mirror of
https://github.com/facebook/rocksdb.git
synced 2024-12-04 20:02:50 +00:00
f799c73d28
Summary: Currently, some numbers in the `tracer_analyzer_tool` may be a little confusing and unfriendly for people who want to add new query types. It may be better to replace them with the existing enumeration type to improve readability. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10827 Reviewed By: ajkr Differential Revision: D40576023 Pulled By: hx235 fbshipit-source-id: 0eb16820a15f365d53e848a3a8efd92928420429
1936 lines
68 KiB
C++
1936 lines
68 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
|
|
|
|
#ifdef GFLAGS
|
|
#ifdef NUMA
|
|
#include <numa.h>
|
|
#endif
|
|
#ifndef OS_WIN
|
|
#include <unistd.h>
|
|
#endif
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <stdexcept>
|
|
|
|
#include "db/db_impl/db_impl.h"
|
|
#include "db/memtable.h"
|
|
#include "db/write_batch_internal.h"
|
|
#include "env/composite_env_wrapper.h"
|
|
#include "file/line_file_reader.h"
|
|
#include "file/writable_file_writer.h"
|
|
#include "options/cf_options.h"
|
|
#include "rocksdb/db.h"
|
|
#include "rocksdb/env.h"
|
|
#include "rocksdb/iterator.h"
|
|
#include "rocksdb/slice.h"
|
|
#include "rocksdb/slice_transform.h"
|
|
#include "rocksdb/status.h"
|
|
#include "rocksdb/table_properties.h"
|
|
#include "rocksdb/utilities/ldb_cmd.h"
|
|
#include "rocksdb/write_batch.h"
|
|
#include "table/meta_blocks.h"
|
|
#include "table/table_reader.h"
|
|
#include "tools/trace_analyzer_tool.h"
|
|
#include "trace_replay/trace_replay.h"
|
|
#include "util/coding.h"
|
|
#include "util/compression.h"
|
|
#include "util/gflags_compat.h"
|
|
#include "util/random.h"
|
|
#include "util/string_util.h"
|
|
|
|
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
|
|
|
|
DEFINE_string(trace_path, "", "The trace file path.");
|
|
DEFINE_string(output_dir, "", "The directory to store the output files.");
|
|
DEFINE_string(output_prefix, "trace",
|
|
"The prefix used for all the output files.");
|
|
DEFINE_bool(output_key_stats, false,
|
|
"Output the key access count statistics to file\n"
|
|
"for accessed keys:\n"
|
|
"file name: <prefix>-<query_type>-<cf_id>-accessed_key_stats.txt\n"
|
|
"Format:[cf_id value_size access_keyid access_count]\n"
|
|
"for the whole key space keys:\n"
|
|
"File name: <prefix>-<query_type>-<cf_id>-whole_key_stats.txt\n"
|
|
"Format:[whole_key_space_keyid access_count]");
|
|
DEFINE_bool(output_access_count_stats, false,
|
|
"Output the access count distribution statistics to file.\n"
|
|
"File name: <prefix>-<query_type>-<cf_id>-accessed_"
|
|
"key_count_distribution.txt \n"
|
|
"Format:[access_count number_of_access_count]");
|
|
DEFINE_bool(output_time_series, false,
|
|
"Output the access time in second of each key, "
|
|
"such that we can have the time series data of the queries \n"
|
|
"File name: <prefix>-<query_type>-<cf_id>-time_series.txt\n"
|
|
"Format:[type_id time_in_sec access_keyid].");
|
|
DEFINE_bool(try_process_corrupted_trace, false,
|
|
"In default, trace_analyzer will exit if the trace file is "
|
|
"corrupted due to the unexpected tracing cases. If this option "
|
|
"is enabled, trace_analyzer will stop reading the trace file, "
|
|
"and start analyzing the read-in data.");
|
|
DEFINE_int32(output_prefix_cut, 0,
|
|
"The number of bytes as prefix to cut the keys.\n"
|
|
"If it is enabled, it will generate the following:\n"
|
|
"For accessed keys:\n"
|
|
"File name: <prefix>-<query_type>-<cf_id>-"
|
|
"accessed_key_prefix_cut.txt \n"
|
|
"Format:[acessed_keyid access_count_of_prefix "
|
|
"number_of_keys_in_prefix average_key_access "
|
|
"prefix_succ_ratio prefix]\n"
|
|
"For whole key space keys:\n"
|
|
"File name: <prefix>-<query_type>-<cf_id>"
|
|
"-whole_key_prefix_cut.txt\n"
|
|
"Format:[start_keyid_in_whole_keyspace prefix]\n"
|
|
"if 'output_qps_stats' and 'top_k' are enabled, it will output:\n"
|
|
"File name: <prefix>-<query_type>-<cf_id>"
|
|
"-accessed_top_k_qps_prefix_cut.txt\n"
|
|
"Format:[the_top_ith_qps_time QPS], [prefix qps_of_this_second].");
|
|
DEFINE_bool(convert_to_human_readable_trace, false,
|
|
"Convert the binary trace file to a human readable txt file "
|
|
"for further processing. "
|
|
"This file will be extremely large "
|
|
"(similar size as the original binary trace file). "
|
|
"You can specify 'no_key' to reduce the size, if key is not "
|
|
"needed in the next step.\n"
|
|
"File name: <prefix>_human_readable_trace.txt\n"
|
|
"Format:[<key> type_id cf_id value_size time_in_micorsec].");
|
|
DEFINE_bool(output_qps_stats, false,
|
|
"Output the query per second(qps) statistics \n"
|
|
"For the overall qps, it will contain all qps of each query type. "
|
|
"The time is started from the first trace record\n"
|
|
"File name: <prefix>_qps_stats.txt\n"
|
|
"Format: [qps_type_1 qps_type_2 ...... overall_qps]\n"
|
|
"For each cf and query, it will have its own qps output.\n"
|
|
"File name: <prefix>-<query_type>-<cf_id>_qps_stats.txt \n"
|
|
"Format:[query_count_in_this_second].");
|
|
DEFINE_bool(no_print, false, "Do not print out any result");
|
|
DEFINE_string(
|
|
print_correlation, "",
|
|
"intput format: [correlation pairs][.,.]\n"
|
|
"Output the query correlations between the pairs of query types "
|
|
"listed in the parameter, input should select the operations from:\n"
|
|
"get, put, delete, single_delete, rangle_delete, merge. No space "
|
|
"between the pairs separated by commar. Example: =[get,get]... "
|
|
"It will print out the number of pairs of 'A after B' and "
|
|
"the average time interval between the two query.");
|
|
DEFINE_string(key_space_dir, "",
|
|
"<the directory stores full key space files> \n"
|
|
"The key space files should be: <column family id>.txt");
|
|
DEFINE_bool(analyze_get, false, "Analyze the Get query.");
|
|
DEFINE_bool(analyze_put, false, "Analyze the Put query.");
|
|
DEFINE_bool(analyze_delete, false, "Analyze the Delete query.");
|
|
DEFINE_bool(analyze_single_delete, false, "Analyze the SingleDelete query.");
|
|
DEFINE_bool(analyze_range_delete, false, "Analyze the DeleteRange query.");
|
|
DEFINE_bool(analyze_merge, false, "Analyze the Merge query.");
|
|
DEFINE_bool(analyze_iterator, false,
|
|
" Analyze the iterate query like Seek() and SeekForPrev().");
|
|
DEFINE_bool(analyze_multiget, false,
|
|
" Analyze the MultiGet query. NOTE: for"
|
|
" MultiGet, we analyze each KV-pair read in one MultiGet query. "
|
|
"Therefore, the total queries and QPS are calculated based on "
|
|
"the number of KV-pairs being accessed not the number of MultiGet."
|
|
"It can be improved in the future if needed");
|
|
DEFINE_bool(no_key, false,
|
|
" Does not output the key to the result files to make smaller.");
|
|
DEFINE_bool(print_overall_stats, true,
|
|
" Print the stats of the whole trace, "
|
|
"like total requests, keys, and etc.");
|
|
DEFINE_bool(output_key_distribution, false, "Print the key size distribution.");
|
|
DEFINE_bool(
|
|
output_value_distribution, false,
|
|
"Out put the value size distribution, only available for Put and Merge.\n"
|
|
"File name: <prefix>-<query_type>-<cf_id>"
|
|
"-accessed_value_size_distribution.txt\n"
|
|
"Format:[Number_of_value_size_between x and "
|
|
"x+value_interval is: <the count>]");
|
|
DEFINE_int32(print_top_k_access, 1,
|
|
"<top K of the variables to be printed> "
|
|
"Print the top k accessed keys, top k accessed prefix "
|
|
"and etc.");
|
|
DEFINE_int32(output_ignore_count, 0,
|
|
"<threshold>, ignores the access count <= this value, "
|
|
"it will shorter the output.");
|
|
DEFINE_int32(value_interval, 8,
|
|
"To output the value distribution, we need to set the value "
|
|
"intervals and make the statistic of the value size distribution "
|
|
"in different intervals. The default is 8.");
|
|
DEFINE_double(sample_ratio, 1.0,
|
|
"If the trace size is extremely huge or user want to sample "
|
|
"the trace when analyzing, sample ratio can be set (0, 1.0]");
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
const size_t kShadowValueSize = 10;
|
|
|
|
std::map<std::string, int> taOptToIndex = {
|
|
{"get", kGet},
|
|
{"put", kPut},
|
|
{"delete", kDelete},
|
|
{"single_delete", kSingleDelete},
|
|
{"range_delete", kRangeDelete},
|
|
{"merge", kMerge},
|
|
{"iterator_Seek", kIteratorSeek},
|
|
{"iterator_SeekForPrev", kIteratorSeekForPrev},
|
|
{"multiget", kMultiGet}};
|
|
|
|
std::map<int, std::string> taIndexToOpt = {
|
|
{kGet, "get"},
|
|
{kPut, "put"},
|
|
{kDelete, "delete"},
|
|
{kSingleDelete, "single_delete"},
|
|
{kRangeDelete, "range_delete"},
|
|
{kMerge, "merge"},
|
|
{kIteratorSeek, "iterator_Seek"},
|
|
{kIteratorSeekForPrev, "iterator_SeekForPrev"},
|
|
{kMultiGet, "multiget"}};
|
|
|
|
namespace {
|
|
|
|
uint64_t MultiplyCheckOverflow(uint64_t op1, uint64_t op2) {
|
|
if (op1 == 0 || op2 == 0) {
|
|
return 0;
|
|
}
|
|
if (std::numeric_limits<uint64_t>::max() / op1 < op2) {
|
|
return op1;
|
|
}
|
|
return (op1 * op2);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// The default constructor of AnalyzerOptions
|
|
AnalyzerOptions::AnalyzerOptions()
|
|
: correlation_map(kTaTypeNum, std::vector<int>(kTaTypeNum, -1)) {}
|
|
|
|
AnalyzerOptions::~AnalyzerOptions() = default;
|
|
|
|
void AnalyzerOptions::SparseCorrelationInput(const std::string& in_str) {
|
|
std::string cur = in_str;
|
|
if (cur.size() == 0) {
|
|
return;
|
|
}
|
|
while (!cur.empty()) {
|
|
if (cur.compare(0, 1, "[") != 0) {
|
|
fprintf(stderr, "Invalid correlation input: %s\n", in_str.c_str());
|
|
exit(1);
|
|
}
|
|
std::string opt1, opt2;
|
|
std::size_t split = cur.find_first_of(',');
|
|
if (split != std::string::npos) {
|
|
opt1 = cur.substr(1, split - 1);
|
|
} else {
|
|
fprintf(stderr, "Invalid correlation input: %s\n", in_str.c_str());
|
|
exit(1);
|
|
}
|
|
std::size_t end = cur.find_first_of(']');
|
|
if (end != std::string::npos) {
|
|
opt2 = cur.substr(split + 1, end - split - 1);
|
|
} else {
|
|
fprintf(stderr, "Invalid correlation input: %s\n", in_str.c_str());
|
|
exit(1);
|
|
}
|
|
cur = cur.substr(end + 1);
|
|
|
|
if (taOptToIndex.find(opt1) != taOptToIndex.end() &&
|
|
taOptToIndex.find(opt2) != taOptToIndex.end()) {
|
|
correlation_list.emplace_back(taOptToIndex[opt1], taOptToIndex[opt2]);
|
|
} else {
|
|
fprintf(stderr, "Invalid correlation input: %s\n", in_str.c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
int sequence = 0;
|
|
for (auto& it : correlation_list) {
|
|
correlation_map[it.first][it.second] = sequence;
|
|
sequence++;
|
|
}
|
|
}
|
|
|
|
// The trace statistic struct constructor
|
|
TraceStats::TraceStats() {
|
|
cf_id = 0;
|
|
cf_name = "0";
|
|
a_count = 0;
|
|
a_key_id = 0;
|
|
a_key_size_sqsum = 0;
|
|
a_key_size_sum = 0;
|
|
a_key_mid = 0;
|
|
a_value_size_sqsum = 0;
|
|
a_value_size_sum = 0;
|
|
a_value_mid = 0;
|
|
a_peak_qps = 0;
|
|
a_ave_qps = 0.0;
|
|
}
|
|
|
|
TraceStats::~TraceStats() = default;
|
|
|
|
// The trace analyzer constructor
|
|
TraceAnalyzer::TraceAnalyzer(std::string& trace_path, std::string& output_path,
|
|
AnalyzerOptions _analyzer_opts)
|
|
: write_batch_ts_(0),
|
|
trace_name_(trace_path),
|
|
output_path_(output_path),
|
|
analyzer_opts_(_analyzer_opts) {
|
|
ROCKSDB_NAMESPACE::EnvOptions env_options;
|
|
env_ = ROCKSDB_NAMESPACE::Env::Default();
|
|
offset_ = 0;
|
|
total_requests_ = 0;
|
|
total_access_keys_ = 0;
|
|
total_gets_ = 0;
|
|
total_writes_ = 0;
|
|
total_seeks_ = 0;
|
|
total_seek_prevs_ = 0;
|
|
total_multigets_ = 0;
|
|
trace_create_time_ = 0;
|
|
begin_time_ = 0;
|
|
end_time_ = 0;
|
|
time_series_start_ = 0;
|
|
cur_time_sec_ = 0;
|
|
if (FLAGS_sample_ratio > 1.0 || FLAGS_sample_ratio <= 0) {
|
|
sample_max_ = 1;
|
|
} else {
|
|
sample_max_ = static_cast<uint32_t>(1.0 / FLAGS_sample_ratio);
|
|
}
|
|
|
|
ta_.resize(kTaTypeNum);
|
|
ta_[kGet].type_name = "get";
|
|
if (FLAGS_analyze_get) {
|
|
ta_[kGet].enabled = true;
|
|
} else {
|
|
ta_[kGet].enabled = false;
|
|
}
|
|
ta_[kPut].type_name = "put";
|
|
if (FLAGS_analyze_put) {
|
|
ta_[kPut].enabled = true;
|
|
} else {
|
|
ta_[kPut].enabled = false;
|
|
}
|
|
ta_[kDelete].type_name = "delete";
|
|
if (FLAGS_analyze_delete) {
|
|
ta_[kDelete].enabled = true;
|
|
} else {
|
|
ta_[kDelete].enabled = false;
|
|
}
|
|
ta_[kSingleDelete].type_name = "single_delete";
|
|
if (FLAGS_analyze_single_delete) {
|
|
ta_[kSingleDelete].enabled = true;
|
|
} else {
|
|
ta_[kSingleDelete].enabled = false;
|
|
}
|
|
ta_[kRangeDelete].type_name = "range_delete";
|
|
if (FLAGS_analyze_range_delete) {
|
|
ta_[kRangeDelete].enabled = true;
|
|
} else {
|
|
ta_[kRangeDelete].enabled = false;
|
|
}
|
|
ta_[kMerge].type_name = "merge";
|
|
if (FLAGS_analyze_merge) {
|
|
ta_[kMerge].enabled = true;
|
|
} else {
|
|
ta_[kMerge].enabled = false;
|
|
}
|
|
ta_[kIteratorSeek].type_name = "iterator_Seek";
|
|
if (FLAGS_analyze_iterator) {
|
|
ta_[kIteratorSeek].enabled = true;
|
|
} else {
|
|
ta_[kIteratorSeek].enabled = false;
|
|
}
|
|
ta_[kIteratorSeekForPrev].type_name = "iterator_SeekForPrev";
|
|
if (FLAGS_analyze_iterator) {
|
|
ta_[kIteratorSeekForPrev].enabled = true;
|
|
} else {
|
|
ta_[kIteratorSeekForPrev].enabled = false;
|
|
}
|
|
ta_[kMultiGet].type_name = "multiget";
|
|
if (FLAGS_analyze_multiget) {
|
|
ta_[kMultiGet].enabled = true;
|
|
} else {
|
|
ta_[kMultiGet].enabled = false;
|
|
}
|
|
for (int i = 0; i < kTaTypeNum; i++) {
|
|
ta_[i].sample_count = 0;
|
|
}
|
|
}
|
|
|
|
TraceAnalyzer::~TraceAnalyzer() = default;
|
|
|
|
// Prepare the processing
|
|
// Initiate the global trace reader and writer here
|
|
Status TraceAnalyzer::PrepareProcessing() {
|
|
Status s;
|
|
// Prepare the trace reader
|
|
if (trace_reader_ == nullptr) {
|
|
s = NewFileTraceReader(env_, env_options_, trace_name_, &trace_reader_);
|
|
} else {
|
|
s = trace_reader_->Reset();
|
|
}
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
// Prepare and open the trace sequence file writer if needed
|
|
if (FLAGS_convert_to_human_readable_trace) {
|
|
std::string trace_sequence_name;
|
|
trace_sequence_name =
|
|
output_path_ + "/" + FLAGS_output_prefix + "-human_readable_trace.txt";
|
|
s = env_->NewWritableFile(trace_sequence_name, &trace_sequence_f_,
|
|
env_options_);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
}
|
|
|
|
// prepare the general QPS file writer
|
|
if (FLAGS_output_qps_stats) {
|
|
std::string qps_stats_name;
|
|
qps_stats_name =
|
|
output_path_ + "/" + FLAGS_output_prefix + "-qps_stats.txt";
|
|
s = env_->NewWritableFile(qps_stats_name, &qps_f_, env_options_);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
qps_stats_name =
|
|
output_path_ + "/" + FLAGS_output_prefix + "-cf_qps_stats.txt";
|
|
s = env_->NewWritableFile(qps_stats_name, &cf_qps_f_, env_options_);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
Status TraceAnalyzer::ReadTraceHeader(Trace* header) {
|
|
assert(header != nullptr);
|
|
std::string encoded_trace;
|
|
// Read the trace head
|
|
Status s = trace_reader_->Read(&encoded_trace);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
|
|
s = TracerHelper::DecodeTrace(encoded_trace, header);
|
|
|
|
if (header->type != kTraceBegin) {
|
|
return Status::Corruption("Corrupted trace file. Incorrect header.");
|
|
}
|
|
if (header->payload.substr(0, kTraceMagic.length()) != kTraceMagic) {
|
|
return Status::Corruption("Corrupted trace file. Incorrect magic.");
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
Status TraceAnalyzer::ReadTraceFooter(Trace* footer) {
|
|
assert(footer != nullptr);
|
|
Status s = ReadTraceRecord(footer);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
if (footer->type != kTraceEnd) {
|
|
return Status::Corruption("Corrupted trace file. Incorrect footer.");
|
|
}
|
|
return s;
|
|
}
|
|
|
|
Status TraceAnalyzer::ReadTraceRecord(Trace* trace) {
|
|
assert(trace != nullptr);
|
|
std::string encoded_trace;
|
|
Status s = trace_reader_->Read(&encoded_trace);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
return TracerHelper::DecodeTrace(encoded_trace, trace);
|
|
}
|
|
|
|
// process the trace itself and redirect the trace content
|
|
// to different operation type handler. With different race
|
|
// format, this function can be changed
|
|
Status TraceAnalyzer::StartProcessing() {
|
|
Status s;
|
|
Trace header;
|
|
s = ReadTraceHeader(&header);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Cannot read the header\n");
|
|
return s;
|
|
}
|
|
// Set the default trace file version as version 0.2
|
|
int trace_file_version = 2;
|
|
s = TracerHelper::ParseTraceHeader(header, &trace_file_version, &db_version_);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
trace_create_time_ = header.ts;
|
|
if (FLAGS_output_time_series) {
|
|
time_series_start_ = header.ts;
|
|
}
|
|
|
|
Trace trace;
|
|
std::unique_ptr<TraceRecord> record;
|
|
while (s.ok()) {
|
|
trace.reset();
|
|
s = ReadTraceRecord(&trace);
|
|
if (!s.ok()) {
|
|
break;
|
|
}
|
|
|
|
end_time_ = trace.ts;
|
|
if (trace.type == kTraceEnd) {
|
|
break;
|
|
}
|
|
// Do not count TraceEnd (if there is one)
|
|
total_requests_++;
|
|
|
|
s = TracerHelper::DecodeTraceRecord(&trace, trace_file_version, &record);
|
|
if (s.IsNotSupported()) {
|
|
continue;
|
|
}
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
s = record->Accept(this, nullptr);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Cannot process the TraceRecord\n");
|
|
return s;
|
|
}
|
|
}
|
|
if (s.IsIncomplete()) {
|
|
// Fix it: Reaching eof returns Incomplete status at the moment.
|
|
return Status::OK();
|
|
}
|
|
return s;
|
|
}
|
|
|
|
// After the trace is processed by StartProcessing, the statistic data
|
|
// is stored in the map or other in memory data structures. To get the
|
|
// other statistic result such as key size distribution, value size
|
|
// distribution, these data structures are re-processed here.
|
|
Status TraceAnalyzer::MakeStatistics() {
|
|
int ret;
|
|
Status s;
|
|
for (int type = 0; type < kTaTypeNum; type++) {
|
|
if (!ta_[type].enabled) {
|
|
continue;
|
|
}
|
|
for (auto& stat : ta_[type].stats) {
|
|
stat.second.a_key_id = 0;
|
|
for (auto& record : stat.second.a_key_stats) {
|
|
record.second.key_id = stat.second.a_key_id;
|
|
stat.second.a_key_id++;
|
|
if (record.second.access_count <=
|
|
static_cast<uint64_t>(FLAGS_output_ignore_count)) {
|
|
continue;
|
|
}
|
|
|
|
// Generate the key access count distribution data
|
|
if (FLAGS_output_access_count_stats) {
|
|
if (stat.second.a_count_stats.find(record.second.access_count) ==
|
|
stat.second.a_count_stats.end()) {
|
|
stat.second.a_count_stats[record.second.access_count] = 1;
|
|
} else {
|
|
stat.second.a_count_stats[record.second.access_count]++;
|
|
}
|
|
}
|
|
|
|
// Generate the key size distribution data
|
|
if (FLAGS_output_key_distribution) {
|
|
if (stat.second.a_key_size_stats.find(record.first.size()) ==
|
|
stat.second.a_key_size_stats.end()) {
|
|
stat.second.a_key_size_stats[record.first.size()] = 1;
|
|
} else {
|
|
stat.second.a_key_size_stats[record.first.size()]++;
|
|
}
|
|
}
|
|
|
|
if (!FLAGS_print_correlation.empty()) {
|
|
s = MakeStatisticCorrelation(stat.second, record.second);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Output the prefix cut or the whole content of the accessed key space
|
|
if (FLAGS_output_key_stats || FLAGS_output_prefix_cut > 0) {
|
|
s = MakeStatisticKeyStatsOrPrefix(stat.second);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
}
|
|
|
|
// output the access count distribution
|
|
if (FLAGS_output_access_count_stats && stat.second.a_count_dist_f) {
|
|
for (auto& record : stat.second.a_count_stats) {
|
|
ret = snprintf(buffer_, sizeof(buffer_),
|
|
"access_count: %" PRIu64 " num: %" PRIu64 "\n",
|
|
record.first, record.second);
|
|
if (ret < 0) {
|
|
return Status::IOError("Format the output failed");
|
|
}
|
|
std::string printout(buffer_);
|
|
s = stat.second.a_count_dist_f->Append(printout);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Write access count distribution file failed\n");
|
|
return s;
|
|
}
|
|
}
|
|
}
|
|
|
|
// find the medium of the key size
|
|
uint64_t k_count = 0;
|
|
bool get_mid = false;
|
|
for (auto& record : stat.second.a_key_size_stats) {
|
|
k_count += record.second;
|
|
if (!get_mid && k_count >= stat.second.a_key_mid) {
|
|
stat.second.a_key_mid = record.first;
|
|
get_mid = true;
|
|
}
|
|
if (FLAGS_output_key_distribution && stat.second.a_key_size_f) {
|
|
ret = snprintf(buffer_, sizeof(buffer_), "%" PRIu64 " %" PRIu64 "\n",
|
|
record.first, record.second);
|
|
if (ret < 0) {
|
|
return Status::IOError("Format output failed");
|
|
}
|
|
std::string printout(buffer_);
|
|
s = stat.second.a_key_size_f->Append(printout);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Write key size distribution file failed\n");
|
|
return s;
|
|
}
|
|
}
|
|
}
|
|
|
|
// output the value size distribution
|
|
uint64_t v_begin = 0, v_end = 0, v_count = 0;
|
|
get_mid = false;
|
|
for (auto& record : stat.second.a_value_size_stats) {
|
|
v_begin = v_end;
|
|
v_end = (record.first + 1) * FLAGS_value_interval;
|
|
v_count += record.second;
|
|
if (!get_mid && v_count >= stat.second.a_count / 2) {
|
|
stat.second.a_value_mid = (v_begin + v_end) / 2;
|
|
get_mid = true;
|
|
}
|
|
if (FLAGS_output_value_distribution && stat.second.a_value_size_f &&
|
|
(type == TraceOperationType::kPut ||
|
|
type == TraceOperationType::kMerge)) {
|
|
ret = snprintf(buffer_, sizeof(buffer_),
|
|
"Number_of_value_size_between %" PRIu64 " and %" PRIu64
|
|
" is: %" PRIu64 "\n",
|
|
v_begin, v_end, record.second);
|
|
if (ret < 0) {
|
|
return Status::IOError("Format output failed");
|
|
}
|
|
std::string printout(buffer_);
|
|
s = stat.second.a_value_size_f->Append(printout);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Write value size distribution file failed\n");
|
|
return s;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make the QPS statistics
|
|
if (FLAGS_output_qps_stats) {
|
|
s = MakeStatisticQPS();
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
// Process the statistics of the key access and
|
|
// prefix of the accessed keys if required
|
|
Status TraceAnalyzer::MakeStatisticKeyStatsOrPrefix(TraceStats& stats) {
|
|
int ret;
|
|
Status s;
|
|
std::string prefix = "0";
|
|
uint64_t prefix_access = 0;
|
|
uint64_t prefix_count = 0;
|
|
uint64_t prefix_succ_access = 0;
|
|
double prefix_ave_access = 0.0;
|
|
stats.a_succ_count = 0;
|
|
for (auto& record : stats.a_key_stats) {
|
|
// write the key access statistic file
|
|
if (!stats.a_key_f) {
|
|
return Status::IOError("Failed to open accessed_key_stats file.");
|
|
}
|
|
stats.a_succ_count += record.second.succ_count;
|
|
double succ_ratio = 0.0;
|
|
if (record.second.access_count > 0) {
|
|
succ_ratio = (static_cast<double>(record.second.succ_count)) /
|
|
record.second.access_count;
|
|
}
|
|
ret = snprintf(buffer_, sizeof(buffer_),
|
|
"%u %zu %" PRIu64 " %" PRIu64 " %f\n", record.second.cf_id,
|
|
record.second.value_size, record.second.key_id,
|
|
record.second.access_count, succ_ratio);
|
|
if (ret < 0) {
|
|
return Status::IOError("Format output failed");
|
|
}
|
|
std::string printout(buffer_);
|
|
s = stats.a_key_f->Append(printout);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Write key access file failed\n");
|
|
return s;
|
|
}
|
|
|
|
// write the prefix cut of the accessed keys
|
|
if (FLAGS_output_prefix_cut > 0 && stats.a_prefix_cut_f) {
|
|
if (record.first.compare(0, FLAGS_output_prefix_cut, prefix) != 0) {
|
|
std::string prefix_out =
|
|
ROCKSDB_NAMESPACE::LDBCommand::StringToHex(prefix);
|
|
if (prefix_count == 0) {
|
|
prefix_ave_access = 0.0;
|
|
} else {
|
|
prefix_ave_access =
|
|
(static_cast<double>(prefix_access)) / prefix_count;
|
|
}
|
|
double prefix_succ_ratio = 0.0;
|
|
if (prefix_access > 0) {
|
|
prefix_succ_ratio =
|
|
(static_cast<double>(prefix_succ_access)) / prefix_access;
|
|
}
|
|
ret =
|
|
snprintf(buffer_, sizeof(buffer_),
|
|
"%" PRIu64 " %" PRIu64 " %" PRIu64 " %f %f %s\n",
|
|
record.second.key_id, prefix_access, prefix_count,
|
|
prefix_ave_access, prefix_succ_ratio, prefix_out.c_str());
|
|
if (ret < 0) {
|
|
return Status::IOError("Format output failed");
|
|
}
|
|
std::string pout(buffer_);
|
|
s = stats.a_prefix_cut_f->Append(pout);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Write accessed key prefix file failed\n");
|
|
return s;
|
|
}
|
|
|
|
// make the top k statistic for the prefix
|
|
if (static_cast<int32_t>(stats.top_k_prefix_access.size()) <
|
|
FLAGS_print_top_k_access) {
|
|
stats.top_k_prefix_access.push(
|
|
std::make_pair(prefix_access, prefix_out));
|
|
} else {
|
|
if (prefix_access > stats.top_k_prefix_access.top().first) {
|
|
stats.top_k_prefix_access.pop();
|
|
stats.top_k_prefix_access.push(
|
|
std::make_pair(prefix_access, prefix_out));
|
|
}
|
|
}
|
|
|
|
if (static_cast<int32_t>(stats.top_k_prefix_ave.size()) <
|
|
FLAGS_print_top_k_access) {
|
|
stats.top_k_prefix_ave.push(
|
|
std::make_pair(prefix_ave_access, prefix_out));
|
|
} else {
|
|
if (prefix_ave_access > stats.top_k_prefix_ave.top().first) {
|
|
stats.top_k_prefix_ave.pop();
|
|
stats.top_k_prefix_ave.push(
|
|
std::make_pair(prefix_ave_access, prefix_out));
|
|
}
|
|
}
|
|
|
|
prefix = record.first.substr(0, FLAGS_output_prefix_cut);
|
|
prefix_access = 0;
|
|
prefix_count = 0;
|
|
prefix_succ_access = 0;
|
|
}
|
|
prefix_access += record.second.access_count;
|
|
prefix_count += 1;
|
|
prefix_succ_access += record.second.succ_count;
|
|
}
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
// Process the statistics of different query type
|
|
// correlations
|
|
Status TraceAnalyzer::MakeStatisticCorrelation(TraceStats& stats,
|
|
StatsUnit& unit) {
|
|
if (stats.correlation_output.size() !=
|
|
analyzer_opts_.correlation_list.size()) {
|
|
return Status::Corruption("Cannot make the statistic of correlation.");
|
|
}
|
|
|
|
for (int i = 0; i < static_cast<int>(analyzer_opts_.correlation_list.size());
|
|
i++) {
|
|
if (i >= static_cast<int>(stats.correlation_output.size()) ||
|
|
i >= static_cast<int>(unit.v_correlation.size())) {
|
|
break;
|
|
}
|
|
stats.correlation_output[i].first += unit.v_correlation[i].count;
|
|
stats.correlation_output[i].second += unit.v_correlation[i].total_ts;
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
// Process the statistics of QPS
|
|
Status TraceAnalyzer::MakeStatisticQPS() {
|
|
if (begin_time_ == 0) {
|
|
begin_time_ = trace_create_time_;
|
|
}
|
|
uint32_t duration =
|
|
static_cast<uint32_t>((end_time_ - begin_time_) / 1000000);
|
|
int ret;
|
|
Status s;
|
|
std::vector<std::vector<uint32_t>> type_qps(
|
|
duration, std::vector<uint32_t>(kTaTypeNum + 1, 0));
|
|
std::vector<uint64_t> qps_sum(kTaTypeNum + 1, 0);
|
|
std::vector<uint32_t> qps_peak(kTaTypeNum + 1, 0);
|
|
qps_ave_.resize(kTaTypeNum + 1);
|
|
|
|
for (int type = 0; type < kTaTypeNum; type++) {
|
|
if (!ta_[type].enabled) {
|
|
continue;
|
|
}
|
|
for (auto& stat : ta_[type].stats) {
|
|
uint32_t time_line = 0;
|
|
uint64_t cf_qps_sum = 0;
|
|
for (auto& time_it : stat.second.a_qps_stats) {
|
|
if (time_it.first >= duration) {
|
|
continue;
|
|
}
|
|
type_qps[time_it.first][kTaTypeNum] += time_it.second;
|
|
type_qps[time_it.first][type] += time_it.second;
|
|
cf_qps_sum += time_it.second;
|
|
if (time_it.second > stat.second.a_peak_qps) {
|
|
stat.second.a_peak_qps = time_it.second;
|
|
}
|
|
if (stat.second.a_qps_f) {
|
|
while (time_line < time_it.first) {
|
|
ret = snprintf(buffer_, sizeof(buffer_), "%u\n", 0);
|
|
if (ret < 0) {
|
|
return Status::IOError("Format the output failed");
|
|
}
|
|
std::string printout(buffer_);
|
|
s = stat.second.a_qps_f->Append(printout);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Write QPS file failed\n");
|
|
return s;
|
|
}
|
|
time_line++;
|
|
}
|
|
ret = snprintf(buffer_, sizeof(buffer_), "%u\n", time_it.second);
|
|
if (ret < 0) {
|
|
return Status::IOError("Format the output failed");
|
|
}
|
|
std::string printout(buffer_);
|
|
s = stat.second.a_qps_f->Append(printout);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Write QPS file failed\n");
|
|
return s;
|
|
}
|
|
if (time_line == time_it.first) {
|
|
time_line++;
|
|
}
|
|
}
|
|
|
|
// Process the top k QPS peaks
|
|
if (FLAGS_output_prefix_cut > 0) {
|
|
if (static_cast<int32_t>(stat.second.top_k_qps_sec.size()) <
|
|
FLAGS_print_top_k_access) {
|
|
stat.second.top_k_qps_sec.push(
|
|
std::make_pair(time_it.second, time_it.first));
|
|
} else {
|
|
if (stat.second.top_k_qps_sec.size() > 0 &&
|
|
stat.second.top_k_qps_sec.top().first < time_it.second) {
|
|
stat.second.top_k_qps_sec.pop();
|
|
stat.second.top_k_qps_sec.push(
|
|
std::make_pair(time_it.second, time_it.first));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (duration == 0) {
|
|
stat.second.a_ave_qps = 0;
|
|
} else {
|
|
stat.second.a_ave_qps = (static_cast<double>(cf_qps_sum)) / duration;
|
|
}
|
|
|
|
// Output the accessed unique key number change overtime
|
|
if (stat.second.a_key_num_f) {
|
|
uint64_t cur_uni_key =
|
|
static_cast<uint64_t>(stat.second.a_key_stats.size());
|
|
double cur_ratio = 0.0;
|
|
uint64_t cur_num = 0;
|
|
for (uint32_t i = 0; i < duration; i++) {
|
|
auto find_time = stat.second.uni_key_num.find(i);
|
|
if (find_time != stat.second.uni_key_num.end()) {
|
|
cur_ratio = (static_cast<double>(find_time->second)) / cur_uni_key;
|
|
cur_num = find_time->second;
|
|
}
|
|
ret = snprintf(buffer_, sizeof(buffer_), "%" PRIu64 " %.12f\n",
|
|
cur_num, cur_ratio);
|
|
if (ret < 0) {
|
|
return Status::IOError("Format the output failed");
|
|
}
|
|
std::string printout(buffer_);
|
|
s = stat.second.a_key_num_f->Append(printout);
|
|
if (!s.ok()) {
|
|
fprintf(stderr,
|
|
"Write accessed unique key number change file failed\n");
|
|
return s;
|
|
}
|
|
}
|
|
}
|
|
|
|
// output the prefix of top k access peak
|
|
if (FLAGS_output_prefix_cut > 0 && stat.second.a_top_qps_prefix_f) {
|
|
while (!stat.second.top_k_qps_sec.empty()) {
|
|
ret = snprintf(buffer_, sizeof(buffer_), "At time: %u with QPS: %u\n",
|
|
stat.second.top_k_qps_sec.top().second,
|
|
stat.second.top_k_qps_sec.top().first);
|
|
if (ret < 0) {
|
|
return Status::IOError("Format the output failed");
|
|
}
|
|
std::string printout(buffer_);
|
|
s = stat.second.a_top_qps_prefix_f->Append(printout);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Write prefix QPS top K file failed\n");
|
|
return s;
|
|
}
|
|
uint32_t qps_time = stat.second.top_k_qps_sec.top().second;
|
|
stat.second.top_k_qps_sec.pop();
|
|
if (stat.second.a_qps_prefix_stats.find(qps_time) !=
|
|
stat.second.a_qps_prefix_stats.end()) {
|
|
for (auto& qps_prefix : stat.second.a_qps_prefix_stats[qps_time]) {
|
|
std::string qps_prefix_out =
|
|
ROCKSDB_NAMESPACE::LDBCommand::StringToHex(qps_prefix.first);
|
|
ret = snprintf(buffer_, sizeof(buffer_),
|
|
"The prefix: %s Access count: %u\n",
|
|
qps_prefix_out.c_str(), qps_prefix.second);
|
|
if (ret < 0) {
|
|
return Status::IOError("Format the output failed");
|
|
}
|
|
std::string pout(buffer_);
|
|
s = stat.second.a_top_qps_prefix_f->Append(pout);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Write prefix QPS top K file failed\n");
|
|
return s;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (qps_f_) {
|
|
for (uint32_t i = 0; i < duration; i++) {
|
|
for (int type = 0; type <= kTaTypeNum; type++) {
|
|
if (type < kTaTypeNum) {
|
|
ret = snprintf(buffer_, sizeof(buffer_), "%u ", type_qps[i][type]);
|
|
} else {
|
|
ret = snprintf(buffer_, sizeof(buffer_), "%u\n", type_qps[i][type]);
|
|
}
|
|
if (ret < 0) {
|
|
return Status::IOError("Format the output failed");
|
|
}
|
|
std::string printout(buffer_);
|
|
s = qps_f_->Append(printout);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
qps_sum[type] += type_qps[i][type];
|
|
if (type_qps[i][type] > qps_peak[type]) {
|
|
qps_peak[type] = type_qps[i][type];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cf_qps_f_) {
|
|
int cfs_size = static_cast<uint32_t>(cfs_.size());
|
|
uint32_t v;
|
|
for (uint32_t i = 0; i < duration; i++) {
|
|
for (int cf = 0; cf < cfs_size; cf++) {
|
|
if (cfs_[cf].cf_qps.find(i) != cfs_[cf].cf_qps.end()) {
|
|
v = cfs_[cf].cf_qps[i];
|
|
} else {
|
|
v = 0;
|
|
}
|
|
if (cf < cfs_size - 1) {
|
|
ret = snprintf(buffer_, sizeof(buffer_), "%u ", v);
|
|
} else {
|
|
ret = snprintf(buffer_, sizeof(buffer_), "%u\n", v);
|
|
}
|
|
if (ret < 0) {
|
|
return Status::IOError("Format the output failed");
|
|
}
|
|
std::string printout(buffer_);
|
|
s = cf_qps_f_->Append(printout);
|
|
if (!s.ok()) {
|
|
return s;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
qps_peak_ = qps_peak;
|
|
for (int type = 0; type <= kTaTypeNum; type++) {
|
|
if (duration == 0) {
|
|
qps_ave_[type] = 0;
|
|
} else {
|
|
qps_ave_[type] = (static_cast<double>(qps_sum[type])) / duration;
|
|
}
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
// In reprocessing, if we have the whole key space
|
|
// we can output the access count of all keys in a cf
|
|
// we can make some statistics of the whole key space
|
|
// also, we output the top k accessed keys here
|
|
Status TraceAnalyzer::ReProcessing() {
|
|
int ret;
|
|
Status s;
|
|
for (auto& cf_it : cfs_) {
|
|
uint32_t cf_id = cf_it.first;
|
|
|
|
// output the time series;
|
|
if (FLAGS_output_time_series) {
|
|
for (int type = 0; type < kTaTypeNum; type++) {
|
|
if (!ta_[type].enabled ||
|
|
ta_[type].stats.find(cf_id) == ta_[type].stats.end()) {
|
|
continue;
|
|
}
|
|
TraceStats& stat = ta_[type].stats[cf_id];
|
|
if (!stat.time_series_f) {
|
|
fprintf(stderr, "Cannot write time_series of '%s' in '%u'\n",
|
|
ta_[type].type_name.c_str(), cf_id);
|
|
continue;
|
|
}
|
|
while (!stat.time_series.empty()) {
|
|
uint64_t key_id = 0;
|
|
auto found = stat.a_key_stats.find(stat.time_series.front().key);
|
|
if (found != stat.a_key_stats.end()) {
|
|
key_id = found->second.key_id;
|
|
}
|
|
ret =
|
|
snprintf(buffer_, sizeof(buffer_), "%u %" PRIu64 " %" PRIu64 "\n",
|
|
stat.time_series.front().type,
|
|
stat.time_series.front().ts, key_id);
|
|
if (ret < 0) {
|
|
return Status::IOError("Format the output failed");
|
|
}
|
|
std::string printout(buffer_);
|
|
s = stat.time_series_f->Append(printout);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Write time series file failed\n");
|
|
return s;
|
|
}
|
|
stat.time_series.pop_front();
|
|
}
|
|
}
|
|
}
|
|
|
|
// process the whole key space if needed
|
|
if (!FLAGS_key_space_dir.empty()) {
|
|
std::string whole_key_path =
|
|
FLAGS_key_space_dir + "/" + std::to_string(cf_id) + ".txt";
|
|
std::string input_key, get_key;
|
|
std::vector<std::string> prefix(kTaTypeNum);
|
|
std::unique_ptr<FSSequentialFile> file;
|
|
|
|
s = env_->GetFileSystem()->NewSequentialFile(
|
|
whole_key_path, FileOptions(env_options_), &file, nullptr);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Cannot open the whole key space file of CF: %u\n",
|
|
cf_id);
|
|
file.reset();
|
|
}
|
|
|
|
if (file) {
|
|
size_t kTraceFileReadaheadSize = 2 * 1024 * 1024;
|
|
LineFileReader lf_reader(
|
|
std::move(file), whole_key_path,
|
|
kTraceFileReadaheadSize /* filereadahead_size */);
|
|
for (cfs_[cf_id].w_count = 0; lf_reader.ReadLine(
|
|
&get_key, Env::IO_TOTAL /* rate_limiter_priority */);
|
|
++cfs_[cf_id].w_count) {
|
|
input_key = ROCKSDB_NAMESPACE::LDBCommand::HexToString(get_key);
|
|
for (int type = 0; type < kTaTypeNum; type++) {
|
|
if (!ta_[type].enabled) {
|
|
continue;
|
|
}
|
|
TraceStats& stat = ta_[type].stats[cf_id];
|
|
if (stat.w_key_f) {
|
|
if (stat.a_key_stats.find(input_key) != stat.a_key_stats.end()) {
|
|
ret = snprintf(buffer_, sizeof(buffer_),
|
|
"%" PRIu64 " %" PRIu64 "\n", cfs_[cf_id].w_count,
|
|
stat.a_key_stats[input_key].access_count);
|
|
if (ret < 0) {
|
|
return Status::IOError("Format the output failed");
|
|
}
|
|
std::string printout(buffer_);
|
|
s = stat.w_key_f->Append(printout);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Write whole key space access file failed\n");
|
|
return s;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Output the prefix cut file of the whole key space
|
|
if (FLAGS_output_prefix_cut > 0 && stat.w_prefix_cut_f) {
|
|
if (input_key.compare(0, FLAGS_output_prefix_cut, prefix[type]) !=
|
|
0) {
|
|
prefix[type] = input_key.substr(0, FLAGS_output_prefix_cut);
|
|
std::string prefix_out =
|
|
ROCKSDB_NAMESPACE::LDBCommand::StringToHex(prefix[type]);
|
|
ret = snprintf(buffer_, sizeof(buffer_), "%" PRIu64 " %s\n",
|
|
cfs_[cf_id].w_count, prefix_out.c_str());
|
|
if (ret < 0) {
|
|
return Status::IOError("Format the output failed");
|
|
}
|
|
std::string printout(buffer_);
|
|
s = stat.w_prefix_cut_f->Append(printout);
|
|
if (!s.ok()) {
|
|
fprintf(stderr,
|
|
"Write whole key space prefix cut file failed\n");
|
|
return s;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make the statistics fo the key size distribution
|
|
if (FLAGS_output_key_distribution) {
|
|
if (cfs_[cf_id].w_key_size_stats.find(input_key.size()) ==
|
|
cfs_[cf_id].w_key_size_stats.end()) {
|
|
cfs_[cf_id].w_key_size_stats[input_key.size()] = 1;
|
|
} else {
|
|
cfs_[cf_id].w_key_size_stats[input_key.size()]++;
|
|
}
|
|
}
|
|
}
|
|
s = lf_reader.GetStatus();
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Read whole key space file failed\n");
|
|
return s;
|
|
}
|
|
}
|
|
}
|
|
|
|
// process the top k accessed keys
|
|
if (FLAGS_print_top_k_access > 0) {
|
|
for (int type = 0; type < kTaTypeNum; type++) {
|
|
if (!ta_[type].enabled ||
|
|
ta_[type].stats.find(cf_id) == ta_[type].stats.end()) {
|
|
continue;
|
|
}
|
|
TraceStats& stat = ta_[type].stats[cf_id];
|
|
for (auto& record : stat.a_key_stats) {
|
|
if (static_cast<int32_t>(stat.top_k_queue.size()) <
|
|
FLAGS_print_top_k_access) {
|
|
stat.top_k_queue.push(
|
|
std::make_pair(record.second.access_count, record.first));
|
|
} else {
|
|
if (record.second.access_count > stat.top_k_queue.top().first) {
|
|
stat.top_k_queue.pop();
|
|
stat.top_k_queue.push(
|
|
std::make_pair(record.second.access_count, record.first));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
// End the processing, print the requested results
|
|
Status TraceAnalyzer::EndProcessing() {
|
|
Status s;
|
|
if (trace_sequence_f_) {
|
|
s = trace_sequence_f_->Close();
|
|
}
|
|
if (FLAGS_no_print) {
|
|
return s;
|
|
}
|
|
PrintStatistics();
|
|
if (s.ok()) {
|
|
s = CloseOutputFiles();
|
|
}
|
|
return s;
|
|
}
|
|
|
|
// Insert the corresponding key statistics to the correct type
|
|
// and correct CF, output the time-series file if needed
|
|
Status TraceAnalyzer::KeyStatsInsertion(const uint32_t& type,
|
|
const uint32_t& cf_id,
|
|
const std::string& key,
|
|
const size_t value_size,
|
|
const uint64_t ts) {
|
|
Status s;
|
|
StatsUnit unit;
|
|
unit.key_id = 0;
|
|
unit.cf_id = cf_id;
|
|
unit.value_size = value_size;
|
|
unit.access_count = 1;
|
|
unit.latest_ts = ts;
|
|
if ((type != TraceOperationType::kGet &&
|
|
type != TraceOperationType::kMultiGet) ||
|
|
value_size > 0) {
|
|
unit.succ_count = 1;
|
|
} else {
|
|
unit.succ_count = 0;
|
|
}
|
|
unit.v_correlation.resize(analyzer_opts_.correlation_list.size());
|
|
for (int i = 0;
|
|
i < (static_cast<int>(analyzer_opts_.correlation_list.size())); i++) {
|
|
unit.v_correlation[i].count = 0;
|
|
unit.v_correlation[i].total_ts = 0;
|
|
}
|
|
std::string prefix;
|
|
if (FLAGS_output_prefix_cut > 0) {
|
|
prefix = key.substr(0, FLAGS_output_prefix_cut);
|
|
}
|
|
|
|
if (begin_time_ == 0) {
|
|
begin_time_ = ts;
|
|
}
|
|
uint32_t time_in_sec;
|
|
if (ts < begin_time_) {
|
|
time_in_sec = 0;
|
|
} else {
|
|
time_in_sec = static_cast<uint32_t>((ts - begin_time_) / 1000000);
|
|
}
|
|
|
|
uint64_t dist_value_size = value_size / FLAGS_value_interval;
|
|
auto found_stats = ta_[type].stats.find(cf_id);
|
|
if (found_stats == ta_[type].stats.end()) {
|
|
ta_[type].stats[cf_id].cf_id = cf_id;
|
|
ta_[type].stats[cf_id].cf_name = std::to_string(cf_id);
|
|
ta_[type].stats[cf_id].a_count = 1;
|
|
ta_[type].stats[cf_id].a_key_id = 0;
|
|
ta_[type].stats[cf_id].a_key_size_sqsum = MultiplyCheckOverflow(
|
|
static_cast<uint64_t>(key.size()), static_cast<uint64_t>(key.size()));
|
|
ta_[type].stats[cf_id].a_key_size_sum = key.size();
|
|
ta_[type].stats[cf_id].a_value_size_sqsum = MultiplyCheckOverflow(
|
|
static_cast<uint64_t>(value_size), static_cast<uint64_t>(value_size));
|
|
ta_[type].stats[cf_id].a_value_size_sum = value_size;
|
|
s = OpenStatsOutputFiles(ta_[type].type_name, ta_[type].stats[cf_id]);
|
|
if (!FLAGS_print_correlation.empty()) {
|
|
s = StatsUnitCorrelationUpdate(unit, type, ts, key);
|
|
}
|
|
ta_[type].stats[cf_id].a_key_stats[key] = unit;
|
|
ta_[type].stats[cf_id].a_value_size_stats[dist_value_size] = 1;
|
|
ta_[type].stats[cf_id].a_qps_stats[time_in_sec] = 1;
|
|
ta_[type].stats[cf_id].correlation_output.resize(
|
|
analyzer_opts_.correlation_list.size());
|
|
if (FLAGS_output_prefix_cut > 0) {
|
|
std::map<std::string, uint32_t> tmp_qps_map;
|
|
tmp_qps_map[prefix] = 1;
|
|
ta_[type].stats[cf_id].a_qps_prefix_stats[time_in_sec] = tmp_qps_map;
|
|
}
|
|
if (time_in_sec != cur_time_sec_) {
|
|
ta_[type].stats[cf_id].uni_key_num[cur_time_sec_] =
|
|
static_cast<uint64_t>(ta_[type].stats[cf_id].a_key_stats.size());
|
|
cur_time_sec_ = time_in_sec;
|
|
}
|
|
} else {
|
|
found_stats->second.a_count++;
|
|
found_stats->second.a_key_size_sqsum += MultiplyCheckOverflow(
|
|
static_cast<uint64_t>(key.size()), static_cast<uint64_t>(key.size()));
|
|
found_stats->second.a_key_size_sum += key.size();
|
|
found_stats->second.a_value_size_sqsum += MultiplyCheckOverflow(
|
|
static_cast<uint64_t>(value_size), static_cast<uint64_t>(value_size));
|
|
found_stats->second.a_value_size_sum += value_size;
|
|
auto found_key = found_stats->second.a_key_stats.find(key);
|
|
if (found_key == found_stats->second.a_key_stats.end()) {
|
|
found_stats->second.a_key_stats[key] = unit;
|
|
} else {
|
|
found_key->second.access_count++;
|
|
if (type != TraceOperationType::kGet || value_size > 0) {
|
|
found_key->second.succ_count++;
|
|
}
|
|
if (!FLAGS_print_correlation.empty()) {
|
|
s = StatsUnitCorrelationUpdate(found_key->second, type, ts, key);
|
|
}
|
|
}
|
|
if (time_in_sec != cur_time_sec_) {
|
|
found_stats->second.uni_key_num[cur_time_sec_] =
|
|
static_cast<uint64_t>(found_stats->second.a_key_stats.size());
|
|
cur_time_sec_ = time_in_sec;
|
|
}
|
|
|
|
auto found_value =
|
|
found_stats->second.a_value_size_stats.find(dist_value_size);
|
|
if (found_value == found_stats->second.a_value_size_stats.end()) {
|
|
found_stats->second.a_value_size_stats[dist_value_size] = 1;
|
|
} else {
|
|
found_value->second++;
|
|
}
|
|
|
|
auto found_qps = found_stats->second.a_qps_stats.find(time_in_sec);
|
|
if (found_qps == found_stats->second.a_qps_stats.end()) {
|
|
found_stats->second.a_qps_stats[time_in_sec] = 1;
|
|
} else {
|
|
found_qps->second++;
|
|
}
|
|
|
|
if (FLAGS_output_prefix_cut > 0) {
|
|
auto found_qps_prefix =
|
|
found_stats->second.a_qps_prefix_stats.find(time_in_sec);
|
|
if (found_qps_prefix == found_stats->second.a_qps_prefix_stats.end()) {
|
|
std::map<std::string, uint32_t> tmp_qps_map;
|
|
found_stats->second.a_qps_prefix_stats[time_in_sec] = tmp_qps_map;
|
|
}
|
|
if (found_stats->second.a_qps_prefix_stats[time_in_sec].find(prefix) ==
|
|
found_stats->second.a_qps_prefix_stats[time_in_sec].end()) {
|
|
found_stats->second.a_qps_prefix_stats[time_in_sec][prefix] = 1;
|
|
} else {
|
|
found_stats->second.a_qps_prefix_stats[time_in_sec][prefix]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cfs_.find(cf_id) == cfs_.end()) {
|
|
CfUnit cf_unit;
|
|
cf_unit.cf_id = cf_id;
|
|
cf_unit.w_count = 0;
|
|
cf_unit.a_count = 0;
|
|
cfs_[cf_id] = cf_unit;
|
|
}
|
|
|
|
if (FLAGS_output_qps_stats) {
|
|
cfs_[cf_id].cf_qps[time_in_sec]++;
|
|
}
|
|
|
|
if (FLAGS_output_time_series) {
|
|
TraceUnit trace_u;
|
|
trace_u.type = type;
|
|
trace_u.key = key;
|
|
trace_u.value_size = value_size;
|
|
trace_u.ts = (ts - time_series_start_) / 1000000;
|
|
trace_u.cf_id = cf_id;
|
|
ta_[type].stats[cf_id].time_series.push_back(trace_u);
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
// Update the correlation unit of each key if enabled
|
|
Status TraceAnalyzer::StatsUnitCorrelationUpdate(StatsUnit& unit,
|
|
const uint32_t& type_second,
|
|
const uint64_t& ts,
|
|
const std::string& key) {
|
|
if (type_second >= kTaTypeNum) {
|
|
fprintf(stderr, "Unknown Type Id: %u\n", type_second);
|
|
return Status::NotFound();
|
|
}
|
|
|
|
for (int type_first = 0; type_first < kTaTypeNum; type_first++) {
|
|
if (type_first >= static_cast<int>(ta_.size()) ||
|
|
type_first >= static_cast<int>(analyzer_opts_.correlation_map.size())) {
|
|
break;
|
|
}
|
|
if (analyzer_opts_.correlation_map[type_first][type_second] < 0 ||
|
|
ta_[type_first].stats.find(unit.cf_id) == ta_[type_first].stats.end() ||
|
|
ta_[type_first].stats[unit.cf_id].a_key_stats.find(key) ==
|
|
ta_[type_first].stats[unit.cf_id].a_key_stats.end() ||
|
|
ta_[type_first].stats[unit.cf_id].a_key_stats[key].latest_ts == ts) {
|
|
continue;
|
|
}
|
|
|
|
int correlation_id =
|
|
analyzer_opts_.correlation_map[type_first][type_second];
|
|
|
|
// after get the x-y operation time or x, update;
|
|
if (correlation_id < 0 ||
|
|
correlation_id >= static_cast<int>(unit.v_correlation.size())) {
|
|
continue;
|
|
}
|
|
unit.v_correlation[correlation_id].count++;
|
|
unit.v_correlation[correlation_id].total_ts +=
|
|
(ts - ta_[type_first].stats[unit.cf_id].a_key_stats[key].latest_ts);
|
|
}
|
|
|
|
unit.latest_ts = ts;
|
|
return Status::OK();
|
|
}
|
|
|
|
// when a new trace statistic is created, the file handler
|
|
// pointers should be initiated if needed according to
|
|
// the trace analyzer options
|
|
Status TraceAnalyzer::OpenStatsOutputFiles(const std::string& type,
|
|
TraceStats& new_stats) {
|
|
Status s;
|
|
if (FLAGS_output_key_stats) {
|
|
s = CreateOutputFile(type, new_stats.cf_name, "accessed_key_stats.txt",
|
|
&new_stats.a_key_f);
|
|
s = CreateOutputFile(type, new_stats.cf_name,
|
|
"accessed_unique_key_num_change.txt",
|
|
&new_stats.a_key_num_f);
|
|
if (!FLAGS_key_space_dir.empty()) {
|
|
s = CreateOutputFile(type, new_stats.cf_name, "whole_key_stats.txt",
|
|
&new_stats.w_key_f);
|
|
}
|
|
}
|
|
|
|
if (FLAGS_output_access_count_stats) {
|
|
s = CreateOutputFile(type, new_stats.cf_name,
|
|
"accessed_key_count_distribution.txt",
|
|
&new_stats.a_count_dist_f);
|
|
}
|
|
|
|
if (FLAGS_output_prefix_cut > 0) {
|
|
s = CreateOutputFile(type, new_stats.cf_name, "accessed_key_prefix_cut.txt",
|
|
&new_stats.a_prefix_cut_f);
|
|
if (!FLAGS_key_space_dir.empty()) {
|
|
s = CreateOutputFile(type, new_stats.cf_name, "whole_key_prefix_cut.txt",
|
|
&new_stats.w_prefix_cut_f);
|
|
}
|
|
|
|
if (FLAGS_output_qps_stats) {
|
|
s = CreateOutputFile(type, new_stats.cf_name,
|
|
"accessed_top_k_qps_prefix_cut.txt",
|
|
&new_stats.a_top_qps_prefix_f);
|
|
}
|
|
}
|
|
|
|
if (FLAGS_output_time_series) {
|
|
s = CreateOutputFile(type, new_stats.cf_name, "time_series.txt",
|
|
&new_stats.time_series_f);
|
|
}
|
|
|
|
if (FLAGS_output_value_distribution) {
|
|
s = CreateOutputFile(type, new_stats.cf_name,
|
|
"accessed_value_size_distribution.txt",
|
|
&new_stats.a_value_size_f);
|
|
}
|
|
|
|
if (FLAGS_output_key_distribution) {
|
|
s = CreateOutputFile(type, new_stats.cf_name,
|
|
"accessed_key_size_distribution.txt",
|
|
&new_stats.a_key_size_f);
|
|
}
|
|
|
|
if (FLAGS_output_qps_stats) {
|
|
s = CreateOutputFile(type, new_stats.cf_name, "qps_stats.txt",
|
|
&new_stats.a_qps_f);
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
// create the output path of the files to be opened
|
|
Status TraceAnalyzer::CreateOutputFile(
|
|
const std::string& type, const std::string& cf_name,
|
|
const std::string& ending,
|
|
std::unique_ptr<ROCKSDB_NAMESPACE::WritableFile>* f_ptr) {
|
|
std::string path;
|
|
path = output_path_ + "/" + FLAGS_output_prefix + "-" + type + "-" + cf_name +
|
|
"-" + ending;
|
|
Status s;
|
|
s = env_->NewWritableFile(path, f_ptr, env_options_);
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Cannot open file: %s\n", path.c_str());
|
|
exit(1);
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
// Close the output files in the TraceStats if they are opened
|
|
Status TraceAnalyzer::CloseOutputFiles() {
|
|
Status s;
|
|
for (int type = 0; type < kTaTypeNum; type++) {
|
|
if (!ta_[type].enabled) {
|
|
continue;
|
|
}
|
|
for (auto& stat : ta_[type].stats) {
|
|
if (s.ok() && stat.second.time_series_f) {
|
|
s = stat.second.time_series_f->Close();
|
|
}
|
|
|
|
if (s.ok() && stat.second.a_key_f) {
|
|
s = stat.second.a_key_f->Close();
|
|
}
|
|
|
|
if (s.ok() && stat.second.a_key_num_f) {
|
|
s = stat.second.a_key_num_f->Close();
|
|
}
|
|
|
|
if (s.ok() && stat.second.a_count_dist_f) {
|
|
s = stat.second.a_count_dist_f->Close();
|
|
}
|
|
|
|
if (s.ok() && stat.second.a_prefix_cut_f) {
|
|
s = stat.second.a_prefix_cut_f->Close();
|
|
}
|
|
|
|
if (s.ok() && stat.second.a_value_size_f) {
|
|
s = stat.second.a_value_size_f->Close();
|
|
}
|
|
|
|
if (s.ok() && stat.second.a_key_size_f) {
|
|
s = stat.second.a_key_size_f->Close();
|
|
}
|
|
|
|
if (s.ok() && stat.second.a_qps_f) {
|
|
s = stat.second.a_qps_f->Close();
|
|
}
|
|
|
|
if (s.ok() && stat.second.a_top_qps_prefix_f) {
|
|
s = stat.second.a_top_qps_prefix_f->Close();
|
|
}
|
|
|
|
if (s.ok() && stat.second.w_key_f) {
|
|
s = stat.second.w_key_f->Close();
|
|
}
|
|
if (s.ok() && stat.second.w_prefix_cut_f) {
|
|
s = stat.second.w_prefix_cut_f->Close();
|
|
}
|
|
}
|
|
}
|
|
return s;
|
|
}
|
|
|
|
Status TraceAnalyzer::Handle(const WriteQueryTraceRecord& record,
|
|
std::unique_ptr<TraceRecordResult>* /*result*/) {
|
|
total_writes_++;
|
|
// Note that, if the write happens in a transaction,
|
|
// 'Write' will be called twice, one for Prepare, one for
|
|
// Commit. Thus, in the trace, for the same WriteBatch, there
|
|
// will be two records if it is in a transaction. Here, we only
|
|
// process the reord that is committed. If write is non-transaction,
|
|
// HasBeginPrepare()==false, so we process it normally.
|
|
WriteBatch batch(record.GetWriteBatchRep().ToString());
|
|
if (batch.Count() == 0 || (batch.HasBeginPrepare() && !batch.HasCommit())) {
|
|
return Status::OK();
|
|
}
|
|
write_batch_ts_ = record.GetTimestamp();
|
|
|
|
// write_result_ will be updated in batch's handler during iteration.
|
|
Status s = batch.Iterate(this);
|
|
write_batch_ts_ = 0;
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "Cannot process the write batch in the trace\n");
|
|
return s;
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
Status TraceAnalyzer::Handle(const GetQueryTraceRecord& record,
|
|
std::unique_ptr<TraceRecordResult>* /*result*/) {
|
|
total_gets_++;
|
|
return OutputAnalysisResult(TraceOperationType::kGet, record.GetTimestamp(),
|
|
record.GetColumnFamilyID(),
|
|
std::move(record.GetKey()), 0);
|
|
}
|
|
|
|
Status TraceAnalyzer::Handle(const IteratorSeekQueryTraceRecord& record,
|
|
std::unique_ptr<TraceRecordResult>* /*result*/) {
|
|
TraceOperationType op_type;
|
|
if (record.GetSeekType() == IteratorSeekQueryTraceRecord::kSeek) {
|
|
op_type = TraceOperationType::kIteratorSeek;
|
|
total_seeks_++;
|
|
} else {
|
|
op_type = TraceOperationType::kIteratorSeekForPrev;
|
|
total_seek_prevs_++;
|
|
}
|
|
|
|
// To do: shall we add lower/upper bounds?
|
|
|
|
return OutputAnalysisResult(op_type, record.GetTimestamp(),
|
|
record.GetColumnFamilyID(),
|
|
std::move(record.GetKey()), 0);
|
|
}
|
|
|
|
Status TraceAnalyzer::Handle(const MultiGetQueryTraceRecord& record,
|
|
std::unique_ptr<TraceRecordResult>* /*result*/) {
|
|
total_multigets_++;
|
|
|
|
std::vector<uint32_t> cf_ids = record.GetColumnFamilyIDs();
|
|
std::vector<Slice> keys = record.GetKeys();
|
|
std::vector<size_t> value_sizes;
|
|
|
|
// If the size does not match is not the error of tracing and anayzing, we
|
|
// just report it to the user. The analyzing continues.
|
|
if (cf_ids.size() > keys.size()) {
|
|
printf("The CF ID vector size does not match the keys vector size!\n");
|
|
// Make the sure the 2 vectors are of the same (smaller) size.
|
|
cf_ids.resize(keys.size());
|
|
} else if (cf_ids.size() < keys.size()) {
|
|
printf("The CF ID vector size does not match the keys vector size!\n");
|
|
// Make the sure the 2 vectors are of the same (smaller) size.
|
|
keys.resize(cf_ids.size());
|
|
}
|
|
// Now the 2 vectors must be of the same size.
|
|
value_sizes.resize(cf_ids.size(), 0);
|
|
|
|
return OutputAnalysisResult(TraceOperationType::kMultiGet,
|
|
record.GetTimestamp(), std::move(cf_ids),
|
|
std::move(keys), std::move(value_sizes));
|
|
}
|
|
|
|
// Handle the Put request in the write batch of the trace
|
|
Status TraceAnalyzer::PutCF(uint32_t column_family_id, const Slice& key,
|
|
const Slice& value) {
|
|
return OutputAnalysisResult(TraceOperationType::kPut, write_batch_ts_,
|
|
column_family_id, key, value.size());
|
|
}
|
|
|
|
Status TraceAnalyzer::PutEntityCF(uint32_t column_family_id, const Slice& key,
|
|
const Slice& value) {
|
|
return OutputAnalysisResult(TraceOperationType::kPutEntity, write_batch_ts_,
|
|
column_family_id, key, value.size());
|
|
}
|
|
|
|
// Handle the Delete request in the write batch of the trace
|
|
Status TraceAnalyzer::DeleteCF(uint32_t column_family_id, const Slice& key) {
|
|
return OutputAnalysisResult(TraceOperationType::kDelete, write_batch_ts_,
|
|
column_family_id, key, 0);
|
|
}
|
|
|
|
// Handle the SingleDelete request in the write batch of the trace
|
|
Status TraceAnalyzer::SingleDeleteCF(uint32_t column_family_id,
|
|
const Slice& key) {
|
|
return OutputAnalysisResult(TraceOperationType::kSingleDelete,
|
|
write_batch_ts_, column_family_id, key, 0);
|
|
}
|
|
|
|
// Handle the DeleteRange request in the write batch of the trace
|
|
Status TraceAnalyzer::DeleteRangeCF(uint32_t column_family_id,
|
|
const Slice& begin_key,
|
|
const Slice& end_key) {
|
|
return OutputAnalysisResult(TraceOperationType::kRangeDelete, write_batch_ts_,
|
|
{column_family_id, column_family_id},
|
|
{begin_key, end_key}, {0, 0});
|
|
}
|
|
|
|
// Handle the Merge request in the write batch of the trace
|
|
Status TraceAnalyzer::MergeCF(uint32_t column_family_id, const Slice& key,
|
|
const Slice& value) {
|
|
return OutputAnalysisResult(TraceOperationType::kMerge, write_batch_ts_,
|
|
column_family_id, key, value.size());
|
|
}
|
|
|
|
Status TraceAnalyzer::OutputAnalysisResult(TraceOperationType op_type,
|
|
uint64_t timestamp,
|
|
std::vector<uint32_t> cf_ids,
|
|
std::vector<Slice> keys,
|
|
std::vector<size_t> value_sizes) {
|
|
assert(!cf_ids.empty());
|
|
assert(cf_ids.size() == keys.size());
|
|
assert(cf_ids.size() == value_sizes.size());
|
|
|
|
Status s;
|
|
|
|
if (FLAGS_convert_to_human_readable_trace && trace_sequence_f_) {
|
|
// DeleteRane only writes the begin_key.
|
|
size_t cnt =
|
|
op_type == TraceOperationType::kRangeDelete ? 1 : cf_ids.size();
|
|
for (size_t i = 0; i < cnt; i++) {
|
|
s = WriteTraceSequence(op_type, cf_ids[i], keys[i], value_sizes[i],
|
|
timestamp);
|
|
if (!s.ok()) {
|
|
return Status::Corruption("Failed to write the trace sequence to file");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ta_[op_type].sample_count >= sample_max_) {
|
|
ta_[op_type].sample_count = 0;
|
|
}
|
|
if (ta_[op_type].sample_count > 0) {
|
|
ta_[op_type].sample_count++;
|
|
return Status::OK();
|
|
}
|
|
ta_[op_type].sample_count++;
|
|
|
|
if (!ta_[op_type].enabled) {
|
|
return Status::OK();
|
|
}
|
|
|
|
for (size_t i = 0; i < cf_ids.size(); i++) {
|
|
// Get query does not have value part, just give a fixed value 10 for easy
|
|
// calculation.
|
|
s = KeyStatsInsertion(
|
|
op_type, cf_ids[i], keys[i].ToString(),
|
|
value_sizes[i] == 0 ? kShadowValueSize : value_sizes[i], timestamp);
|
|
if (!s.ok()) {
|
|
return Status::Corruption("Failed to insert key statistics");
|
|
}
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
Status TraceAnalyzer::OutputAnalysisResult(TraceOperationType op_type,
|
|
uint64_t timestamp, uint32_t cf_id,
|
|
const Slice& key,
|
|
size_t value_size) {
|
|
return OutputAnalysisResult(
|
|
op_type, timestamp, std::vector<uint32_t>({cf_id}),
|
|
std::vector<Slice>({key}), std::vector<size_t>({value_size}));
|
|
}
|
|
|
|
// Before the analyzer is closed, the requested general statistic results are
|
|
// printed out here. In current stage, these information are not output to
|
|
// the files.
|
|
// -----type
|
|
// |__cf_id
|
|
// |_statistics
|
|
void TraceAnalyzer::PrintStatistics() {
|
|
for (int type = 0; type < kTaTypeNum; type++) {
|
|
if (!ta_[type].enabled) {
|
|
continue;
|
|
}
|
|
ta_[type].total_keys = 0;
|
|
ta_[type].total_access = 0;
|
|
ta_[type].total_succ_access = 0;
|
|
printf("\n################# Operation Type: %s #####################\n",
|
|
ta_[type].type_name.c_str());
|
|
if (qps_ave_.size() == kTaTypeNum + 1) {
|
|
printf("Peak QPS is: %u Average QPS is: %f\n", qps_peak_[type],
|
|
qps_ave_[type]);
|
|
}
|
|
for (auto& stat_it : ta_[type].stats) {
|
|
if (stat_it.second.a_count == 0) {
|
|
continue;
|
|
}
|
|
TraceStats& stat = stat_it.second;
|
|
uint64_t total_a_keys = static_cast<uint64_t>(stat.a_key_stats.size());
|
|
double key_size_ave = 0.0;
|
|
double value_size_ave = 0.0;
|
|
double key_size_vari = 0.0;
|
|
double value_size_vari = 0.0;
|
|
if (stat.a_count > 0) {
|
|
key_size_ave =
|
|
(static_cast<double>(stat.a_key_size_sum)) / stat.a_count;
|
|
value_size_ave =
|
|
(static_cast<double>(stat.a_value_size_sum)) / stat.a_count;
|
|
key_size_vari = std::sqrt((static_cast<double>(stat.a_key_size_sqsum)) /
|
|
stat.a_count -
|
|
key_size_ave * key_size_ave);
|
|
value_size_vari = std::sqrt(
|
|
(static_cast<double>(stat.a_value_size_sqsum)) / stat.a_count -
|
|
value_size_ave * value_size_ave);
|
|
}
|
|
if (value_size_ave == 0.0) {
|
|
stat.a_value_mid = 0;
|
|
}
|
|
cfs_[stat.cf_id].a_count += total_a_keys;
|
|
ta_[type].total_keys += total_a_keys;
|
|
ta_[type].total_access += stat.a_count;
|
|
ta_[type].total_succ_access += stat.a_succ_count;
|
|
printf("*********************************************************\n");
|
|
printf("colume family id: %u\n", stat.cf_id);
|
|
printf("Total number of queries to this cf by %s: %" PRIu64 "\n",
|
|
ta_[type].type_name.c_str(), stat.a_count);
|
|
printf("Total unique keys in this cf: %" PRIu64 "\n", total_a_keys);
|
|
printf("Average key size: %f key size medium: %" PRIu64
|
|
" Key size Variation: %f\n",
|
|
key_size_ave, stat.a_key_mid, key_size_vari);
|
|
if (type == kPut || type == kMerge) {
|
|
printf("Average value size: %f Value size medium: %" PRIu64
|
|
" Value size variation: %f\n",
|
|
value_size_ave, stat.a_value_mid, value_size_vari);
|
|
}
|
|
printf("Peak QPS is: %u Average QPS is: %f\n", stat.a_peak_qps,
|
|
stat.a_ave_qps);
|
|
|
|
// print the top k accessed key and its access count
|
|
if (FLAGS_print_top_k_access > 0) {
|
|
printf("The Top %d keys that are accessed:\n",
|
|
FLAGS_print_top_k_access);
|
|
while (!stat.top_k_queue.empty()) {
|
|
std::string hex_key = ROCKSDB_NAMESPACE::LDBCommand::StringToHex(
|
|
stat.top_k_queue.top().second);
|
|
printf("Access_count: %" PRIu64 " %s\n", stat.top_k_queue.top().first,
|
|
hex_key.c_str());
|
|
stat.top_k_queue.pop();
|
|
}
|
|
}
|
|
|
|
// print the top k access prefix range and
|
|
// top k prefix range with highest average access per key
|
|
if (FLAGS_output_prefix_cut > 0) {
|
|
printf("The Top %d accessed prefix range:\n", FLAGS_print_top_k_access);
|
|
while (!stat.top_k_prefix_access.empty()) {
|
|
printf("Prefix: %s Access count: %" PRIu64 "\n",
|
|
stat.top_k_prefix_access.top().second.c_str(),
|
|
stat.top_k_prefix_access.top().first);
|
|
stat.top_k_prefix_access.pop();
|
|
}
|
|
|
|
printf("The Top %d prefix with highest access per key:\n",
|
|
FLAGS_print_top_k_access);
|
|
while (!stat.top_k_prefix_ave.empty()) {
|
|
printf("Prefix: %s access per key: %f\n",
|
|
stat.top_k_prefix_ave.top().second.c_str(),
|
|
stat.top_k_prefix_ave.top().first);
|
|
stat.top_k_prefix_ave.pop();
|
|
}
|
|
}
|
|
|
|
// print the operation correlations
|
|
if (!FLAGS_print_correlation.empty()) {
|
|
for (int correlation = 0;
|
|
correlation <
|
|
static_cast<int>(analyzer_opts_.correlation_list.size());
|
|
correlation++) {
|
|
printf(
|
|
"The correlation statistics of '%s' after '%s' is:",
|
|
taIndexToOpt[analyzer_opts_.correlation_list[correlation].second]
|
|
.c_str(),
|
|
taIndexToOpt[analyzer_opts_.correlation_list[correlation].first]
|
|
.c_str());
|
|
double correlation_ave = 0.0;
|
|
if (stat.correlation_output[correlation].first > 0) {
|
|
correlation_ave =
|
|
(static_cast<double>(
|
|
stat.correlation_output[correlation].second)) /
|
|
(stat.correlation_output[correlation].first * 1000);
|
|
}
|
|
printf(" total numbers: %" PRIu64 " average time: %f(ms)\n",
|
|
stat.correlation_output[correlation].first, correlation_ave);
|
|
}
|
|
}
|
|
}
|
|
printf("*********************************************************\n");
|
|
printf("Total keys of '%s' is: %" PRIu64 "\n", ta_[type].type_name.c_str(),
|
|
ta_[type].total_keys);
|
|
printf("Total access is: %" PRIu64 "\n", ta_[type].total_access);
|
|
total_access_keys_ += ta_[type].total_keys;
|
|
}
|
|
|
|
// Print the overall statistic information of the trace
|
|
printf("\n*********************************************************\n");
|
|
printf("*********************************************************\n");
|
|
printf("The column family based statistics\n");
|
|
for (auto& cf : cfs_) {
|
|
printf("The column family id: %u\n", cf.first);
|
|
printf("The whole key space key numbers: %" PRIu64 "\n", cf.second.w_count);
|
|
printf("The accessed key space key numbers: %" PRIu64 "\n",
|
|
cf.second.a_count);
|
|
}
|
|
|
|
if (FLAGS_print_overall_stats) {
|
|
printf("\n*********************************************************\n");
|
|
printf("*********************************************************\n");
|
|
if (qps_peak_.size() == kTaTypeNum + 1) {
|
|
printf("Average QPS per second: %f Peak QPS: %u\n", qps_ave_[kTaTypeNum],
|
|
qps_peak_[kTaTypeNum]);
|
|
}
|
|
printf("The statistics related to query number need to times: %u\n",
|
|
sample_max_);
|
|
printf("Total_requests: %" PRIu64 " Total_accessed_keys: %" PRIu64
|
|
" Total_gets: %" PRIu64 " Total_write_batches: %" PRIu64
|
|
" Total_seeks: %" PRIu64 " Total_seek_for_prevs: %" PRIu64
|
|
" Total_multigets: %" PRIu64 "\n",
|
|
total_requests_, total_access_keys_, total_gets_, total_writes_,
|
|
total_seeks_, total_seek_prevs_, total_multigets_);
|
|
for (int type = 0; type < kTaTypeNum; type++) {
|
|
if (!ta_[type].enabled) {
|
|
continue;
|
|
}
|
|
printf("Operation: '%s' has: %" PRIu64 "\n", ta_[type].type_name.c_str(),
|
|
ta_[type].total_access);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Write the trace sequence to file
|
|
Status TraceAnalyzer::WriteTraceSequence(const uint32_t& type,
|
|
const uint32_t& cf_id,
|
|
const Slice& key,
|
|
const size_t value_size,
|
|
const uint64_t ts) {
|
|
std::string hex_key =
|
|
ROCKSDB_NAMESPACE::LDBCommand::StringToHex(key.ToString());
|
|
int ret;
|
|
ret = snprintf(buffer_, sizeof(buffer_), "%u %u %zu %" PRIu64 "\n", type,
|
|
cf_id, value_size, ts);
|
|
if (ret < 0) {
|
|
return Status::IOError("failed to format the output");
|
|
}
|
|
std::string printout(buffer_);
|
|
if (!FLAGS_no_key) {
|
|
printout = hex_key + " " + printout;
|
|
}
|
|
return trace_sequence_f_->Append(printout);
|
|
}
|
|
|
|
// The entrance function of Trace_Analyzer
|
|
int trace_analyzer_tool(int argc, char** argv) {
|
|
std::string trace_path;
|
|
std::string output_path;
|
|
|
|
AnalyzerOptions analyzer_opts;
|
|
|
|
ParseCommandLineFlags(&argc, &argv, true);
|
|
|
|
if (!FLAGS_print_correlation.empty()) {
|
|
analyzer_opts.SparseCorrelationInput(FLAGS_print_correlation);
|
|
}
|
|
|
|
std::unique_ptr<TraceAnalyzer> analyzer(
|
|
new TraceAnalyzer(FLAGS_trace_path, FLAGS_output_dir, analyzer_opts));
|
|
|
|
if (!analyzer) {
|
|
fprintf(stderr, "Cannot initiate the trace analyzer\n");
|
|
exit(1);
|
|
}
|
|
|
|
ROCKSDB_NAMESPACE::Status s = analyzer->PrepareProcessing();
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "%s\n", s.getState());
|
|
fprintf(stderr, "Cannot initiate the trace reader\n");
|
|
exit(1);
|
|
}
|
|
|
|
s = analyzer->StartProcessing();
|
|
if (!s.ok() && !FLAGS_try_process_corrupted_trace) {
|
|
fprintf(stderr, "%s\n", s.getState());
|
|
fprintf(stderr, "Cannot process the trace\n");
|
|
exit(1);
|
|
}
|
|
|
|
s = analyzer->MakeStatistics();
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "%s\n", s.getState());
|
|
analyzer->EndProcessing();
|
|
fprintf(stderr, "Cannot make the statistics\n");
|
|
exit(1);
|
|
}
|
|
|
|
s = analyzer->ReProcessing();
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "%s\n", s.getState());
|
|
fprintf(stderr, "Cannot re-process the trace for more statistics\n");
|
|
analyzer->EndProcessing();
|
|
exit(1);
|
|
}
|
|
|
|
s = analyzer->EndProcessing();
|
|
if (!s.ok()) {
|
|
fprintf(stderr, "%s\n", s.getState());
|
|
fprintf(stderr, "Cannot close the trace analyzer\n");
|
|
exit(1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|
|
#endif // Endif of Gflag
|