c_str(),
s.ToString().c_str());
shared->SetVerificationFailure();
}
}
break;
}
if (valid_cnt < num) {
shared->SetVerificationFailure();
for (size_t i = 0; i < num; ++i) {
assert(iters[i]);
if (!iters[i]->Valid()) {
if (statuses[i].ok()) {
fprintf(stderr, "Finished scanning cf %s\n",
column_families_[i]->GetName().c_str());
} else {
fprintf(stderr, "Iterator on cf %s has error: %s\n",
column_families_[i]->GetName().c_str(),
statuses[i].ToString().c_str());
}
} else {
fprintf(stderr, "cf %s has remaining data to scan\n",
column_families_[i]->GetName().c_str());
}
}
break;
}
if (shared->HasVerificationFailedYet()) {
break;
}
// If the program reaches here, then all column families' iterators are
// still valid.
assert(valid_cnt == num);
if (shared->PrintingVerificationResults()) {
continue;
}
assert(iters[0]);
const Slice key = iters[0]->key();
const Slice value = iters[0]->value();
int num_mismatched_cfs = 0;
for (size_t i = 1; i < num; ++i) {
assert(iters[i]);
const int cmp = key.compare(iters[i]->key());
if (cmp != 0) {
++num_mismatched_cfs;
if (1 == num_mismatched_cfs) {
fprintf(stderr, "Verification failed\n");
fprintf(stderr, "Latest Sequence Number: %" PRIu64 "\n",
db_->GetLatestSequenceNumber());
fprintf(stderr, "[%s] %s => %s\n",
column_families_[0]->GetName().c_str(),
key.ToString(true /* hex */).c_str(),
value.ToString(true /* hex */).c_str());
}
fprintf(stderr, "[%s] %s => %s\n",
column_families_[i]->GetName().c_str(),
iters[i]->key().ToString(true /* hex */).c_str(),
iters[i]->value().ToString(true /* hex */).c_str());
Slice begin_key;
Slice end_key;
if (cmp < 0) {
begin_key = key;
end_key = iters[i]->key();
} else {
begin_key = iters[i]->key();
end_key = key;
}
const auto print_key_versions = [&](ColumnFamilyHandle* cfh) {
constexpr size_t kMaxNumIKeys = 8;
std::vector<KeyVersion> versions;
const Status s = GetAllKeyVersions(db_, cfh, begin_key, end_key,
kMaxNumIKeys, &versions);
if (!s.ok()) {
fprintf(stderr, "%s\n", s.ToString().c_str());
return;
}
assert(cfh);
fprintf(stderr,
"Internal keys in CF '%s', [%s, %s] (max %" ROCKSDB_PRIszt
")\n",
cfh->GetName().c_str(),
begin_key.ToString(true /* hex */).c_str(),
end_key.ToString(true /* hex */).c_str(), kMaxNumIKeys);
for (const KeyVersion& kv : versions) {
fprintf(stderr, " key %s seq %" PRIu64 " type %d\n",
Slice(kv.user_key).ToString(true).c_str(), kv.sequence,
kv.type);
}
};
if (1 == num_mismatched_cfs) {
print_key_versions(column_families_[0]);
}
print_key_versions(column_families_[i]);
shared->SetVerificationFailure();
}
}
shared->FinishPrintingVerificationResults();
for (auto& iter : iters) {
assert(iter);
iter->Next();
}
} while (true);
}
void ContinuouslyVerifyDb(ThreadState* thread) const override {
assert(thread);
Status status;
DB* db_ptr = cmp_db_ ? cmp_db_ : db_;
const auto& cfhs = cmp_db_ ? cmp_cfhs_ : column_families_;
// Take a snapshot to preserve the state of primary db.
ManagedSnapshot snapshot_guard(db_);
SharedState* shared = thread->shared;
assert(shared);
if (cmp_db_) {
status = cmp_db_->TryCatchUpWithPrimary();
if (!status.ok()) {
fprintf(stderr, "TryCatchUpWithPrimary: %s\n",
status.ToString().c_str());
shared->SetShouldStopTest();
assert(false);
return;
}
}
const auto checksum_column_family = [](Iterator* iter,
uint32_t* checksum) -> Status {
assert(nullptr != checksum);
uint32_t ret = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ret = crc32c::Extend(ret, iter->key().data(), iter->key().size());
ret = crc32c::Extend(ret, iter->value().data(), iter->value().size());
for (const auto& column : iter->columns()) {
ret = crc32c::Extend(ret, column.name().data(), column.name().size());
ret =
crc32c::Extend(ret, column.value().data(), column.value().size());
}
}
*checksum = ret;
return iter->status();
};
// This `ReadOptions` is for validation purposes. Ignore
// `FLAGS_rate_limit_user_ops` to avoid slowing any validation.
ReadOptions ropts(FLAGS_verify_checksum, true);
ropts.total_order_seek = true;
if (nullptr == cmp_db_) {
ropts.snapshot = snapshot_guard.snapshot();
}
uint32_t crc = 0;
{
// Compute crc for all key-values of default column family.
std::unique_ptr<Iterator> it(db_ptr->NewIterator(ropts));
status = checksum_column_family(it.get(), &crc);
if (!status.ok()) {
fprintf(stderr, "Computing checksum of default cf: %s\n",
status.ToString().c_str());
assert(false);
}
}
// Since we currently intentionally disallow reading from the secondary
// instance with snapshot, we cannot achieve cross-cf consistency if WAL is
// enabled because there is no guarantee that secondary instance replays
// the primary's WAL to a consistent point where all cfs have the same
// data.
if (status.ok() && FLAGS_disable_wal) {
uint32_t tmp_crc = 0;
for (ColumnFamilyHandle* cfh : cfhs) {
if (cfh == db_ptr->DefaultColumnFamily()) {
continue;
}
std::unique_ptr<Iterator> it(db_ptr->NewIterator(ropts, cfh));
status = checksum_column_family(it.get(), &tmp_crc);
if (!status.ok() || tmp_crc != crc) {
break;
}
}
if (!status.ok()) {
fprintf(stderr, "status: %s\n", status.ToString().c_str());
shared->SetShouldStopTest();
assert(false);
} else if (tmp_crc != crc) {
fprintf(stderr, "tmp_crc=%" PRIu32 " crc=%" PRIu32 "\n", tmp_crc, crc);
shared->SetShouldStopTest();
assert(false);
}
}
}
std::vector<int> GenerateColumnFamilies(
const int /* num_column_families */,
int /* rand_column_family */) const override {
std::vector<int> ret;
int num = static_cast<int>(column_families_.size());
int k = 0;
std::generate_n(back_inserter(ret), num, [&k]() -> int { return k++; });
return ret;
}
private:
std::atomic<uint32_t> batch_id_;
};
StressTest* CreateCfConsistencyStressTest() {
return new CfConsistencyStressTest();
}
} // namespace ROCKSDB_NAMESPACE
#endif // GFLAGS