mirror of
https://github.com/facebook/rocksdb.git
synced 2024-12-04 20:02:50 +00:00
54cb9c77d9
Summary: The following are risks associated with pointer-to-pointer reinterpret_cast: * Can produce the "wrong result" (crash or memory corruption). IIRC, in theory this can happen for any up-cast or down-cast for a non-standard-layout type, though in practice would only happen for multiple inheritance cases (where the base class pointer might be "inside" the derived object). We don't use multiple inheritance a lot, but we do. * Can mask useful compiler errors upon code change, including converting between unrelated pointer types that you are expecting to be related, and converting between pointer and scalar types unintentionally. I can only think of some obscure cases where static_cast could be troublesome when it compiles as a replacement: * Going through `void*` could plausibly cause unnecessary or broken pointer arithmetic. Suppose we have `struct Derived: public Base1, public Base2`. If we have `Derived*` -> `void*` -> `Base2*` -> `Derived*` through reinterpret casts, this could plausibly work (though technical UB) assuming the `Base2*` is not dereferenced. Changing to static cast could introduce breaking pointer arithmetic. * Unnecessary (but safe) pointer arithmetic could arise in a case like `Derived*` -> `Base2*` -> `Derived*` where before the Base2 pointer might not have been dereferenced. This could potentially affect performance. With some light scripting, I tried replacing pointer-to-pointer reinterpret_casts with static_cast and kept the cases that still compile. Most occurrences of reinterpret_cast have successfully been changed (except for java/ and third-party/). 294 changed, 257 remain. A couple of related interventions included here: * Previously Cache::Handle was not actually derived from in the implementations and just used as a `void*` stand-in with reinterpret_cast. Now there is a relationship to allow static_cast. In theory, this could introduce pointer arithmetic (as described above) but is unlikely without multiple inheritance AND non-empty Cache::Handle. * Remove some unnecessary casts to void* as this is allowed to be implicit (for better or worse). Most of the remaining reinterpret_casts are for converting to/from raw bytes of objects. We could consider better idioms for these patterns in follow-up work. I wish there were a way to implement a template variant of static_cast that would only compile if no pointer arithmetic is generated, but best I can tell, this is not possible. AFAIK the best you could do is a dynamic check that the void* conversion after the static cast is unchanged. Pull Request resolved: https://github.com/facebook/rocksdb/pull/12308 Test Plan: existing tests, CI Reviewed By: ltamasi Differential Revision: D53204947 Pulled By: pdillinger fbshipit-source-id: 9de23e618263b0d5b9820f4e15966876888a16e2
323 lines
11 KiB
C++
323 lines
11 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#pragma once
|
|
|
|
#include <atomic>
|
|
#include <cstdint>
|
|
#include <string>
|
|
|
|
#include "port/lang.h"
|
|
#include "port/port.h"
|
|
#include "rocksdb/advanced_cache.h"
|
|
#include "util/hash.h"
|
|
#include "util/mutexlock.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
// Optional base class for classes implementing the CacheShard concept
|
|
class CacheShardBase {
|
|
public:
|
|
explicit CacheShardBase(CacheMetadataChargePolicy metadata_charge_policy)
|
|
: metadata_charge_policy_(metadata_charge_policy) {}
|
|
|
|
using DeleterFn = Cache::DeleterFn;
|
|
|
|
// Expected by concept CacheShard (TODO with C++20 support)
|
|
// Some Defaults
|
|
std::string GetPrintableOptions() const { return ""; }
|
|
using HashVal = uint64_t;
|
|
using HashCref = uint64_t;
|
|
static inline HashVal ComputeHash(const Slice& key, uint32_t seed) {
|
|
return GetSliceNPHash64(key, seed);
|
|
}
|
|
static inline uint32_t HashPieceForSharding(HashCref hash) {
|
|
return Lower32of64(hash);
|
|
}
|
|
void AppendPrintableOptions(std::string& /*str*/) const {}
|
|
|
|
// Must be provided for concept CacheShard (TODO with C++20 support)
|
|
/*
|
|
struct HandleImpl { // for concept HandleImpl
|
|
HashVal hash;
|
|
HashCref GetHash() const;
|
|
...
|
|
};
|
|
Status Insert(const Slice& key, HashCref hash, Cache::ObjectPtr value,
|
|
const Cache::CacheItemHelper* helper, size_t charge,
|
|
HandleImpl** handle, Cache::Priority priority,
|
|
bool standalone) = 0;
|
|
Handle* CreateStandalone(const Slice& key, HashCref hash, ObjectPtr obj,
|
|
const CacheItemHelper* helper,
|
|
size_t charge, bool allow_uncharged) = 0;
|
|
HandleImpl* Lookup(const Slice& key, HashCref hash,
|
|
const Cache::CacheItemHelper* helper,
|
|
Cache::CreateContext* create_context,
|
|
Cache::Priority priority,
|
|
Statistics* stats) = 0;
|
|
bool Release(HandleImpl* handle, bool useful, bool erase_if_last_ref) = 0;
|
|
bool Ref(HandleImpl* handle) = 0;
|
|
void Erase(const Slice& key, HashCref hash) = 0;
|
|
void SetCapacity(size_t capacity) = 0;
|
|
void SetStrictCapacityLimit(bool strict_capacity_limit) = 0;
|
|
size_t GetUsage() const = 0;
|
|
size_t GetPinnedUsage() const = 0;
|
|
size_t GetOccupancyCount() const = 0;
|
|
size_t GetTableAddressCount() const = 0;
|
|
// Handles iterating over roughly `average_entries_per_lock` entries, using
|
|
// `state` to somehow record where it last ended up. Caller initially uses
|
|
// *state == 0 and implementation sets *state = SIZE_MAX to indicate
|
|
// completion.
|
|
void ApplyToSomeEntries(
|
|
const std::function<void(const Slice& key, ObjectPtr value,
|
|
size_t charge,
|
|
const Cache::CacheItemHelper* helper)>& callback,
|
|
size_t average_entries_per_lock, size_t* state) = 0;
|
|
void EraseUnRefEntries() = 0;
|
|
*/
|
|
|
|
protected:
|
|
const CacheMetadataChargePolicy metadata_charge_policy_;
|
|
};
|
|
|
|
// Portions of ShardedCache that do not depend on the template parameter
|
|
class ShardedCacheBase : public Cache {
|
|
public:
|
|
explicit ShardedCacheBase(const ShardedCacheOptions& opts);
|
|
virtual ~ShardedCacheBase() = default;
|
|
|
|
int GetNumShardBits() const;
|
|
uint32_t GetNumShards() const;
|
|
|
|
uint64_t NewId() override;
|
|
|
|
bool HasStrictCapacityLimit() const override;
|
|
size_t GetCapacity() const override;
|
|
Status GetSecondaryCacheCapacity(size_t& size) const override;
|
|
Status GetSecondaryCachePinnedUsage(size_t& size) const override;
|
|
|
|
using Cache::GetUsage;
|
|
size_t GetUsage(Handle* handle) const override;
|
|
std::string GetPrintableOptions() const override;
|
|
|
|
uint32_t GetHashSeed() const override { return hash_seed_; }
|
|
|
|
protected: // fns
|
|
virtual void AppendPrintableOptions(std::string& str) const = 0;
|
|
size_t GetPerShardCapacity() const;
|
|
size_t ComputePerShardCapacity(size_t capacity) const;
|
|
|
|
protected: // data
|
|
std::atomic<uint64_t> last_id_; // For NewId
|
|
const uint32_t shard_mask_;
|
|
const uint32_t hash_seed_;
|
|
|
|
// Dynamic configuration parameters, guarded by config_mutex_
|
|
bool strict_capacity_limit_;
|
|
size_t capacity_;
|
|
mutable port::Mutex config_mutex_;
|
|
};
|
|
|
|
// Generic cache interface that shards cache by hash of keys. 2^num_shard_bits
|
|
// shards will be created, with capacity split evenly to each of the shards.
|
|
// Keys are typically sharded by the lowest num_shard_bits bits of hash value
|
|
// so that the upper bits of the hash value can keep a stable ordering of
|
|
// table entries even as the table grows (using more upper hash bits).
|
|
// See CacheShardBase above for what is expected of the CacheShard parameter.
|
|
template <class CacheShard>
|
|
class ShardedCache : public ShardedCacheBase {
|
|
public:
|
|
using HashVal = typename CacheShard::HashVal;
|
|
using HashCref = typename CacheShard::HashCref;
|
|
using HandleImpl = typename CacheShard::HandleImpl;
|
|
|
|
explicit ShardedCache(const ShardedCacheOptions& opts)
|
|
: ShardedCacheBase(opts),
|
|
shards_(static_cast<CacheShard*>(port::cacheline_aligned_alloc(
|
|
sizeof(CacheShard) * GetNumShards()))),
|
|
destroy_shards_in_dtor_(false) {}
|
|
|
|
virtual ~ShardedCache() {
|
|
if (destroy_shards_in_dtor_) {
|
|
ForEachShard([](CacheShard* cs) { cs->~CacheShard(); });
|
|
}
|
|
port::cacheline_aligned_free(shards_);
|
|
}
|
|
|
|
CacheShard& GetShard(HashCref hash) {
|
|
return shards_[CacheShard::HashPieceForSharding(hash) & shard_mask_];
|
|
}
|
|
|
|
const CacheShard& GetShard(HashCref hash) const {
|
|
return shards_[CacheShard::HashPieceForSharding(hash) & shard_mask_];
|
|
}
|
|
|
|
void SetCapacity(size_t capacity) override {
|
|
MutexLock l(&config_mutex_);
|
|
capacity_ = capacity;
|
|
auto per_shard = ComputePerShardCapacity(capacity);
|
|
ForEachShard([=](CacheShard* cs) { cs->SetCapacity(per_shard); });
|
|
}
|
|
|
|
void SetStrictCapacityLimit(bool s_c_l) override {
|
|
MutexLock l(&config_mutex_);
|
|
strict_capacity_limit_ = s_c_l;
|
|
ForEachShard(
|
|
[s_c_l](CacheShard* cs) { cs->SetStrictCapacityLimit(s_c_l); });
|
|
}
|
|
|
|
Status Insert(
|
|
const Slice& key, ObjectPtr obj, const CacheItemHelper* helper,
|
|
size_t charge, Handle** handle = nullptr,
|
|
Priority priority = Priority::LOW,
|
|
const Slice& /*compressed_value*/ = Slice(),
|
|
CompressionType /*type*/ = CompressionType::kNoCompression) override {
|
|
assert(helper);
|
|
HashVal hash = CacheShard::ComputeHash(key, hash_seed_);
|
|
auto h_out = reinterpret_cast<HandleImpl**>(handle);
|
|
return GetShard(hash).Insert(key, hash, obj, helper, charge, h_out,
|
|
priority);
|
|
}
|
|
|
|
Handle* CreateStandalone(const Slice& key, ObjectPtr obj,
|
|
const CacheItemHelper* helper, size_t charge,
|
|
bool allow_uncharged) override {
|
|
assert(helper);
|
|
HashVal hash = CacheShard::ComputeHash(key, hash_seed_);
|
|
HandleImpl* result = GetShard(hash).CreateStandalone(
|
|
key, hash, obj, helper, charge, allow_uncharged);
|
|
return static_cast<Handle*>(result);
|
|
}
|
|
|
|
Handle* Lookup(const Slice& key, const CacheItemHelper* helper = nullptr,
|
|
CreateContext* create_context = nullptr,
|
|
Priority priority = Priority::LOW,
|
|
Statistics* stats = nullptr) override {
|
|
HashVal hash = CacheShard::ComputeHash(key, hash_seed_);
|
|
HandleImpl* result = GetShard(hash).Lookup(key, hash, helper,
|
|
create_context, priority, stats);
|
|
return static_cast<Handle*>(result);
|
|
}
|
|
|
|
void Erase(const Slice& key) override {
|
|
HashVal hash = CacheShard::ComputeHash(key, hash_seed_);
|
|
GetShard(hash).Erase(key, hash);
|
|
}
|
|
|
|
bool Release(Handle* handle, bool useful,
|
|
bool erase_if_last_ref = false) override {
|
|
auto h = static_cast<HandleImpl*>(handle);
|
|
return GetShard(h->GetHash()).Release(h, useful, erase_if_last_ref);
|
|
}
|
|
bool Ref(Handle* handle) override {
|
|
auto h = static_cast<HandleImpl*>(handle);
|
|
return GetShard(h->GetHash()).Ref(h);
|
|
}
|
|
bool Release(Handle* handle, bool erase_if_last_ref = false) override {
|
|
return Release(handle, true /*useful*/, erase_if_last_ref);
|
|
}
|
|
using ShardedCacheBase::GetUsage;
|
|
size_t GetUsage() const override {
|
|
return SumOverShards2(&CacheShard::GetUsage);
|
|
}
|
|
size_t GetPinnedUsage() const override {
|
|
return SumOverShards2(&CacheShard::GetPinnedUsage);
|
|
}
|
|
size_t GetOccupancyCount() const override {
|
|
return SumOverShards2(&CacheShard::GetOccupancyCount);
|
|
}
|
|
size_t GetTableAddressCount() const override {
|
|
return SumOverShards2(&CacheShard::GetTableAddressCount);
|
|
}
|
|
void ApplyToAllEntries(
|
|
const std::function<void(const Slice& key, ObjectPtr value, size_t charge,
|
|
const CacheItemHelper* helper)>& callback,
|
|
const ApplyToAllEntriesOptions& opts) override {
|
|
uint32_t num_shards = GetNumShards();
|
|
// Iterate over part of each shard, rotating between shards, to
|
|
// minimize impact on latency of concurrent operations.
|
|
std::unique_ptr<size_t[]> states(new size_t[num_shards]{});
|
|
|
|
size_t aepl = opts.average_entries_per_lock;
|
|
aepl = std::min(aepl, size_t{1});
|
|
|
|
bool remaining_work;
|
|
do {
|
|
remaining_work = false;
|
|
for (uint32_t i = 0; i < num_shards; i++) {
|
|
if (states[i] != SIZE_MAX) {
|
|
shards_[i].ApplyToSomeEntries(callback, aepl, &states[i]);
|
|
remaining_work |= states[i] != SIZE_MAX;
|
|
}
|
|
}
|
|
} while (remaining_work);
|
|
}
|
|
|
|
void EraseUnRefEntries() override {
|
|
ForEachShard([](CacheShard* cs) { cs->EraseUnRefEntries(); });
|
|
}
|
|
|
|
void DisownData() override {
|
|
// Leak data only if that won't generate an ASAN/valgrind warning.
|
|
if (!kMustFreeHeapAllocations) {
|
|
destroy_shards_in_dtor_ = false;
|
|
}
|
|
}
|
|
|
|
protected:
|
|
inline void ForEachShard(const std::function<void(CacheShard*)>& fn) {
|
|
uint32_t num_shards = GetNumShards();
|
|
for (uint32_t i = 0; i < num_shards; i++) {
|
|
fn(shards_ + i);
|
|
}
|
|
}
|
|
|
|
inline void ForEachShard(
|
|
const std::function<void(const CacheShard*)>& fn) const {
|
|
uint32_t num_shards = GetNumShards();
|
|
for (uint32_t i = 0; i < num_shards; i++) {
|
|
fn(shards_ + i);
|
|
}
|
|
}
|
|
|
|
inline size_t SumOverShards(
|
|
const std::function<size_t(CacheShard&)>& fn) const {
|
|
uint32_t num_shards = GetNumShards();
|
|
size_t result = 0;
|
|
for (uint32_t i = 0; i < num_shards; i++) {
|
|
result += fn(shards_[i]);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
inline size_t SumOverShards2(size_t (CacheShard::*fn)() const) const {
|
|
return SumOverShards([fn](CacheShard& cs) { return (cs.*fn)(); });
|
|
}
|
|
|
|
// Must be called exactly once by derived class constructor
|
|
void InitShards(const std::function<void(CacheShard*)>& placement_new) {
|
|
ForEachShard(placement_new);
|
|
destroy_shards_in_dtor_ = true;
|
|
}
|
|
|
|
void AppendPrintableOptions(std::string& str) const override {
|
|
shards_[0].AppendPrintableOptions(str);
|
|
}
|
|
|
|
private:
|
|
CacheShard* const shards_;
|
|
bool destroy_shards_in_dtor_;
|
|
};
|
|
|
|
// 512KB is traditional minimum shard size.
|
|
int GetDefaultCacheShardBits(size_t capacity,
|
|
size_t min_shard_size = 512U * 1024U);
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|