rocksdb/tools/db_bench_tool.cc
anand76 6549b11714 Make Cache a customizable class (#13024)
Summary:
This PR allows a Cache object to be created using the object registry.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/13024

Reviewed By: pdillinger

Differential Revision: D63043233

Pulled By: anand1976

fbshipit-source-id: 5bc3f7c29b35ad62638ff8205451303e2cecea9d
2024-09-20 12:13:19 -07:00

8764 lines
325 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#ifdef GFLAGS
#ifdef NUMA
#include <numa.h>
#endif
#ifndef OS_WIN
#include <unistd.h>
#endif
#include <fcntl.h>
#include <sys/types.h>
#include <cstdio>
#include <cstdlib>
#ifdef __APPLE__
#include <mach/host_info.h>
#include <mach/mach_host.h>
#include <sys/sysctl.h>
#endif
#ifdef __FreeBSD__
#include <sys/sysctl.h>
#endif
#include <atomic>
#include <cinttypes>
#include <condition_variable>
#include <cstddef>
#include <iostream>
#include <memory>
#include <mutex>
#include <optional>
#include <queue>
#include <thread>
#include <unordered_map>
#include "db/db_impl/db_impl.h"
#include "db/malloc_stats.h"
#include "db/version_set.h"
#include "monitoring/histogram.h"
#include "monitoring/statistics_impl.h"
#include "options/cf_options.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/cache.h"
#include "rocksdb/convenience.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/options.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/persistent_cache.h"
#include "rocksdb/rate_limiter.h"
#include "rocksdb/secondary_cache.h"
#include "rocksdb/slice.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/stats_history.h"
#include "rocksdb/table.h"
#include "rocksdb/utilities/backup_engine.h"
#include "rocksdb/utilities/object_registry.h"
#include "rocksdb/utilities/optimistic_transaction_db.h"
#include "rocksdb/utilities/options_type.h"
#include "rocksdb/utilities/options_util.h"
#include "rocksdb/utilities/replayer.h"
#include "rocksdb/utilities/sim_cache.h"
#include "rocksdb/utilities/transaction.h"
#include "rocksdb/utilities/transaction_db.h"
#include "rocksdb/write_batch.h"
#include "test_util/testutil.h"
#include "test_util/transaction_test_util.h"
#include "tools/simulated_hybrid_file_system.h"
#include "util/cast_util.h"
#include "util/compression.h"
#include "util/crc32c.h"
#include "util/file_checksum_helper.h"
#include "util/gflags_compat.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/stderr_logger.h"
#include "util/string_util.h"
#include "util/xxhash.h"
#include "utilities/blob_db/blob_db.h"
#include "utilities/counted_fs.h"
#include "utilities/merge_operators.h"
#include "utilities/merge_operators/bytesxor.h"
#include "utilities/merge_operators/sortlist.h"
#include "utilities/persistent_cache/block_cache_tier.h"
#ifdef MEMKIND
#include "memory/memkind_kmem_allocator.h"
#endif
#ifdef OS_WIN
#include <io.h> // open/close
#endif
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
using GFLAGS_NAMESPACE::RegisterFlagValidator;
using GFLAGS_NAMESPACE::SetUsageMessage;
using GFLAGS_NAMESPACE::SetVersionString;
DEFINE_string(
benchmarks,
"fillseq,"
"fillseqdeterministic,"
"fillsync,"
"fillrandom,"
"filluniquerandomdeterministic,"
"overwrite,"
"readrandom,"
"newiterator,"
"newiteratorwhilewriting,"
"seekrandom,"
"seekrandomwhilewriting,"
"seekrandomwhilemerging,"
"readseq,"
"readreverse,"
"compact,"
"compactall,"
"flush,"
"compact0,"
"compact1,"
"waitforcompaction,"
"multireadrandom,"
"mixgraph,"
"readseq,"
"readtorowcache,"
"readtocache,"
"readreverse,"
"readwhilewriting,"
"readwhilemerging,"
"readwhilescanning,"
"readrandomwriterandom,"
"updaterandom,"
"xorupdaterandom,"
"approximatesizerandom,"
"randomwithverify,"
"fill100K,"
"crc32c,"
"xxhash,"
"xxhash64,"
"xxh3,"
"compress,"
"uncompress,"
"acquireload,"
"fillseekseq,"
"randomtransaction,"
"randomreplacekeys,"
"timeseries,"
"getmergeoperands,",
"readrandomoperands,"
"backup,"
"restore"
"Comma-separated list of operations to run in the specified"
" order. Available benchmarks:\n"
"\tfillseq -- write N values in sequential key"
" order in async mode\n"
"\tfillseqdeterministic -- write N values in the specified"
" key order and keep the shape of the LSM tree\n"
"\tfillrandom -- write N values in random key order in async"
" mode\n"
"\tfilluniquerandomdeterministic -- write N values in a random"
" key order and keep the shape of the LSM tree\n"
"\toverwrite -- overwrite N values in random key order in "
"async mode\n"
"\tfillsync -- write N/1000 values in random key order in "
"sync mode\n"
"\tfill100K -- write N/1000 100K values in random order in"
" async mode\n"
"\tdeleteseq -- delete N keys in sequential order\n"
"\tdeleterandom -- delete N keys in random order\n"
"\treadseq -- read N times sequentially\n"
"\treadtocache -- 1 thread reading database sequentially\n"
"\treadreverse -- read N times in reverse order\n"
"\treadrandom -- read N times in random order\n"
"\treadmissing -- read N missing keys in random order\n"
"\treadwhilewriting -- 1 writer, N threads doing random "
"reads\n"
"\treadwhilemerging -- 1 merger, N threads doing random "
"reads\n"
"\treadwhilescanning -- 1 thread doing full table scan, "
"N threads doing random reads\n"
"\treadrandomwriterandom -- N threads doing random-read, "
"random-write\n"
"\tupdaterandom -- N threads doing read-modify-write for random "
"keys\n"
"\txorupdaterandom -- N threads doing read-XOR-write for "
"random keys\n"
"\tappendrandom -- N threads doing read-modify-write with "
"growing values\n"
"\tmergerandom -- same as updaterandom/appendrandom using merge"
" operator. "
"Must be used with merge_operator\n"
"\treadrandommergerandom -- perform N random read-or-merge "
"operations. Must be used with merge_operator\n"
"\tnewiterator -- repeated iterator creation\n"
"\tseekrandom -- N random seeks, call Next seek_nexts times "
"per seek\n"
"\tseekrandomwhilewriting -- seekrandom and 1 thread doing "
"overwrite\n"
"\tseekrandomwhilemerging -- seekrandom and 1 thread doing "
"merge\n"
"\tcrc32c -- repeated crc32c of <block size> data\n"
"\txxhash -- repeated xxHash of <block size> data\n"
"\txxhash64 -- repeated xxHash64 of <block size> data\n"
"\txxh3 -- repeated XXH3 of <block size> data\n"
"\tacquireload -- load N*1000 times\n"
"\tfillseekseq -- write N values in sequential key, then read "
"them by seeking to each key\n"
"\trandomtransaction -- execute N random transactions and "
"verify correctness\n"
"\trandomreplacekeys -- randomly replaces N keys by deleting "
"the old version and putting the new version\n\n"
"\ttimeseries -- 1 writer generates time series data "
"and multiple readers doing random reads on id\n\n"
"Meta operations:\n"
"\tcompact -- Compact the entire DB; If multiple, randomly choose one\n"
"\tcompactall -- Compact the entire DB\n"
"\tcompact0 -- compact L0 into L1\n"
"\tcompact1 -- compact L1 into L2\n"
"\twaitforcompaction - pause until compaction is (probably) done\n"
"\tflush - flush the memtable\n"
"\tstats -- Print DB stats\n"
"\tresetstats -- Reset DB stats\n"
"\tlevelstats -- Print the number of files and bytes per level\n"
"\tmemstats -- Print memtable stats\n"
"\tsstables -- Print sstable info\n"
"\theapprofile -- Dump a heap profile (if supported by this port)\n"
"\treplay -- replay the trace file specified with trace_file\n"
"\tgetmergeoperands -- Insert lots of merge records which are a list of "
"sorted ints for a key and then compare performance of lookup for another "
"key by doing a Get followed by binary searching in the large sorted list "
"vs doing a GetMergeOperands and binary searching in the operands which "
"are sorted sub-lists. The MergeOperator used is sortlist.h\n"
"\treadrandomoperands -- read random keys using `GetMergeOperands()`. An "
"operation includes a rare but possible retry in case it got "
"`Status::Incomplete()`. This happens upon encountering more keys than "
"have ever been seen by the thread (or eight initially)\n"
"\tbackup -- Create a backup of the current DB and verify that a new backup is corrected. "
"Rate limit can be specified through --backup_rate_limit\n"
"\trestore -- Restore the DB from the latest backup available, rate limit can be specified through --restore_rate_limit\n");
DEFINE_int64(num, 1000000, "Number of key/values to place in database");
DEFINE_int64(numdistinct, 1000,
"Number of distinct keys to use. Used in RandomWithVerify to "
"read/write on fewer keys so that gets are more likely to find the"
" key and puts are more likely to update the same key");
DEFINE_int64(merge_keys, -1,
"Number of distinct keys to use for MergeRandom and "
"ReadRandomMergeRandom. "
"If negative, there will be FLAGS_num keys.");
DEFINE_int32(num_column_families, 1, "Number of Column Families to use.");
DEFINE_int32(
num_hot_column_families, 0,
"Number of Hot Column Families. If more than 0, only write to this "
"number of column families. After finishing all the writes to them, "
"create new set of column families and insert to them. Only used "
"when num_column_families > 1.");
DEFINE_string(column_family_distribution, "",
"Comma-separated list of percentages, where the ith element "
"indicates the probability of an op using the ith column family. "
"The number of elements must be `num_hot_column_families` if "
"specified; otherwise, it must be `num_column_families`. The "
"sum of elements must be 100. E.g., if `num_column_families=4`, "
"and `num_hot_column_families=0`, a valid list could be "
"\"10,20,30,40\".");
DEFINE_int64(reads, -1,
"Number of read operations to do. "
"If negative, do FLAGS_num reads.");
DEFINE_int64(deletes, -1,
"Number of delete operations to do. "
"If negative, do FLAGS_num deletions.");
DEFINE_int32(bloom_locality, 0, "Control bloom filter probes locality");
DEFINE_int64(seed, 0,
"Seed base for random number generators. "
"When 0 it is derived from the current time.");
static std::optional<int64_t> seed_base;
DEFINE_int32(threads, 1, "Number of concurrent threads to run.");
DEFINE_int32(duration, 0,
"Time in seconds for the random-ops tests to run."
" When 0 then num & reads determine the test duration");
DEFINE_string(value_size_distribution_type, "fixed",
"Value size distribution type: fixed, uniform, normal");
DEFINE_int32(value_size, 100, "Size of each value in fixed distribution");
static unsigned int value_size = 100;
DEFINE_int32(value_size_min, 100, "Min size of random value");
DEFINE_int32(value_size_max, 102400, "Max size of random value");
DEFINE_int32(seek_nexts, 0,
"How many times to call Next() after Seek() in "
"fillseekseq, seekrandom, seekrandomwhilewriting and "
"seekrandomwhilemerging");
DEFINE_bool(reverse_iterator, false,
"When true use Prev rather than Next for iterators that do "
"Seek and then Next");
DEFINE_bool(auto_prefix_mode, false, "Set auto_prefix_mode for seek benchmark");
DEFINE_int64(max_scan_distance, 0,
"Used to define iterate_upper_bound (or iterate_lower_bound "
"if FLAGS_reverse_iterator is set to true) when value is nonzero");
DEFINE_bool(use_uint64_comparator, false, "use Uint64 user comparator");
DEFINE_int64(batch_size, 1, "Batch size");
static bool ValidateKeySize(const char* /*flagname*/, int32_t /*value*/) {
return true;
}
static bool ValidateUint32Range(const char* flagname, uint64_t value) {
if (value > std::numeric_limits<uint32_t>::max()) {
fprintf(stderr, "Invalid value for --%s: %lu, overflow\n", flagname,
(unsigned long)value);
return false;
}
return true;
}
DEFINE_int32(key_size, 16, "size of each key");
DEFINE_int32(user_timestamp_size, 0,
"number of bytes in a user-defined timestamp");
DEFINE_int32(num_multi_db, 0,
"Number of DBs used in the benchmark. 0 means single DB.");
DEFINE_double(compression_ratio, 0.5,
"Arrange to generate values that shrink to this fraction of "
"their original size after compression");
DEFINE_double(
overwrite_probability, 0.0,
"Used in 'filluniquerandom' benchmark: for each write operation, "
"we give a probability to perform an overwrite instead. The key used for "
"the overwrite is randomly chosen from the last 'overwrite_window_size' "
"keys previously inserted into the DB. "
"Valid overwrite_probability values: [0.0, 1.0].");
DEFINE_uint32(overwrite_window_size, 1,
"Used in 'filluniquerandom' benchmark. For each write operation,"
" when the overwrite_probability flag is set by the user, the "
"key used to perform an overwrite is randomly chosen from the "
"last 'overwrite_window_size' keys previously inserted into DB. "
"Warning: large values can affect throughput. "
"Valid overwrite_window_size values: [1, kMaxUint32].");
DEFINE_uint64(
disposable_entries_delete_delay, 0,
"Minimum delay in microseconds for the series of Deletes "
"to be issued. When 0 the insertion of the last disposable entry is "
"immediately followed by the issuance of the Deletes. "
"(only compatible with fillanddeleteuniquerandom benchmark).");
DEFINE_uint64(disposable_entries_batch_size, 0,
"Number of consecutively inserted disposable KV entries "
"that will be deleted after 'delete_delay' microseconds. "
"A series of Deletes is always issued once all the "
"disposable KV entries it targets have been inserted "
"into the DB. When 0 no deletes are issued and a "
"regular 'filluniquerandom' benchmark occurs. "
"(only compatible with fillanddeleteuniquerandom benchmark)");
DEFINE_int32(disposable_entries_value_size, 64,
"Size of the values (in bytes) of the entries targeted by "
"selective deletes. "
"(only compatible with fillanddeleteuniquerandom benchmark)");
DEFINE_uint64(
persistent_entries_batch_size, 0,
"Number of KV entries being inserted right before the deletes "
"targeting the disposable KV entries are issued. These "
"persistent keys are not targeted by the deletes, and will always "
"remain valid in the DB. (only compatible with "
"--benchmarks='fillanddeleteuniquerandom' "
"and used when--disposable_entries_batch_size is > 0).");
DEFINE_int32(persistent_entries_value_size, 64,
"Size of the values (in bytes) of the entries not targeted by "
"deletes. (only compatible with "
"--benchmarks='fillanddeleteuniquerandom' "
"and used when--disposable_entries_batch_size is > 0).");
DEFINE_double(read_random_exp_range, 0.0,
"Read random's key will be generated using distribution of "
"num * exp(-r) where r is uniform number from 0 to this value. "
"The larger the number is, the more skewed the reads are. "
"Only used in readrandom and multireadrandom benchmarks.");
DEFINE_bool(histogram, false, "Print histogram of operation timings");
DEFINE_bool(confidence_interval_only, false,
"Print 95% confidence interval upper and lower bounds only for "
"aggregate stats.");
DEFINE_bool(enable_numa, false,
"Make operations aware of NUMA architecture and bind memory "
"and cpus corresponding to nodes together. In NUMA, memory "
"in same node as CPUs are closer when compared to memory in "
"other nodes. Reads can be faster when the process is bound to "
"CPU and memory of same node. Use \"$numactl --hardware\" command "
"to see NUMA memory architecture.");
DEFINE_int64(db_write_buffer_size,
ROCKSDB_NAMESPACE::Options().db_write_buffer_size,
"Number of bytes to buffer in all memtables before compacting");
DEFINE_bool(cost_write_buffer_to_cache, false,
"The usage of memtable is costed to the block cache");
DEFINE_int64(arena_block_size, ROCKSDB_NAMESPACE::Options().arena_block_size,
"The size, in bytes, of one block in arena memory allocation.");
DEFINE_int64(write_buffer_size, ROCKSDB_NAMESPACE::Options().write_buffer_size,
"Number of bytes to buffer in memtable before compacting");
DEFINE_int32(max_write_buffer_number,
ROCKSDB_NAMESPACE::Options().max_write_buffer_number,
"The number of in-memory memtables. Each memtable is of size"
" write_buffer_size bytes.");
DEFINE_int32(min_write_buffer_number_to_merge,
ROCKSDB_NAMESPACE::Options().min_write_buffer_number_to_merge,
"The minimum number of write buffers that will be merged together"
"before writing to storage. This is cheap because it is an"
"in-memory merge. If this feature is not enabled, then all these"
"write buffers are flushed to L0 as separate files and this "
"increases read amplification because a get request has to check"
" in all of these files. Also, an in-memory merge may result in"
" writing less data to storage if there are duplicate records "
" in each of these individual write buffers.");
DEFINE_int32(max_write_buffer_number_to_maintain,
ROCKSDB_NAMESPACE::Options().max_write_buffer_number_to_maintain,
"The total maximum number of write buffers to maintain in memory "
"including copies of buffers that have already been flushed. "
"Unlike max_write_buffer_number, this parameter does not affect "
"flushing. This controls the minimum amount of write history "
"that will be available in memory for conflict checking when "
"Transactions are used. If this value is too low, some "
"transactions may fail at commit time due to not being able to "
"determine whether there were any write conflicts. Setting this "
"value to 0 will cause write buffers to be freed immediately "
"after they are flushed. If this value is set to -1, "
"'max_write_buffer_number' will be used.");
DEFINE_int64(max_write_buffer_size_to_maintain,
ROCKSDB_NAMESPACE::Options().max_write_buffer_size_to_maintain,
"The total maximum size of write buffers to maintain in memory "
"including copies of buffers that have already been flushed. "
"Unlike max_write_buffer_number, this parameter does not affect "
"flushing. This controls the minimum amount of write history "
"that will be available in memory for conflict checking when "
"Transactions are used. If this value is too low, some "
"transactions may fail at commit time due to not being able to "
"determine whether there were any write conflicts. Setting this "
"value to 0 will cause write buffers to be freed immediately "
"after they are flushed. If this value is set to -1, "
"'max_write_buffer_number' will be used.");
DEFINE_int32(max_background_jobs,
ROCKSDB_NAMESPACE::Options().max_background_jobs,
"The maximum number of concurrent background jobs that can occur "
"in parallel.");
DEFINE_int32(num_bottom_pri_threads, 0,
"The number of threads in the bottom-priority thread pool (used "
"by universal compaction only).");
DEFINE_int32(num_high_pri_threads, 0,
"The maximum number of concurrent background compactions"
" that can occur in parallel.");
DEFINE_int32(num_low_pri_threads, 0,
"The maximum number of concurrent background compactions"
" that can occur in parallel.");
DEFINE_int32(max_background_compactions,
ROCKSDB_NAMESPACE::Options().max_background_compactions,
"The maximum number of concurrent background compactions"
" that can occur in parallel.");
DEFINE_uint64(subcompactions, 1,
"For CompactRange, set max_subcompactions for each compaction "
"job in this CompactRange, for auto compactions, this is "
"Maximum number of subcompactions to divide L0-L1 compactions "
"into.");
static const bool FLAGS_subcompactions_dummy __attribute__((__unused__)) =
RegisterFlagValidator(&FLAGS_subcompactions, &ValidateUint32Range);
DEFINE_int32(max_background_flushes,
ROCKSDB_NAMESPACE::Options().max_background_flushes,
"The maximum number of concurrent background flushes"
" that can occur in parallel.");
static ROCKSDB_NAMESPACE::CompactionStyle FLAGS_compaction_style_e;
DEFINE_int32(compaction_style,
(int32_t)ROCKSDB_NAMESPACE::Options().compaction_style,
"style of compaction: level-based, universal and fifo");
static ROCKSDB_NAMESPACE::CompactionPri FLAGS_compaction_pri_e;
DEFINE_int32(compaction_pri,
(int32_t)ROCKSDB_NAMESPACE::Options().compaction_pri,
"priority of files to compaction: by size or by data age");
DEFINE_int32(universal_size_ratio, 0,
"Percentage flexibility while comparing file size "
"(for universal compaction only).");
DEFINE_int32(universal_min_merge_width, 0,
"The minimum number of files in a single compaction run "
"(for universal compaction only).");
DEFINE_int32(universal_max_merge_width, 0,
"The max number of files to compact in universal style "
"compaction");
DEFINE_int32(universal_max_size_amplification_percent, 0,
"The max size amplification for universal style compaction");
DEFINE_int32(universal_compression_size_percent, -1,
"The percentage of the database to compress for universal "
"compaction. -1 means compress everything.");
DEFINE_int32(universal_max_read_amp, -1,
"The limit on the number of sorted runs");
DEFINE_bool(universal_allow_trivial_move, false,
"Allow trivial move in universal compaction.");
DEFINE_bool(universal_incremental, false,
"Enable incremental compactions in universal compaction.");
DEFINE_int32(
universal_stop_style,
(int32_t)ROCKSDB_NAMESPACE::CompactionOptionsUniversal().stop_style,
"Universal compaction stop style.");
DEFINE_int64(cache_size, 32 << 20, // 32MB
"Number of bytes to use as a cache of uncompressed data");
DEFINE_int32(cache_numshardbits, -1,
"Number of shards for the block cache"
" is 2 ** cache_numshardbits. Negative means use default settings."
" This is applied only if FLAGS_cache_size is non-negative.");
DEFINE_double(cache_high_pri_pool_ratio, 0.0,
"Ratio of block cache reserve for high pri blocks. "
"If > 0.0, we also enable "
"cache_index_and_filter_blocks_with_high_priority.");
DEFINE_double(cache_low_pri_pool_ratio, 0.0,
"Ratio of block cache reserve for low pri blocks.");
DEFINE_string(cache_type, "lru_cache", "Type of block cache.");
DEFINE_bool(use_compressed_secondary_cache, false,
"Use the CompressedSecondaryCache as the secondary cache.");
DEFINE_int64(compressed_secondary_cache_size, 32 << 20, // 32MB
"Number of bytes to use as a cache of data");
DEFINE_int32(compressed_secondary_cache_numshardbits, 6,
"Number of shards for the block cache"
" is 2 ** compressed_secondary_cache_numshardbits."
" Negative means use default settings."
" This is applied only if FLAGS_cache_size is non-negative.");
DEFINE_double(compressed_secondary_cache_high_pri_pool_ratio, 0.0,
"Ratio of block cache reserve for high pri blocks. "
"If > 0.0, we also enable "
"cache_index_and_filter_blocks_with_high_priority.");
DEFINE_double(compressed_secondary_cache_low_pri_pool_ratio, 0.0,
"Ratio of block cache reserve for low pri blocks.");
DEFINE_string(compressed_secondary_cache_compression_type, "lz4",
"The compression algorithm to use for large "
"values stored in CompressedSecondaryCache.");
static enum ROCKSDB_NAMESPACE::CompressionType
FLAGS_compressed_secondary_cache_compression_type_e =
ROCKSDB_NAMESPACE::kLZ4Compression;
DEFINE_int32(compressed_secondary_cache_compression_level,
ROCKSDB_NAMESPACE::CompressionOptions().level,
"Compression level. The meaning of this value is library-"
"dependent. If unset, we try to use the default for the library "
"specified in `--compressed_secondary_cache_compression_type`");
DEFINE_uint32(
compressed_secondary_cache_compress_format_version, 2,
"compress_format_version can have two values: "
"compress_format_version == 1 -- decompressed size is not included"
" in the block header."
"compress_format_version == 2 -- decompressed size is included"
" in the block header in varint32 format.");
DEFINE_bool(use_tiered_cache, false,
"If use_compressed_secondary_cache is true and "
"use_tiered_volatile_cache is true, then allocate a tiered cache "
"that distributes cache reservations proportionally over both "
"the caches.");
DEFINE_string(
tiered_adm_policy, "auto",
"Admission policy to use for the secondary cache(s) in the tiered cache. "
"Allowed values are auto, placeholder, allow_cache_hits, and three_queue.");
DEFINE_int64(simcache_size, -1,
"Number of bytes to use as a simcache of "
"uncompressed data. Nagative value disables simcache.");
DEFINE_bool(cache_index_and_filter_blocks, false,
"Cache index/filter blocks in block cache.");
DEFINE_bool(use_cache_jemalloc_no_dump_allocator, false,
"Use JemallocNodumpAllocator for block/blob cache.");
DEFINE_bool(use_cache_memkind_kmem_allocator, false,
"Use memkind kmem allocator for block/blob cache.");
DEFINE_bool(
decouple_partitioned_filters,
ROCKSDB_NAMESPACE::BlockBasedTableOptions().decouple_partitioned_filters,
"Decouple filter partitioning from index partitioning.");
DEFINE_bool(partition_index_and_filters, false,
"Partition index and filter blocks.");
DEFINE_bool(partition_index, false, "Partition index blocks");
DEFINE_bool(index_with_first_key, false, "Include first key in the index");
DEFINE_bool(
optimize_filters_for_memory,
ROCKSDB_NAMESPACE::BlockBasedTableOptions().optimize_filters_for_memory,
"Minimize memory footprint of filters");
DEFINE_int64(
index_shortening_mode, 2,
"mode to shorten index: 0 for no shortening; 1 for only shortening "
"separaters; 2 for shortening shortening and successor");
DEFINE_int64(metadata_block_size,
ROCKSDB_NAMESPACE::BlockBasedTableOptions().metadata_block_size,
"Max partition size when partitioning index/filters");
// The default reduces the overhead of reading time with flash. With HDD, which
// offers much less throughput, however, this number better to be set to 1.
DEFINE_int32(ops_between_duration_checks, 1000,
"Check duration limit every x ops");
DEFINE_bool(pin_l0_filter_and_index_blocks_in_cache, false,
"Pin index/filter blocks of L0 files in block cache.");
DEFINE_bool(
pin_top_level_index_and_filter, false,
"Pin top-level index of partitioned index/filter blocks in block cache.");
DEFINE_int32(block_size,
static_cast<int32_t>(
ROCKSDB_NAMESPACE::BlockBasedTableOptions().block_size),
"Number of bytes in a block.");
DEFINE_int32(format_version,
static_cast<int32_t>(
ROCKSDB_NAMESPACE::BlockBasedTableOptions().format_version),
"Format version of SST files.");
DEFINE_int32(block_restart_interval,
ROCKSDB_NAMESPACE::BlockBasedTableOptions().block_restart_interval,
"Number of keys between restart points "
"for delta encoding of keys in data block.");
DEFINE_int32(
index_block_restart_interval,
ROCKSDB_NAMESPACE::BlockBasedTableOptions().index_block_restart_interval,
"Number of keys between restart points "
"for delta encoding of keys in index block.");
DEFINE_int32(read_amp_bytes_per_bit,
ROCKSDB_NAMESPACE::BlockBasedTableOptions().read_amp_bytes_per_bit,
"Number of bytes per bit to be used in block read-amp bitmap");
DEFINE_bool(
enable_index_compression,
ROCKSDB_NAMESPACE::BlockBasedTableOptions().enable_index_compression,
"Compress the index block");
DEFINE_bool(block_align,
ROCKSDB_NAMESPACE::BlockBasedTableOptions().block_align,
"Align data blocks on page size");
DEFINE_int64(prepopulate_block_cache, 0,
"Pre-populate hot/warm blocks in block cache. 0 to disable and 1 "
"to insert during flush");
DEFINE_uint32(uncache_aggressiveness,
ROCKSDB_NAMESPACE::ColumnFamilyOptions().uncache_aggressiveness,
"Aggressiveness of erasing cache entries that are likely "
"obsolete. 0 = disabled, 1 = minimum, 100 = moderate, 10000 = "
"normal max");
DEFINE_bool(use_data_block_hash_index, false,
"if use kDataBlockBinaryAndHash "
"instead of kDataBlockBinarySearch. "
"This is valid if only we use BlockTable");
DEFINE_double(data_block_hash_table_util_ratio, 0.75,
"util ratio for data block hash index table. "
"This is only valid if use_data_block_hash_index is "
"set to true");
DEFINE_int64(compressed_cache_size, -1,
"Number of bytes to use as a cache of compressed data.");
DEFINE_int64(row_cache_size, 0,
"Number of bytes to use as a cache of individual rows"
" (0 = disabled).");
DEFINE_int32(open_files, ROCKSDB_NAMESPACE::Options().max_open_files,
"Maximum number of files to keep open at the same time"
" (use default if == 0)");
DEFINE_int32(file_opening_threads,
ROCKSDB_NAMESPACE::Options().max_file_opening_threads,
"If open_files is set to -1, this option set the number of "
"threads that will be used to open files during DB::Open()");
DEFINE_uint64(compaction_readahead_size,
ROCKSDB_NAMESPACE::Options().compaction_readahead_size,
"Compaction readahead size");
DEFINE_int32(log_readahead_size, 0, "WAL and manifest readahead size");
DEFINE_int32(random_access_max_buffer_size, 1024 * 1024,
"Maximum windows randomaccess buffer size");
DEFINE_int32(writable_file_max_buffer_size, 1024 * 1024,
"Maximum write buffer for Writable File");
DEFINE_int32(bloom_bits, -1,
"Bloom filter bits per key. Negative means use default."
"Zero disables.");
DEFINE_bool(use_ribbon_filter, false, "Use Ribbon instead of Bloom filter");
DEFINE_double(memtable_bloom_size_ratio, 0,
"Ratio of memtable size used for bloom filter. 0 means no bloom "
"filter.");
DEFINE_bool(memtable_whole_key_filtering, false,
"Try to use whole key bloom filter in memtables.");
DEFINE_bool(memtable_use_huge_page, false,
"Try to use huge page in memtables.");
DEFINE_bool(whole_key_filtering,
ROCKSDB_NAMESPACE::BlockBasedTableOptions().whole_key_filtering,
"Use whole keys (in addition to prefixes) in SST bloom filter.");
DEFINE_bool(use_existing_db, false,
"If true, do not destroy the existing database. If you set this "
"flag and also specify a benchmark that wants a fresh database, "
"that benchmark will fail.");
DEFINE_bool(use_existing_keys, false,
"If true, uses existing keys in the DB, "
"rather than generating new ones. This involves some startup "
"latency to load all keys into memory. It is supported for the "
"same read/overwrite benchmarks as `-use_existing_db=true`, which "
"must also be set for this flag to be enabled. When this flag is "
"set, the value for `-num` will be ignored.");
DEFINE_bool(show_table_properties, false,
"If true, then per-level table"
" properties will be printed on every stats-interval when"
" stats_interval is set and stats_per_interval is on.");
DEFINE_string(db, "", "Use the db with the following name.");
DEFINE_bool(progress_reports, true,
"If true, db_bench will report number of finished operations.");
// Read cache flags
DEFINE_string(read_cache_path, "",
"If not empty string, a read cache will be used in this path");
DEFINE_int64(read_cache_size, 4LL * 1024 * 1024 * 1024,
"Maximum size of the read cache");
DEFINE_bool(read_cache_direct_write, true,
"Whether to use Direct IO for writing to the read cache");
DEFINE_bool(read_cache_direct_read, true,
"Whether to use Direct IO for reading from read cache");
DEFINE_bool(use_keep_filter, false, "Whether to use a noop compaction filter");
static bool ValidateCacheNumshardbits(const char* flagname, int32_t value) {
if (value >= 20) {
fprintf(stderr, "Invalid value for --%s: %d, must be < 20\n", flagname,
value);
return false;
}
return true;
}
DEFINE_bool(verify_checksum, true,
"Verify checksum for every block read from storage");
DEFINE_int32(checksum_type,
ROCKSDB_NAMESPACE::BlockBasedTableOptions().checksum,
"ChecksumType as an int");
DEFINE_bool(statistics, false, "Database statistics");
DEFINE_int32(stats_level, ROCKSDB_NAMESPACE::StatsLevel::kExceptDetailedTimers,
"stats level for statistics");
DEFINE_string(statistics_string, "", "Serialized statistics string");
static class std::shared_ptr<ROCKSDB_NAMESPACE::Statistics> dbstats;
DEFINE_int64(writes, -1,
"Number of write operations to do. If negative, do --num reads.");
DEFINE_bool(finish_after_writes, false,
"Write thread terminates after all writes are finished");
DEFINE_bool(sync, false, "Sync all writes to disk");
DEFINE_bool(use_fsync, false, "If true, issue fsync instead of fdatasync");
DEFINE_bool(disable_wal, false, "If true, do not write WAL for write.");
DEFINE_bool(manual_wal_flush, false,
"If true, buffer WAL until buffer is full or a manual FlushWAL().");
DEFINE_string(wal_compression, "none",
"Algorithm to use for WAL compression. none to disable.");
static enum ROCKSDB_NAMESPACE::CompressionType FLAGS_wal_compression_e =
ROCKSDB_NAMESPACE::kNoCompression;
DEFINE_string(wal_dir, "", "If not empty, use the given dir for WAL");
DEFINE_string(truth_db, "/dev/shm/truth_db/dbbench",
"Truth key/values used when using verify");
DEFINE_int32(num_levels, 7, "The total number of levels");
DEFINE_int64(target_file_size_base,
ROCKSDB_NAMESPACE::Options().target_file_size_base,
"Target file size at level-1");
DEFINE_int32(target_file_size_multiplier,
ROCKSDB_NAMESPACE::Options().target_file_size_multiplier,
"A multiplier to compute target level-N file size (N >= 2)");
DEFINE_uint64(max_bytes_for_level_base,
ROCKSDB_NAMESPACE::Options().max_bytes_for_level_base,
"Max bytes for level-1");
DEFINE_bool(level_compaction_dynamic_level_bytes, false,
"Whether level size base is dynamic");
DEFINE_double(max_bytes_for_level_multiplier, 10,
"A multiplier to compute max bytes for level-N (N >= 2)");
static std::vector<int> FLAGS_max_bytes_for_level_multiplier_additional_v;
DEFINE_string(max_bytes_for_level_multiplier_additional, "",
"A vector that specifies additional fanout per level");
DEFINE_int32(level0_stop_writes_trigger,
ROCKSDB_NAMESPACE::Options().level0_stop_writes_trigger,
"Number of files in level-0 that will trigger put stop.");
DEFINE_int32(level0_slowdown_writes_trigger,
ROCKSDB_NAMESPACE::Options().level0_slowdown_writes_trigger,
"Number of files in level-0 that will slow down writes.");
DEFINE_int32(level0_file_num_compaction_trigger,
ROCKSDB_NAMESPACE::Options().level0_file_num_compaction_trigger,
"Number of files in level-0 when compactions start.");
DEFINE_uint64(periodic_compaction_seconds,
ROCKSDB_NAMESPACE::Options().periodic_compaction_seconds,
"Files older than this will be picked up for compaction and"
" rewritten to the same level");
DEFINE_uint64(ttl_seconds, ROCKSDB_NAMESPACE::Options().ttl, "Set options.ttl");
static bool ValidateInt32Percent(const char* flagname, int32_t value) {
if (value <= 0 || value >= 100) {
fprintf(stderr, "Invalid value for --%s: %d, 0< pct <100 \n", flagname,
value);
return false;
}
return true;
}
DEFINE_int32(readwritepercent, 90,
"Ratio of reads to reads/writes (expressed as percentage) for "
"the ReadRandomWriteRandom workload. The default value 90 means "
"90% operations out of all reads and writes operations are "
"reads. In other words, 9 gets for every 1 put.");
DEFINE_int32(mergereadpercent, 70,
"Ratio of merges to merges&reads (expressed as percentage) for "
"the ReadRandomMergeRandom workload. The default value 70 means "
"70% out of all read and merge operations are merges. In other "
"words, 7 merges for every 3 gets.");
DEFINE_int32(deletepercent, 2,
"Percentage of deletes out of reads/writes/deletes (used in "
"RandomWithVerify only). RandomWithVerify "
"calculates writepercent as (100 - FLAGS_readwritepercent - "
"deletepercent), so deletepercent must be smaller than (100 - "
"FLAGS_readwritepercent)");
DEFINE_bool(optimize_filters_for_hits,
ROCKSDB_NAMESPACE::Options().optimize_filters_for_hits,
"Optimizes bloom filters for workloads for most lookups return "
"a value. For now this doesn't create bloom filters for the max "
"level of the LSM to reduce metadata that should fit in RAM. ");
DEFINE_bool(paranoid_checks, ROCKSDB_NAMESPACE::Options().paranoid_checks,
"RocksDB will aggressively check consistency of the data.");
DEFINE_bool(force_consistency_checks,
ROCKSDB_NAMESPACE::Options().force_consistency_checks,
"Runs consistency checks on the LSM every time a change is "
"applied.");
DEFINE_uint64(delete_obsolete_files_period_micros, 0,
"Ignored. Left here for backward compatibility");
DEFINE_int64(writes_before_delete_range, 0,
"Number of writes before DeleteRange is called regularly.");
DEFINE_int64(writes_per_range_tombstone, 0,
"Number of writes between range tombstones");
DEFINE_int64(range_tombstone_width, 100, "Number of keys in tombstone's range");
DEFINE_int64(max_num_range_tombstones, 0,
"Maximum number of range tombstones to insert.");
DEFINE_bool(expand_range_tombstones, false,
"Expand range tombstone into sequential regular tombstones.");
// Transactions Options
DEFINE_bool(optimistic_transaction_db, false,
"Open a OptimisticTransactionDB instance. "
"Required for randomtransaction benchmark.");
DEFINE_bool(transaction_db, false,
"Open a TransactionDB instance. "
"Required for randomtransaction benchmark.");
DEFINE_uint64(transaction_sets, 2,
"Number of keys each transaction will "
"modify (use in RandomTransaction only). Max: 9999");
DEFINE_bool(transaction_set_snapshot, false,
"Setting to true will have each transaction call SetSnapshot()"
" upon creation.");
DEFINE_int32(transaction_sleep, 0,
"Max microseconds to sleep in between "
"reading and writing a value (used in RandomTransaction only). ");
DEFINE_uint64(transaction_lock_timeout, 100,
"If using a transaction_db, specifies the lock wait timeout in"
" milliseconds before failing a transaction waiting on a lock");
DEFINE_string(
options_file, "",
"The path to a RocksDB options file. If specified, then db_bench will "
"run with the RocksDB options in the default column family of the "
"specified options file. "
"Note that with this setting, db_bench will ONLY accept the following "
"RocksDB options related command-line arguments, all other arguments "
"that are related to RocksDB options will be ignored:\n"
"\t--use_existing_db\n"
"\t--use_existing_keys\n"
"\t--statistics\n"
"\t--row_cache_size\n"
"\t--row_cache_numshardbits\n"
"\t--enable_io_prio\n"
"\t--dump_malloc_stats\n"
"\t--num_multi_db\n");
// FIFO Compaction Options
DEFINE_uint64(fifo_compaction_max_table_files_size_mb, 0,
"The limit of total table file sizes to trigger FIFO compaction");
DEFINE_bool(fifo_compaction_allow_compaction, true,
"Allow compaction in FIFO compaction.");
DEFINE_uint64(fifo_compaction_ttl, 0, "TTL for the SST Files in seconds.");
DEFINE_uint64(fifo_age_for_warm, 0, "age_for_warm for FIFO compaction.");
// Stacked BlobDB Options
DEFINE_bool(use_blob_db, false, "[Stacked BlobDB] Open a BlobDB instance.");
DEFINE_bool(
blob_db_enable_gc,
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().enable_garbage_collection,
"[Stacked BlobDB] Enable BlobDB garbage collection.");
DEFINE_double(
blob_db_gc_cutoff,
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().garbage_collection_cutoff,
"[Stacked BlobDB] Cutoff ratio for BlobDB garbage collection.");
DEFINE_bool(blob_db_is_fifo,
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().is_fifo,
"[Stacked BlobDB] Enable FIFO eviction strategy in BlobDB.");
DEFINE_uint64(blob_db_max_db_size,
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().max_db_size,
"[Stacked BlobDB] Max size limit of the directory where blob "
"files are stored.");
DEFINE_uint64(blob_db_max_ttl_range, 0,
"[Stacked BlobDB] TTL range to generate BlobDB data (in "
"seconds). 0 means no TTL.");
DEFINE_uint64(
blob_db_ttl_range_secs,
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().ttl_range_secs,
"[Stacked BlobDB] TTL bucket size to use when creating blob files.");
DEFINE_uint64(
blob_db_min_blob_size,
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().min_blob_size,
"[Stacked BlobDB] Smallest blob to store in a file. Blobs "
"smaller than this will be inlined with the key in the LSM tree.");
DEFINE_uint64(blob_db_bytes_per_sync,
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().bytes_per_sync,
"[Stacked BlobDB] Bytes to sync blob file at.");
DEFINE_uint64(blob_db_file_size,
ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().blob_file_size,
"[Stacked BlobDB] Target size of each blob file.");
DEFINE_string(
blob_db_compression_type, "snappy",
"[Stacked BlobDB] Algorithm to use to compress blobs in blob files.");
static enum ROCKSDB_NAMESPACE::CompressionType
FLAGS_blob_db_compression_type_e = ROCKSDB_NAMESPACE::kSnappyCompression;
// Integrated BlobDB options
DEFINE_bool(
enable_blob_files,
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().enable_blob_files,
"[Integrated BlobDB] Enable writing large values to separate blob files.");
DEFINE_uint64(min_blob_size,
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().min_blob_size,
"[Integrated BlobDB] The size of the smallest value to be stored "
"separately in a blob file.");
DEFINE_uint64(blob_file_size,
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().blob_file_size,
"[Integrated BlobDB] The size limit for blob files.");
DEFINE_string(blob_compression_type, "none",
"[Integrated BlobDB] The compression algorithm to use for large "
"values stored in blob files.");
DEFINE_bool(enable_blob_garbage_collection,
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions()
.enable_blob_garbage_collection,
"[Integrated BlobDB] Enable blob garbage collection.");
DEFINE_double(blob_garbage_collection_age_cutoff,
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions()
.blob_garbage_collection_age_cutoff,
"[Integrated BlobDB] The cutoff in terms of blob file age for "
"garbage collection.");
DEFINE_double(blob_garbage_collection_force_threshold,
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions()
.blob_garbage_collection_force_threshold,
"[Integrated BlobDB] The threshold for the ratio of garbage in "
"the eligible blob files for forcing garbage collection.");
DEFINE_uint64(blob_compaction_readahead_size,
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions()
.blob_compaction_readahead_size,
"[Integrated BlobDB] Compaction readahead for blob files.");
DEFINE_int32(
blob_file_starting_level,
ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().blob_file_starting_level,
"[Integrated BlobDB] The starting level for blob files.");
DEFINE_bool(use_blob_cache, false, "[Integrated BlobDB] Enable blob cache.");
DEFINE_bool(
use_shared_block_and_blob_cache, true,
"[Integrated BlobDB] Use a shared backing cache for both block "
"cache and blob cache. It only takes effect if use_blob_cache is enabled.");
DEFINE_uint64(
blob_cache_size, 8 << 20,
"[Integrated BlobDB] Number of bytes to use as a cache of blobs. It only "
"takes effect if the block and blob caches are different "
"(use_shared_block_and_blob_cache = false).");
DEFINE_int32(blob_cache_numshardbits, 6,
"[Integrated BlobDB] Number of shards for the blob cache is 2 ** "
"blob_cache_numshardbits. Negative means use default settings. "
"It only takes effect if blob_cache_size is greater than 0, and "
"the block and blob caches are different "
"(use_shared_block_and_blob_cache = false).");
DEFINE_int32(prepopulate_blob_cache, 0,
"[Integrated BlobDB] Pre-populate hot/warm blobs in blob cache. 0 "
"to disable and 1 to insert during flush.");
// Secondary DB instance Options
DEFINE_bool(use_secondary_db, false,
"Open a RocksDB secondary instance. A primary instance can be "
"running in another db_bench process.");
DEFINE_string(secondary_path, "",
"Path to a directory used by the secondary instance to store "
"private files, e.g. info log.");
DEFINE_int32(secondary_update_interval, 5,
"Secondary instance attempts to catch up with the primary every "
"secondary_update_interval seconds.");
DEFINE_bool(open_as_follower, false,
"Open a RocksDB DB as a follower. The leader instance can be "
"running in another db_bench process.");
DEFINE_string(leader_path, "", "Path to the directory of the leader DB");
DEFINE_bool(report_bg_io_stats, false,
"Measure times spents on I/Os while in compactions. ");
DEFINE_bool(use_stderr_info_logger, false,
"Write info logs to stderr instead of to LOG file. ");
DEFINE_string(trace_file, "", "Trace workload to a file. ");
DEFINE_double(trace_replay_fast_forward, 1.0,
"Fast forward trace replay, must > 0.0.");
DEFINE_int32(block_cache_trace_sampling_frequency, 1,
"Block cache trace sampling frequency, termed s. It uses spatial "
"downsampling and samples accesses to one out of s blocks.");
DEFINE_int64(
block_cache_trace_max_trace_file_size_in_bytes,
uint64_t{64} * 1024 * 1024 * 1024,
"The maximum block cache trace file size in bytes. Block cache accesses "
"will not be logged if the trace file size exceeds this threshold. Default "
"is 64 GB.");
DEFINE_string(block_cache_trace_file, "", "Block cache trace file path.");
DEFINE_int32(trace_replay_threads, 1,
"The number of threads to replay, must >=1.");
DEFINE_bool(io_uring_enabled, true,
"If true, enable the use of IO uring if the platform supports it");
extern "C" bool RocksDbIOUringEnable() { return FLAGS_io_uring_enabled; }
DEFINE_bool(adaptive_readahead, false,
"carry forward internal auto readahead size from one file to next "
"file at each level during iteration");
DEFINE_bool(rate_limit_user_ops, false,
"When true use Env::IO_USER priority level to charge internal rate "
"limiter for reads associated with user operations.");
DEFINE_bool(file_checksum, false,
"When true use FileChecksumGenCrc32cFactory for "
"file_checksum_gen_factory.");
DEFINE_bool(rate_limit_auto_wal_flush, false,
"When true use Env::IO_USER priority level to charge internal rate "
"limiter for automatic WAL flush (`Options::manual_wal_flush` == "
"false) after the user write operation.");
DEFINE_bool(async_io, false,
"When set true, RocksDB does asynchronous reads for internal auto "
"readahead prefetching.");
DEFINE_bool(optimize_multiget_for_io, true,
"When set true, RocksDB does asynchronous reads for SST files in "
"multiple levels for MultiGet.");
DEFINE_bool(charge_compression_dictionary_building_buffer, false,
"Setting for "
"CacheEntryRoleOptions::charged of "
"CacheEntryRole::kCompressionDictionaryBuildingBuffer");
DEFINE_bool(charge_filter_construction, false,
"Setting for "
"CacheEntryRoleOptions::charged of "
"CacheEntryRole::kFilterConstruction");
DEFINE_bool(charge_table_reader, false,
"Setting for "
"CacheEntryRoleOptions::charged of "
"CacheEntryRole::kBlockBasedTableReader");
DEFINE_bool(charge_file_metadata, false,
"Setting for "
"CacheEntryRoleOptions::charged of "
"CacheEntryRole::kFileMetadata");
DEFINE_bool(charge_blob_cache, false,
"Setting for "
"CacheEntryRoleOptions::charged of "
"CacheEntryRole::kBlobCache");
DEFINE_uint64(backup_rate_limit, 0ull,
"If non-zero, db_bench will rate limit reads and writes for DB "
"backup. This "
"is the global rate in ops/second.");
DEFINE_uint64(restore_rate_limit, 0ull,
"If non-zero, db_bench will rate limit reads and writes for DB "
"restore. This "
"is the global rate in ops/second.");
DEFINE_string(backup_dir, "",
"If not empty string, use the given dir for backup.");
DEFINE_string(restore_dir, "",
"If not empty string, use the given dir for restore.");
DEFINE_uint64(
initial_auto_readahead_size,
ROCKSDB_NAMESPACE::BlockBasedTableOptions().initial_auto_readahead_size,
"RocksDB does auto-readahead for iterators on noticing more than two reads "
"for a table file if user doesn't provide readahead_size. The readahead "
"size starts at initial_auto_readahead_size");
DEFINE_uint64(
max_auto_readahead_size,
ROCKSDB_NAMESPACE::BlockBasedTableOptions().max_auto_readahead_size,
"Rocksdb implicit readahead starts at "
"BlockBasedTableOptions.initial_auto_readahead_size and doubles on every "
"additional read upto max_auto_readahead_size");
DEFINE_uint64(
num_file_reads_for_auto_readahead,
ROCKSDB_NAMESPACE::BlockBasedTableOptions()
.num_file_reads_for_auto_readahead,
"Rocksdb implicit readahead is enabled if reads are sequential and "
"num_file_reads_for_auto_readahead indicates after how many sequential "
"reads into that file internal auto prefetching should be start.");
DEFINE_bool(
auto_readahead_size, false,
"When set true, RocksDB does auto tuning of readahead size during Scans");
DEFINE_bool(paranoid_memory_checks, false,
"Sets CF option paranoid_memory_checks");
static enum ROCKSDB_NAMESPACE::CompressionType StringToCompressionType(
const char* ctype) {
assert(ctype);
if (!strcasecmp(ctype, "none")) {
return ROCKSDB_NAMESPACE::kNoCompression;
} else if (!strcasecmp(ctype, "snappy")) {
return ROCKSDB_NAMESPACE::kSnappyCompression;
} else if (!strcasecmp(ctype, "zlib")) {
return ROCKSDB_NAMESPACE::kZlibCompression;
} else if (!strcasecmp(ctype, "bzip2")) {
return ROCKSDB_NAMESPACE::kBZip2Compression;
} else if (!strcasecmp(ctype, "lz4")) {
return ROCKSDB_NAMESPACE::kLZ4Compression;
} else if (!strcasecmp(ctype, "lz4hc")) {
return ROCKSDB_NAMESPACE::kLZ4HCCompression;
} else if (!strcasecmp(ctype, "xpress")) {
return ROCKSDB_NAMESPACE::kXpressCompression;
} else if (!strcasecmp(ctype, "zstd")) {
return ROCKSDB_NAMESPACE::kZSTD;
} else {
fprintf(stderr, "Cannot parse compression type '%s'\n", ctype);
exit(1);
}
}
static enum ROCKSDB_NAMESPACE::TieredAdmissionPolicy StringToAdmissionPolicy(
const char* policy) {
assert(policy);
if (!strcasecmp(policy, "auto")) {
return ROCKSDB_NAMESPACE::kAdmPolicyAuto;
} else if (!strcasecmp(policy, "placeholder")) {
return ROCKSDB_NAMESPACE::kAdmPolicyPlaceholder;
} else if (!strcasecmp(policy, "allow_cache_hits")) {
return ROCKSDB_NAMESPACE::kAdmPolicyAllowCacheHits;
} else if (!strcasecmp(policy, "three_queue")) {
return ROCKSDB_NAMESPACE::kAdmPolicyThreeQueue;
} else if (!strcasecmp(policy, "allow_all")) {
return ROCKSDB_NAMESPACE::kAdmPolicyAllowAll;
} else {
fprintf(stderr, "Cannot parse admission policy %s\n", policy);
exit(1);
}
}
static std::string ColumnFamilyName(size_t i) {
if (i == 0) {
return ROCKSDB_NAMESPACE::kDefaultColumnFamilyName;
} else {
char name[100];
snprintf(name, sizeof(name), "column_family_name_%06zu", i);
return std::string(name);
}
}
DEFINE_string(compression_type, "snappy",
"Algorithm to use to compress the database");
static enum ROCKSDB_NAMESPACE::CompressionType FLAGS_compression_type_e =
ROCKSDB_NAMESPACE::kSnappyCompression;
DEFINE_int64(sample_for_compression, 0, "Sample every N block for compression");
DEFINE_int32(compression_level, ROCKSDB_NAMESPACE::CompressionOptions().level,
"Compression level. The meaning of this value is library-"
"dependent. If unset, we try to use the default for the library "
"specified in `--compression_type`");
DEFINE_int32(compression_max_dict_bytes,
ROCKSDB_NAMESPACE::CompressionOptions().max_dict_bytes,
"Maximum size of dictionary used to prime the compression "
"library.");
DEFINE_int32(compression_zstd_max_train_bytes,
ROCKSDB_NAMESPACE::CompressionOptions().zstd_max_train_bytes,
"Maximum size of training data passed to zstd's dictionary "
"trainer.");
DEFINE_int32(min_level_to_compress, -1,
"If non-negative, compression starts"
" from this level. Levels with number < min_level_to_compress are"
" not compressed. Otherwise, apply compression_type to "
"all levels.");
DEFINE_int32(compression_parallel_threads, 1,
"Number of threads for parallel compression.");
DEFINE_uint64(compression_max_dict_buffer_bytes,
ROCKSDB_NAMESPACE::CompressionOptions().max_dict_buffer_bytes,
"Maximum bytes to buffer to collect samples for dictionary.");
DEFINE_bool(compression_use_zstd_dict_trainer,
ROCKSDB_NAMESPACE::CompressionOptions().use_zstd_dict_trainer,
"If true, use ZSTD_TrainDictionary() to create dictionary, else"
"use ZSTD_FinalizeDictionary() to create dictionary");
static bool ValidateTableCacheNumshardbits(const char* flagname,
int32_t value) {
if (0 >= value || value >= 20) {
fprintf(stderr, "Invalid value for --%s: %d, must be 0 < val < 20\n",
flagname, value);
return false;
}
return true;
}
DEFINE_int32(table_cache_numshardbits, 4, "");
DEFINE_string(env_uri, "",
"URI for registry Env lookup. Mutually exclusive with --fs_uri");
DEFINE_string(fs_uri, "",
"URI for registry Filesystem lookup. Mutually exclusive"
" with --env_uri."
" Creates a default environment with the specified filesystem.");
DEFINE_string(simulate_hybrid_fs_file, "",
"File for Store Metadata for Simulate hybrid FS. Empty means "
"disable the feature. Now, if it is set, last_level_temperature "
"is set to kWarm.");
DEFINE_int32(simulate_hybrid_hdd_multipliers, 1,
"In simulate_hybrid_fs_file or simulate_hdd mode, how many HDDs "
"are simulated.");
DEFINE_bool(simulate_hdd, false, "Simulate read/write latency on HDD.");
DEFINE_int64(
preclude_last_level_data_seconds, 0,
"Preclude the latest data from the last level. (Used for tiered storage)");
DEFINE_int64(preserve_internal_time_seconds, 0,
"Preserve the internal time information which stores with SST.");
static std::shared_ptr<ROCKSDB_NAMESPACE::Env> env_guard;
static ROCKSDB_NAMESPACE::Env* FLAGS_env = ROCKSDB_NAMESPACE::Env::Default();
DEFINE_int64(stats_interval, 0,
"Stats are reported every N operations when this is greater than "
"zero. When 0 the interval grows over time.");
DEFINE_int64(stats_interval_seconds, 0,
"Report stats every N seconds. This overrides stats_interval when"
" both are > 0.");
DEFINE_int32(stats_per_interval, 0,
"Reports additional stats per interval when this is greater than "
"0.");
DEFINE_uint64(slow_usecs, 1000000,
"A message is printed for operations that take at least this "
"many microseconds.");
DEFINE_int64(report_interval_seconds, 0,
"If greater than zero, it will write simple stats in CSV format "
"to --report_file every N seconds");
DEFINE_string(report_file, "report.csv",
"Filename where some simple stats are reported to (if "
"--report_interval_seconds is bigger than 0)");
DEFINE_int32(thread_status_per_interval, 0,
"Takes and report a snapshot of the current status of each thread"
" when this is greater than 0.");
DEFINE_int32(perf_level, ROCKSDB_NAMESPACE::PerfLevel::kDisable,
"Level of perf collection");
DEFINE_uint64(soft_pending_compaction_bytes_limit, 64ull * 1024 * 1024 * 1024,
"Slowdown writes if pending compaction bytes exceed this number");
DEFINE_uint64(hard_pending_compaction_bytes_limit, 128ull * 1024 * 1024 * 1024,
"Stop writes if pending compaction bytes exceed this number");
DEFINE_uint64(delayed_write_rate, 8388608u,
"Limited bytes allowed to DB when soft_rate_limit or "
"level0_slowdown_writes_trigger triggers");
DEFINE_bool(enable_pipelined_write, true,
"Allow WAL and memtable writes to be pipelined");
DEFINE_bool(
unordered_write, false,
"Enable the unordered write feature, which provides higher throughput but "
"relaxes the guarantees around atomic reads and immutable snapshots");
DEFINE_bool(allow_concurrent_memtable_write, true,
"Allow multi-writers to update mem tables in parallel.");
DEFINE_double(experimental_mempurge_threshold, 0.0,
"Maximum useful payload ratio estimate that triggers a mempurge "
"(memtable garbage collection).");
DEFINE_bool(inplace_update_support,
ROCKSDB_NAMESPACE::Options().inplace_update_support,
"Support in-place memtable update for smaller or same-size values");
DEFINE_uint64(inplace_update_num_locks,
ROCKSDB_NAMESPACE::Options().inplace_update_num_locks,
"Number of RW locks to protect in-place memtable updates");
DEFINE_bool(enable_write_thread_adaptive_yield, true,
"Use a yielding spin loop for brief writer thread waits.");
DEFINE_uint64(
write_thread_max_yield_usec, 100,
"Maximum microseconds for enable_write_thread_adaptive_yield operation.");
DEFINE_uint64(write_thread_slow_yield_usec, 3,
"The threshold at which a slow yield is considered a signal that "
"other processes or threads want the core.");
DEFINE_uint64(rate_limiter_bytes_per_sec, 0, "Set options.rate_limiter value.");
DEFINE_int64(rate_limiter_refill_period_us, 100 * 1000,
"Set refill period on rate limiter.");
DEFINE_bool(rate_limiter_auto_tuned, false,
"Enable dynamic adjustment of rate limit according to demand for "
"background I/O");
DEFINE_int64(rate_limiter_single_burst_bytes, 0,
"Set single burst bytes on background I/O rate limiter.");
DEFINE_bool(sine_write_rate, false, "Use a sine wave write_rate_limit");
DEFINE_uint64(
sine_write_rate_interval_milliseconds, 10000,
"Interval of which the sine wave write_rate_limit is recalculated");
DEFINE_double(sine_a, 1, "A in f(x) = A sin(bx + c) + d");
DEFINE_double(sine_b, 1, "B in f(x) = A sin(bx + c) + d");
DEFINE_double(sine_c, 0, "C in f(x) = A sin(bx + c) + d");
DEFINE_double(sine_d, 1, "D in f(x) = A sin(bx + c) + d");
DEFINE_bool(rate_limit_bg_reads, false,
"Use options.rate_limiter on compaction reads");
DEFINE_uint64(
benchmark_write_rate_limit, 0,
"If non-zero, db_bench will rate-limit the writes going into RocksDB. This "
"is the global rate in bytes/second.");
// the parameters of mix_graph
DEFINE_double(keyrange_dist_a, 0.0,
"The parameter 'a' of prefix average access distribution "
"f(x)=a*exp(b*x)+c*exp(d*x)");
DEFINE_double(keyrange_dist_b, 0.0,
"The parameter 'b' of prefix average access distribution "
"f(x)=a*exp(b*x)+c*exp(d*x)");
DEFINE_double(keyrange_dist_c, 0.0,
"The parameter 'c' of prefix average access distribution"
"f(x)=a*exp(b*x)+c*exp(d*x)");
DEFINE_double(keyrange_dist_d, 0.0,
"The parameter 'd' of prefix average access distribution"
"f(x)=a*exp(b*x)+c*exp(d*x)");
DEFINE_int64(keyrange_num, 1,
"The number of key ranges that are in the same prefix "
"group, each prefix range will have its key access distribution");
DEFINE_double(key_dist_a, 0.0,
"The parameter 'a' of key access distribution model f(x)=a*x^b");
DEFINE_double(key_dist_b, 0.0,
"The parameter 'b' of key access distribution model f(x)=a*x^b");
DEFINE_double(value_theta, 0.0,
"The parameter 'theta' of Generized Pareto Distribution "
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
// Use reasonable defaults based on the mixgraph paper
DEFINE_double(value_k, 0.2615,
"The parameter 'k' of Generized Pareto Distribution "
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
// Use reasonable defaults based on the mixgraph paper
DEFINE_double(value_sigma, 25.45,
"The parameter 'theta' of Generized Pareto Distribution "
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
DEFINE_double(iter_theta, 0.0,
"The parameter 'theta' of Generized Pareto Distribution "
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
// Use reasonable defaults based on the mixgraph paper
DEFINE_double(iter_k, 2.517,
"The parameter 'k' of Generized Pareto Distribution "
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
// Use reasonable defaults based on the mixgraph paper
DEFINE_double(iter_sigma, 14.236,
"The parameter 'sigma' of Generized Pareto Distribution "
"f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
DEFINE_double(mix_get_ratio, 1.0,
"The ratio of Get queries of mix_graph workload");
DEFINE_double(mix_put_ratio, 0.0,
"The ratio of Put queries of mix_graph workload");
DEFINE_double(mix_seek_ratio, 0.0,
"The ratio of Seek queries of mix_graph workload");
DEFINE_int64(mix_max_scan_len, 10000, "The max scan length of Iterator");
DEFINE_int64(mix_max_value_size, 1024, "The max value size of this workload");
DEFINE_double(
sine_mix_rate_noise, 0.0,
"Add the noise ratio to the sine rate, it is between 0.0 and 1.0");
DEFINE_bool(sine_mix_rate, false,
"Enable the sine QPS control on the mix workload");
DEFINE_uint64(
sine_mix_rate_interval_milliseconds, 10000,
"Interval of which the sine wave read_rate_limit is recalculated");
DEFINE_int64(mix_accesses, -1,
"The total query accesses of mix_graph workload");
DEFINE_uint64(
benchmark_read_rate_limit, 0,
"If non-zero, db_bench will rate-limit the reads from RocksDB. This "
"is the global rate in ops/second.");
DEFINE_uint64(max_compaction_bytes,
ROCKSDB_NAMESPACE::Options().max_compaction_bytes,
"Max bytes allowed in one compaction");
DEFINE_bool(readonly, false, "Run read only benchmarks.");
DEFINE_bool(print_malloc_stats, false,
"Print malloc stats to stdout after benchmarks finish.");
DEFINE_bool(disable_auto_compactions, false, "Do not auto trigger compactions");
DEFINE_uint64(wal_ttl_seconds, 0, "Set the TTL for the WAL Files in seconds.");
DEFINE_uint64(wal_size_limit_MB, 0,
"Set the size limit for the WAL Files in MB.");
DEFINE_uint64(max_total_wal_size, 0, "Set total max WAL size");
DEFINE_bool(mmap_read, ROCKSDB_NAMESPACE::Options().allow_mmap_reads,
"Allow reads to occur via mmap-ing files");
DEFINE_bool(mmap_write, ROCKSDB_NAMESPACE::Options().allow_mmap_writes,
"Allow writes to occur via mmap-ing files");
DEFINE_bool(use_direct_reads, ROCKSDB_NAMESPACE::Options().use_direct_reads,
"Use O_DIRECT for reading data");
DEFINE_bool(use_direct_io_for_flush_and_compaction,
ROCKSDB_NAMESPACE::Options().use_direct_io_for_flush_and_compaction,
"Use O_DIRECT for background flush and compaction writes");
DEFINE_bool(advise_random_on_open,
ROCKSDB_NAMESPACE::Options().advise_random_on_open,
"Advise random access on table file open");
DEFINE_bool(use_tailing_iterator, false,
"Use tailing iterator to access a series of keys instead of get");
DEFINE_bool(use_adaptive_mutex, ROCKSDB_NAMESPACE::Options().use_adaptive_mutex,
"Use adaptive mutex");
DEFINE_uint64(bytes_per_sync, ROCKSDB_NAMESPACE::Options().bytes_per_sync,
"Allows OS to incrementally sync SST files to disk while they are"
" being written, in the background. Issue one request for every"
" bytes_per_sync written. 0 turns it off.");
DEFINE_uint64(wal_bytes_per_sync,
ROCKSDB_NAMESPACE::Options().wal_bytes_per_sync,
"Allows OS to incrementally sync WAL files to disk while they are"
" being written, in the background. Issue one request for every"
" wal_bytes_per_sync written. 0 turns it off.");
DEFINE_bool(use_single_deletes, true,
"Use single deletes (used in RandomReplaceKeys only).");
DEFINE_double(stddev, 2000.0,
"Standard deviation of normal distribution used for picking keys"
" (used in RandomReplaceKeys only).");
DEFINE_int32(key_id_range, 100000,
"Range of possible value of key id (used in TimeSeries only).");
DEFINE_string(expire_style, "none",
"Style to remove expired time entries. Can be one of the options "
"below: none (do not expired data), compaction_filter (use a "
"compaction filter to remove expired data), delete (seek IDs and "
"remove expired data) (used in TimeSeries only).");
DEFINE_uint64(
time_range, 100000,
"Range of timestamp that store in the database (used in TimeSeries"
" only).");
DEFINE_int32(num_deletion_threads, 1,
"Number of threads to do deletion (used in TimeSeries and delete "
"expire_style only).");
DEFINE_int32(max_successive_merges, 0,
"Maximum number of successive merge operations on a key in the "
"memtable");
DEFINE_bool(strict_max_successive_merges, false,
"Whether to issue filesystem reads to keep within "
"`max_successive_merges` limit");
static bool ValidatePrefixSize(const char* flagname, int32_t value) {
if (value < 0 || value >= 2000000000) {
fprintf(stderr, "Invalid value for --%s: %d. 0<= PrefixSize <=2000000000\n",
flagname, value);
return false;
}
return true;
}
DEFINE_int32(prefix_size, 0,
"control the prefix size for HashSkipList and plain table");
DEFINE_int64(keys_per_prefix, 0,
"control average number of keys generated per prefix, 0 means no "
"special handling of the prefix, i.e. use the prefix comes with "
"the generated random number.");
DEFINE_bool(total_order_seek, false,
"Enable total order seek regardless of index format.");
DEFINE_bool(prefix_same_as_start, false,
"Enforce iterator to return keys with prefix same as seek key.");
DEFINE_bool(
seek_missing_prefix, false,
"Iterator seek to keys with non-exist prefixes. Require prefix_size > 8");
DEFINE_int32(memtable_insert_with_hint_prefix_size, 0,
"If non-zero, enable "
"memtable insert with hint with the given prefix size.");
DEFINE_bool(enable_io_prio, false,
"Lower the background flush/compaction threads' IO priority");
DEFINE_bool(enable_cpu_prio, false,
"Lower the background flush/compaction threads' CPU priority");
DEFINE_bool(identity_as_first_hash, false,
"the first hash function of cuckoo table becomes an identity "
"function. This is only valid when key is 8 bytes");
DEFINE_bool(dump_malloc_stats, true, "Dump malloc stats in LOG ");
DEFINE_uint64(stats_dump_period_sec,
ROCKSDB_NAMESPACE::Options().stats_dump_period_sec,
"Gap between printing stats to log in seconds");
DEFINE_uint64(stats_persist_period_sec,
ROCKSDB_NAMESPACE::Options().stats_persist_period_sec,
"Gap between persisting stats in seconds");
DEFINE_bool(persist_stats_to_disk,
ROCKSDB_NAMESPACE::Options().persist_stats_to_disk,
"whether to persist stats to disk");
DEFINE_uint64(stats_history_buffer_size,
ROCKSDB_NAMESPACE::Options().stats_history_buffer_size,
"Max number of stats snapshots to keep in memory");
DEFINE_bool(avoid_flush_during_recovery,
ROCKSDB_NAMESPACE::Options().avoid_flush_during_recovery,
"If true, avoids flushing the recovered WAL data where possible.");
DEFINE_int64(multiread_stride, 0,
"Stride length for the keys in a MultiGet batch");
DEFINE_bool(multiread_batched, false, "Use the new MultiGet API");
DEFINE_string(memtablerep, "skip_list", "");
DEFINE_int64(hash_bucket_count, 1024 * 1024, "hash bucket count");
DEFINE_bool(use_plain_table, false,
"if use plain table instead of block-based table format");
DEFINE_bool(use_cuckoo_table, false, "if use cuckoo table format");
DEFINE_double(cuckoo_hash_ratio, 0.9, "Hash ratio for Cuckoo SST table.");
DEFINE_bool(use_hash_search, false,
"if use kHashSearch instead of kBinarySearch. "
"This is valid if only we use BlockTable");
DEFINE_string(merge_operator, "",
"The merge operator to use with the database."
"If a new merge operator is specified, be sure to use fresh"
" database The possible merge operators are defined in"
" utilities/merge_operators.h");
DEFINE_int32(skip_list_lookahead, 0,
"Used with skip_list memtablerep; try linear search first for "
"this many steps from the previous position");
DEFINE_bool(report_file_operations, false,
"if report number of file operations");
DEFINE_bool(report_open_timing, false, "if report open timing");
DEFINE_int32(readahead_size, 0, "Iterator readahead size");
DEFINE_bool(read_with_latest_user_timestamp, true,
"If true, always use the current latest timestamp for read. If "
"false, choose a random timestamp from the past.");
DEFINE_string(cache_uri, "", "Full URI for creating a custom cache object");
DEFINE_string(secondary_cache_uri, "",
"Full URI for creating a custom secondary cache object");
static class std::shared_ptr<ROCKSDB_NAMESPACE::SecondaryCache> secondary_cache;
static const bool FLAGS_prefix_size_dummy __attribute__((__unused__)) =
RegisterFlagValidator(&FLAGS_prefix_size, &ValidatePrefixSize);
static const bool FLAGS_key_size_dummy __attribute__((__unused__)) =
RegisterFlagValidator(&FLAGS_key_size, &ValidateKeySize);
static const bool FLAGS_cache_numshardbits_dummy __attribute__((__unused__)) =
RegisterFlagValidator(&FLAGS_cache_numshardbits,
&ValidateCacheNumshardbits);
static const bool FLAGS_readwritepercent_dummy __attribute__((__unused__)) =
RegisterFlagValidator(&FLAGS_readwritepercent, &ValidateInt32Percent);
DEFINE_int32(disable_seek_compaction, false,
"Not used, left here for backwards compatibility");
DEFINE_bool(allow_data_in_errors,
ROCKSDB_NAMESPACE::Options().allow_data_in_errors,
"If true, allow logging data, e.g. key, value in LOG files.");
static const bool FLAGS_deletepercent_dummy __attribute__((__unused__)) =
RegisterFlagValidator(&FLAGS_deletepercent, &ValidateInt32Percent);
static const bool FLAGS_table_cache_numshardbits_dummy
__attribute__((__unused__)) = RegisterFlagValidator(
&FLAGS_table_cache_numshardbits, &ValidateTableCacheNumshardbits);
DEFINE_uint32(write_batch_protection_bytes_per_key, 0,
"Size of per-key-value checksum in each write batch. Currently "
"only value 0 and 8 are supported.");
DEFINE_uint32(
memtable_protection_bytes_per_key, 0,
"Enable memtable per key-value checksum protection. "
"Each entry in memtable will be suffixed by a per key-value checksum. "
"This options determines the size of such checksums. "
"Supported values: 0, 1, 2, 4, 8.");
DEFINE_uint32(block_protection_bytes_per_key, 0,
"Enable block per key-value checksum protection. "
"Supported values: 0, 1, 2, 4, 8.");
DEFINE_bool(build_info, false,
"Print the build info via GetRocksBuildInfoAsString");
DEFINE_bool(track_and_verify_wals_in_manifest, false,
"If true, enable WAL tracking in the MANIFEST");
namespace ROCKSDB_NAMESPACE {
namespace {
static Status CreateMemTableRepFactory(
const ConfigOptions& config_options,
std::shared_ptr<MemTableRepFactory>* factory) {
Status s;
if (!strcasecmp(FLAGS_memtablerep.c_str(), SkipListFactory::kNickName())) {
factory->reset(new SkipListFactory(FLAGS_skip_list_lookahead));
} else if (!strcasecmp(FLAGS_memtablerep.c_str(), "prefix_hash")) {
factory->reset(NewHashSkipListRepFactory(FLAGS_hash_bucket_count));
} else if (!strcasecmp(FLAGS_memtablerep.c_str(),
VectorRepFactory::kNickName())) {
factory->reset(new VectorRepFactory());
} else if (!strcasecmp(FLAGS_memtablerep.c_str(), "hash_linkedlist")) {
factory->reset(NewHashLinkListRepFactory(FLAGS_hash_bucket_count));
} else {
std::unique_ptr<MemTableRepFactory> unique;
s = MemTableRepFactory::CreateFromString(config_options, FLAGS_memtablerep,
&unique);
if (s.ok()) {
factory->reset(unique.release());
}
}
return s;
}
} // namespace
enum DistributionType : unsigned char { kFixed = 0, kUniform, kNormal };
static enum DistributionType FLAGS_value_size_distribution_type_e = kFixed;
static enum DistributionType StringToDistributionType(const char* ctype) {
assert(ctype);
if (!strcasecmp(ctype, "fixed")) {
return kFixed;
} else if (!strcasecmp(ctype, "uniform")) {
return kUniform;
} else if (!strcasecmp(ctype, "normal")) {
return kNormal;
}
fprintf(stdout, "Cannot parse distribution type '%s'\n", ctype);
exit(1);
}
class BaseDistribution {
public:
BaseDistribution(unsigned int _min, unsigned int _max)
: min_value_size_(_min), max_value_size_(_max) {}
virtual ~BaseDistribution() = default;
unsigned int Generate() {
auto val = Get();
if (NeedTruncate()) {
val = std::max(min_value_size_, val);
val = std::min(max_value_size_, val);
}
return val;
}
private:
virtual unsigned int Get() = 0;
virtual bool NeedTruncate() { return true; }
unsigned int min_value_size_;
unsigned int max_value_size_;
};
class FixedDistribution : public BaseDistribution {
public:
FixedDistribution(unsigned int size)
: BaseDistribution(size, size), size_(size) {}
private:
unsigned int Get() override { return size_; }
bool NeedTruncate() override { return false; }
unsigned int size_;
};
class NormalDistribution : public BaseDistribution,
public std::normal_distribution<double> {
public:
NormalDistribution(unsigned int _min, unsigned int _max)
: BaseDistribution(_min, _max),
// 99.7% values within the range [min, max].
std::normal_distribution<double>(
(double)(_min + _max) / 2.0 /*mean*/,
(double)(_max - _min) / 6.0 /*stddev*/),
gen_(rd_()) {}
private:
unsigned int Get() override {
return static_cast<unsigned int>((*this)(gen_));
}
std::random_device rd_;
std::mt19937 gen_;
};
class UniformDistribution : public BaseDistribution,
public std::uniform_int_distribution<unsigned int> {
public:
UniformDistribution(unsigned int _min, unsigned int _max)
: BaseDistribution(_min, _max),
std::uniform_int_distribution<unsigned int>(_min, _max),
gen_(rd_()) {}
private:
unsigned int Get() override { return (*this)(gen_); }
bool NeedTruncate() override { return false; }
std::random_device rd_;
std::mt19937 gen_;
};
// Helper for quickly generating random data.
class RandomGenerator {
private:
std::string data_;
unsigned int pos_;
std::unique_ptr<BaseDistribution> dist_;
public:
RandomGenerator() {
auto max_value_size = FLAGS_value_size_max;
switch (FLAGS_value_size_distribution_type_e) {
case kUniform:
dist_.reset(new UniformDistribution(FLAGS_value_size_min,
FLAGS_value_size_max));
break;
case kNormal:
dist_.reset(
new NormalDistribution(FLAGS_value_size_min, FLAGS_value_size_max));
break;
case kFixed:
default:
dist_.reset(new FixedDistribution(value_size));
max_value_size = value_size;
}
// We use a limited amount of data over and over again and ensure
// that it is larger than the compression window (32KB), and also
// large enough to serve all typical value sizes we want to write.
Random rnd(301);
std::string piece;
while (data_.size() < (unsigned)std::max(1048576, max_value_size)) {
// Add a short fragment that is as compressible as specified
// by FLAGS_compression_ratio.
test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
data_.append(piece);
}
pos_ = 0;
}
Slice Generate(unsigned int len) {
assert(len <= data_.size());
if (pos_ + len > data_.size()) {
pos_ = 0;
}
pos_ += len;
return Slice(data_.data() + pos_ - len, len);
}
Slice Generate() {
auto len = dist_->Generate();
return Generate(len);
}
};
static void AppendWithSpace(std::string* str, Slice msg) {
if (msg.empty()) {
return;
}
if (!str->empty()) {
str->push_back(' ');
}
str->append(msg.data(), msg.size());
}
struct DBWithColumnFamilies {
std::vector<ColumnFamilyHandle*> cfh;
DB* db;
OptimisticTransactionDB* opt_txn_db;
std::atomic<size_t> num_created; // Need to be updated after all the
// new entries in cfh are set.
size_t num_hot; // Number of column families to be queried at each moment.
// After each CreateNewCf(), another num_hot number of new
// Column families will be created and used to be queried.
port::Mutex create_cf_mutex; // Only one thread can execute CreateNewCf()
std::vector<int> cfh_idx_to_prob; // ith index holds probability of operating
// on cfh[i].
DBWithColumnFamilies()
: db(nullptr)
,
opt_txn_db(nullptr)
{
cfh.clear();
num_created = 0;
num_hot = 0;
}
DBWithColumnFamilies(const DBWithColumnFamilies& other)
: cfh(other.cfh),
db(other.db),
opt_txn_db(other.opt_txn_db),
num_created(other.num_created.load()),
num_hot(other.num_hot),
cfh_idx_to_prob(other.cfh_idx_to_prob) {
}
void DeleteDBs() {
std::for_each(cfh.begin(), cfh.end(),
[](ColumnFamilyHandle* cfhi) { delete cfhi; });
cfh.clear();
if (opt_txn_db) {
delete opt_txn_db;
opt_txn_db = nullptr;
} else {
delete db;
db = nullptr;
}
}
ColumnFamilyHandle* GetCfh(int64_t rand_num) {
assert(num_hot > 0);
size_t rand_offset = 0;
if (!cfh_idx_to_prob.empty()) {
assert(cfh_idx_to_prob.size() == num_hot);
int sum = 0;
while (sum + cfh_idx_to_prob[rand_offset] < rand_num % 100) {
sum += cfh_idx_to_prob[rand_offset];
++rand_offset;
}
assert(rand_offset < cfh_idx_to_prob.size());
} else {
rand_offset = rand_num % num_hot;
}
return cfh[num_created.load(std::memory_order_acquire) - num_hot +
rand_offset];
}
// stage: assume CF from 0 to stage * num_hot has be created. Need to create
// stage * num_hot + 1 to stage * (num_hot + 1).
void CreateNewCf(ColumnFamilyOptions options, int64_t stage) {
MutexLock l(&create_cf_mutex);
if ((stage + 1) * num_hot <= num_created) {
// Already created.
return;
}
auto new_num_created = num_created + num_hot;
assert(new_num_created <= cfh.size());
for (size_t i = num_created; i < new_num_created; i++) {
Status s =
db->CreateColumnFamily(options, ColumnFamilyName(i), &(cfh[i]));
if (!s.ok()) {
fprintf(stderr, "create column family error: %s\n",
s.ToString().c_str());
abort();
}
}
num_created.store(new_num_created, std::memory_order_release);
}
};
// A class that reports stats to CSV file.
class ReporterAgent {
public:
ReporterAgent(Env* env, const std::string& fname,
uint64_t report_interval_secs)
: env_(env),
total_ops_done_(0),
last_report_(0),
report_interval_secs_(report_interval_secs),
stop_(false) {
auto s = env_->NewWritableFile(fname, &report_file_, EnvOptions());
if (s.ok()) {
s = report_file_->Append(Header() + "\n");
}
if (s.ok()) {
s = report_file_->Flush();
}
if (!s.ok()) {
fprintf(stderr, "Can't open %s: %s\n", fname.c_str(),
s.ToString().c_str());
abort();
}
reporting_thread_ = port::Thread([&]() { SleepAndReport(); });
}
~ReporterAgent() {
{
std::unique_lock<std::mutex> lk(mutex_);
stop_ = true;
stop_cv_.notify_all();
}
reporting_thread_.join();
}
// thread safe
void ReportFinishedOps(int64_t num_ops) {
total_ops_done_.fetch_add(num_ops);
}
private:
std::string Header() const { return "secs_elapsed,interval_qps"; }
void SleepAndReport() {
auto* clock = env_->GetSystemClock().get();
auto time_started = clock->NowMicros();
while (true) {
{
std::unique_lock<std::mutex> lk(mutex_);
if (stop_ ||
stop_cv_.wait_for(lk, std::chrono::seconds(report_interval_secs_),
[&]() { return stop_; })) {
// stopping
break;
}
// else -> timeout, which means time for a report!
}
auto total_ops_done_snapshot = total_ops_done_.load();
// round the seconds elapsed
auto secs_elapsed =
(clock->NowMicros() - time_started + kMicrosInSecond / 2) /
kMicrosInSecond;
std::string report =
std::to_string(secs_elapsed) + "," +
std::to_string(total_ops_done_snapshot - last_report_) + "\n";
auto s = report_file_->Append(report);
if (s.ok()) {
s = report_file_->Flush();
}
if (!s.ok()) {
fprintf(stderr,
"Can't write to report file (%s), stopping the reporting\n",
s.ToString().c_str());
break;
}
last_report_ = total_ops_done_snapshot;
}
}
Env* env_;
std::unique_ptr<WritableFile> report_file_;
std::atomic<int64_t> total_ops_done_;
int64_t last_report_;
const uint64_t report_interval_secs_;
ROCKSDB_NAMESPACE::port::Thread reporting_thread_;
std::mutex mutex_;
// will notify on stop
std::condition_variable stop_cv_;
bool stop_;
};
enum OperationType : unsigned char {
kRead = 0,
kWrite,
kDelete,
kSeek,
kMerge,
kUpdate,
kCompress,
kUncompress,
kCrc,
kHash,
kOthers
};
static std::unordered_map<OperationType, std::string, std::hash<unsigned char>>
OperationTypeString = {{kRead, "read"}, {kWrite, "write"},
{kDelete, "delete"}, {kSeek, "seek"},
{kMerge, "merge"}, {kUpdate, "update"},
{kCompress, "compress"}, {kCompress, "uncompress"},
{kCrc, "crc"}, {kHash, "hash"},
{kOthers, "op"}};
class CombinedStats;
class Stats {
private:
SystemClock* clock_;
int id_;
uint64_t start_ = 0;
uint64_t sine_interval_;
uint64_t finish_;
double seconds_;
uint64_t done_;
uint64_t last_report_done_;
uint64_t next_report_;
uint64_t bytes_;
uint64_t last_op_finish_;
uint64_t last_report_finish_;
std::unordered_map<OperationType, std::shared_ptr<HistogramImpl>,
std::hash<unsigned char>>
hist_;
std::string message_;
bool exclude_from_merge_;
ReporterAgent* reporter_agent_; // does not own
friend class CombinedStats;
public:
Stats() : clock_(FLAGS_env->GetSystemClock().get()) { Start(-1); }
void SetReporterAgent(ReporterAgent* reporter_agent) {
reporter_agent_ = reporter_agent;
}
void Start(int id) {
id_ = id;
next_report_ = FLAGS_stats_interval ? FLAGS_stats_interval : 100;
last_op_finish_ = start_;
hist_.clear();
done_ = 0;
last_report_done_ = 0;
bytes_ = 0;
seconds_ = 0;
start_ = clock_->NowMicros();
sine_interval_ = clock_->NowMicros();
finish_ = start_;
last_report_finish_ = start_;
message_.clear();
// When set, stats from this thread won't be merged with others.
exclude_from_merge_ = false;
}
void Merge(const Stats& other) {
if (other.exclude_from_merge_) {
return;
}
for (auto it = other.hist_.begin(); it != other.hist_.end(); ++it) {
auto this_it = hist_.find(it->first);
if (this_it != hist_.end()) {
this_it->second->Merge(*(other.hist_.at(it->first)));
} else {
hist_.insert({it->first, it->second});
}
}
done_ += other.done_;
bytes_ += other.bytes_;
seconds_ += other.seconds_;
if (other.start_ < start_) {
start_ = other.start_;
}
if (other.finish_ > finish_) {
finish_ = other.finish_;
}
// Just keep the messages from one thread.
if (message_.empty()) {
message_ = other.message_;
}
}
void Stop() {
finish_ = clock_->NowMicros();
seconds_ = (finish_ - start_) * 1e-6;
}
void AddMessage(Slice msg) { AppendWithSpace(&message_, msg); }
void SetId(int id) { id_ = id; }
void SetExcludeFromMerge() { exclude_from_merge_ = true; }
void PrintThreadStatus() {
std::vector<ThreadStatus> thread_list;
FLAGS_env->GetThreadList(&thread_list);
fprintf(stderr, "\n%18s %10s %12s %20s %13s %45s %12s %s\n", "ThreadID",
"ThreadType", "cfName", "Operation", "ElapsedTime", "Stage",
"State", "OperationProperties");
int64_t current_time = 0;
clock_->GetCurrentTime(&current_time).PermitUncheckedError();
for (auto ts : thread_list) {
fprintf(stderr, "%18" PRIu64 " %10s %12s %20s %13s %45s %12s",
ts.thread_id,
ThreadStatus::GetThreadTypeName(ts.thread_type).c_str(),
ts.cf_name.c_str(),
ThreadStatus::GetOperationName(ts.operation_type).c_str(),
ThreadStatus::MicrosToString(ts.op_elapsed_micros).c_str(),
ThreadStatus::GetOperationStageName(ts.operation_stage).c_str(),
ThreadStatus::GetStateName(ts.state_type).c_str());
auto op_properties = ThreadStatus::InterpretOperationProperties(
ts.operation_type, ts.op_properties);
for (const auto& op_prop : op_properties) {
fprintf(stderr, " %s %" PRIu64 " |", op_prop.first.c_str(),
op_prop.second);
}
fprintf(stderr, "\n");
}
}
void ResetSineInterval() { sine_interval_ = clock_->NowMicros(); }
uint64_t GetSineInterval() { return sine_interval_; }
uint64_t GetStart() { return start_; }
void ResetLastOpTime() {
// Set to now to avoid latency from calls to SleepForMicroseconds.
last_op_finish_ = clock_->NowMicros();
}
void FinishedOps(DBWithColumnFamilies* db_with_cfh, DB* db, int64_t num_ops,
enum OperationType op_type = kOthers) {
if (reporter_agent_) {
reporter_agent_->ReportFinishedOps(num_ops);
}
if (FLAGS_histogram) {
uint64_t now = clock_->NowMicros();
uint64_t micros = now - last_op_finish_;
if (hist_.find(op_type) == hist_.end()) {
auto hist_temp = std::make_shared<HistogramImpl>();
hist_.insert({op_type, std::move(hist_temp)});
}
hist_[op_type]->Add(micros);
if (micros >= FLAGS_slow_usecs && !FLAGS_stats_interval) {
fprintf(stderr, "long op: %" PRIu64 " micros%30s\r", micros, "");
fflush(stderr);
}
last_op_finish_ = now;
}
done_ += num_ops;
if (done_ >= next_report_ && FLAGS_progress_reports) {
if (!FLAGS_stats_interval) {
if (next_report_ < 1000) {
next_report_ += 100;
} else if (next_report_ < 5000) {
next_report_ += 500;
} else if (next_report_ < 10000) {
next_report_ += 1000;
} else if (next_report_ < 50000) {
next_report_ += 5000;
} else if (next_report_ < 100000) {
next_report_ += 10000;
} else if (next_report_ < 500000) {
next_report_ += 50000;
} else {
next_report_ += 100000;
}
fprintf(stderr, "... finished %" PRIu64 " ops%30s\r", done_, "");
} else {
uint64_t now = clock_->NowMicros();
int64_t usecs_since_last = now - last_report_finish_;
// Determine whether to print status where interval is either
// each N operations or each N seconds.
if (FLAGS_stats_interval_seconds &&
usecs_since_last < (FLAGS_stats_interval_seconds * 1000000)) {
// Don't check again for this many operations.
next_report_ += FLAGS_stats_interval;
} else {
fprintf(stderr,
"%s ... thread %d: (%" PRIu64 ",%" PRIu64
") ops and "
"(%.1f,%.1f) ops/second in (%.6f,%.6f) seconds\n",
clock_->TimeToString(now / 1000000).c_str(), id_,
done_ - last_report_done_, done_,
(done_ - last_report_done_) / (usecs_since_last / 1000000.0),
done_ / ((now - start_) / 1000000.0),
(now - last_report_finish_) / 1000000.0,
(now - start_) / 1000000.0);
if (id_ == 0 && FLAGS_stats_per_interval) {
std::string stats;
if (db_with_cfh && db_with_cfh->num_created.load()) {
for (size_t i = 0; i < db_with_cfh->num_created.load(); ++i) {
if (db->GetProperty(db_with_cfh->cfh[i], "rocksdb.cfstats",
&stats)) {
fprintf(stderr, "%s\n", stats.c_str());
}
if (FLAGS_show_table_properties) {
for (int level = 0; level < FLAGS_num_levels; ++level) {
if (db->GetProperty(
db_with_cfh->cfh[i],
"rocksdb.aggregated-table-properties-at-level" +
std::to_string(level),
&stats)) {
if (stats.find("# entries=0") == std::string::npos) {
fprintf(stderr, "Level[%d]: %s\n", level,
stats.c_str());
}
}
}
}
}
} else if (db) {
if (db->GetProperty("rocksdb.stats", &stats)) {
fprintf(stderr, "%s", stats.c_str());
}
if (db->GetProperty("rocksdb.num-running-compactions", &stats)) {
fprintf(stderr, "num-running-compactions: %s\n", stats.c_str());
}
if (db->GetProperty("rocksdb.num-running-flushes", &stats)) {
fprintf(stderr, "num-running-flushes: %s\n\n", stats.c_str());
}
if (FLAGS_show_table_properties) {
for (int level = 0; level < FLAGS_num_levels; ++level) {
if (db->GetProperty(
"rocksdb.aggregated-table-properties-at-level" +
std::to_string(level),
&stats)) {
if (stats.find("# entries=0") == std::string::npos) {
fprintf(stderr, "Level[%d]: %s\n", level, stats.c_str());
}
}
}
}
}
}
next_report_ += FLAGS_stats_interval;
last_report_finish_ = now;
last_report_done_ = done_;
}
}
if (id_ == 0 && FLAGS_thread_status_per_interval) {
PrintThreadStatus();
}
fflush(stderr);
}
}
void AddBytes(int64_t n) { bytes_ += n; }
void Report(const Slice& name) {
// Pretend at least one op was done in case we are running a benchmark
// that does not call FinishedOps().
if (done_ < 1) {
done_ = 1;
}
std::string extra;
double elapsed = (finish_ - start_) * 1e-6;
if (bytes_ > 0) {
// Rate is computed on actual elapsed time, not the sum of per-thread
// elapsed times.
char rate[100];
snprintf(rate, sizeof(rate), "%6.1f MB/s",
(bytes_ / 1048576.0) / elapsed);
extra = rate;
}
AppendWithSpace(&extra, message_);
double throughput = (double)done_ / elapsed;
fprintf(stdout,
"%-12s : %11.3f micros/op %ld ops/sec %.3f seconds %" PRIu64
" operations;%s%s\n",
name.ToString().c_str(), seconds_ * 1e6 / done_, (long)throughput,
elapsed, done_, (extra.empty() ? "" : " "), extra.c_str());
if (FLAGS_histogram) {
for (auto it = hist_.begin(); it != hist_.end(); ++it) {
fprintf(stdout, "Microseconds per %s:\n%s\n",
OperationTypeString[it->first].c_str(),
it->second->ToString().c_str());
}
}
if (FLAGS_report_file_operations) {
auto* counted_fs =
FLAGS_env->GetFileSystem()->CheckedCast<CountedFileSystem>();
assert(counted_fs);
fprintf(stdout, "%s", counted_fs->PrintCounters().c_str());
counted_fs->ResetCounters();
}
fflush(stdout);
}
};
class CombinedStats {
public:
void AddStats(const Stats& stat) {
uint64_t total_ops = stat.done_;
uint64_t total_bytes_ = stat.bytes_;
double elapsed;
if (total_ops < 1) {
total_ops = 1;
}
elapsed = (stat.finish_ - stat.start_) * 1e-6;
throughput_ops_.emplace_back(total_ops / elapsed);
if (total_bytes_ > 0) {
double mbs = (total_bytes_ / 1048576.0);
throughput_mbs_.emplace_back(mbs / elapsed);
}
}
void Report(const std::string& bench_name) {
if (throughput_ops_.size() < 2) {
// skip if there are not enough samples
return;
}
const char* name = bench_name.c_str();
int num_runs = static_cast<int>(throughput_ops_.size());
if (throughput_mbs_.size() == throughput_ops_.size()) {
fprintf(stdout,
"%s [AVG %d runs] : %d (\xC2\xB1 %d) ops/sec; %6.1f (\xC2\xB1 "
"%.1f) MB/sec\n",
name, num_runs, static_cast<int>(CalcAvg(throughput_ops_)),
static_cast<int>(CalcConfidence95(throughput_ops_)),
CalcAvg(throughput_mbs_), CalcConfidence95(throughput_mbs_));
} else {
fprintf(stdout, "%s [AVG %d runs] : %d (\xC2\xB1 %d) ops/sec\n", name,
num_runs, static_cast<int>(CalcAvg(throughput_ops_)),
static_cast<int>(CalcConfidence95(throughput_ops_)));
}
}
void ReportWithConfidenceIntervals(const std::string& bench_name) {
if (throughput_ops_.size() < 2) {
// skip if there are not enough samples
return;
}
const char* name = bench_name.c_str();
int num_runs = static_cast<int>(throughput_ops_.size());
int ops_avg = static_cast<int>(CalcAvg(throughput_ops_));
int ops_confidence_95 = static_cast<int>(CalcConfidence95(throughput_ops_));
if (throughput_mbs_.size() == throughput_ops_.size()) {
double mbs_avg = CalcAvg(throughput_mbs_);
double mbs_confidence_95 = CalcConfidence95(throughput_mbs_);
fprintf(stdout,
"%s [CI95 %d runs] : (%d, %d) ops/sec; (%.1f, %.1f) MB/sec\n",
name, num_runs, ops_avg - ops_confidence_95,
ops_avg + ops_confidence_95, mbs_avg - mbs_confidence_95,
mbs_avg + mbs_confidence_95);
} else {
fprintf(stdout, "%s [CI95 %d runs] : (%d, %d) ops/sec\n", name, num_runs,
ops_avg - ops_confidence_95, ops_avg + ops_confidence_95);
}
}
void ReportFinal(const std::string& bench_name) {
if (throughput_ops_.size() < 2) {
// skip if there are not enough samples
return;
}
const char* name = bench_name.c_str();
int num_runs = static_cast<int>(throughput_ops_.size());
if (throughput_mbs_.size() == throughput_ops_.size()) {
// \xC2\xB1 is +/- character in UTF-8
fprintf(stdout,
"%s [AVG %d runs] : %d (\xC2\xB1 %d) ops/sec; %6.1f (\xC2\xB1 "
"%.1f) MB/sec\n"
"%s [MEDIAN %d runs] : %d ops/sec; %6.1f MB/sec\n",
name, num_runs, static_cast<int>(CalcAvg(throughput_ops_)),
static_cast<int>(CalcConfidence95(throughput_ops_)),
CalcAvg(throughput_mbs_), CalcConfidence95(throughput_mbs_), name,
num_runs, static_cast<int>(CalcMedian(throughput_ops_)),
CalcMedian(throughput_mbs_));
} else {
fprintf(stdout,
"%s [AVG %d runs] : %d (\xC2\xB1 %d) ops/sec\n"
"%s [MEDIAN %d runs] : %d ops/sec\n",
name, num_runs, static_cast<int>(CalcAvg(throughput_ops_)),
static_cast<int>(CalcConfidence95(throughput_ops_)), name,
num_runs, static_cast<int>(CalcMedian(throughput_ops_)));
}
}
private:
double CalcAvg(std::vector<double>& data) {
double avg = 0;
for (double x : data) {
avg += x;
}
avg = avg / data.size();
return avg;
}
// Calculates 95% CI assuming a normal distribution of samples.
// Samples are not from a normal distribution, but it still
// provides useful approximation.
double CalcConfidence95(std::vector<double>& data) {
assert(data.size() > 1);
double avg = CalcAvg(data);
double std_error = CalcStdDev(data, avg) / std::sqrt(data.size());
// Z score for the 97.5 percentile
// see https://en.wikipedia.org/wiki/1.96
return 1.959964 * std_error;
}
double CalcMedian(std::vector<double>& data) {
assert(data.size() > 0);
std::sort(data.begin(), data.end());
size_t mid = data.size() / 2;
if (data.size() % 2 == 1) {
// Odd number of entries
return data[mid];
} else {
// Even number of entries
return (data[mid] + data[mid - 1]) / 2;
}
}
double CalcStdDev(std::vector<double>& data, double average) {
assert(data.size() > 1);
double squared_sum = 0.0;
for (double x : data) {
squared_sum += std::pow(x - average, 2);
}
// using samples count - 1 following Bessel's correction
// see https://en.wikipedia.org/wiki/Bessel%27s_correction
return std::sqrt(squared_sum / (data.size() - 1));
}
std::vector<double> throughput_ops_;
std::vector<double> throughput_mbs_;
};
class TimestampEmulator {
private:
std::atomic<uint64_t> timestamp_;
public:
TimestampEmulator() : timestamp_(0) {}
uint64_t Get() const { return timestamp_.load(); }
void Inc() { timestamp_++; }
Slice Allocate(char* scratch) {
// TODO: support larger timestamp sizes
assert(FLAGS_user_timestamp_size == 8);
assert(scratch);
uint64_t ts = timestamp_.fetch_add(1);
EncodeFixed64(scratch, ts);
return Slice(scratch, FLAGS_user_timestamp_size);
}
Slice GetTimestampForRead(Random64& rand, char* scratch) {
assert(FLAGS_user_timestamp_size == 8);
assert(scratch);
if (FLAGS_read_with_latest_user_timestamp) {
return Allocate(scratch);
}
// Choose a random timestamp from the past.
uint64_t ts = rand.Next() % Get();
EncodeFixed64(scratch, ts);
return Slice(scratch, FLAGS_user_timestamp_size);
}
};
// State shared by all concurrent executions of the same benchmark.
struct SharedState {
port::Mutex mu;
port::CondVar cv;
int total;
int perf_level;
std::shared_ptr<RateLimiter> write_rate_limiter;
std::shared_ptr<RateLimiter> read_rate_limiter;
// Each thread goes through the following states:
// (1) initializing
// (2) waiting for others to be initialized
// (3) running
// (4) done
long num_initialized;
long num_done;
bool start;
SharedState() : cv(&mu), perf_level(FLAGS_perf_level) {}
};
// Per-thread state for concurrent executions of the same benchmark.
struct ThreadState {
int tid; // 0..n-1 when running in n threads
Random64 rand; // Has different seeds for different threads
Stats stats;
SharedState* shared;
explicit ThreadState(int index, int my_seed)
: tid(index), rand(*seed_base + my_seed) {}
};
class Duration {
public:
Duration(uint64_t max_seconds, int64_t max_ops, int64_t ops_per_stage = 0) {
max_seconds_ = max_seconds;
max_ops_ = max_ops;
ops_per_stage_ = (ops_per_stage > 0) ? ops_per_stage : max_ops;
ops_ = 0;
start_at_ = FLAGS_env->NowMicros();
}
int64_t GetStage() { return std::min(ops_, max_ops_ - 1) / ops_per_stage_; }
bool Done(int64_t increment) {
if (increment <= 0) {
increment = 1; // avoid Done(0) and infinite loops
}
ops_ += increment;
if (max_seconds_) {
// Recheck every appx 1000 ops (exact iff increment is factor of 1000)
auto granularity = FLAGS_ops_between_duration_checks;
if ((ops_ / granularity) != ((ops_ - increment) / granularity)) {
uint64_t now = FLAGS_env->NowMicros();
return ((now - start_at_) / 1000000) >= max_seconds_;
} else {
return false;
}
} else {
return ops_ > max_ops_;
}
}
private:
uint64_t max_seconds_;
int64_t max_ops_;
int64_t ops_per_stage_;
int64_t ops_;
uint64_t start_at_;
};
class Benchmark {
private:
std::shared_ptr<Cache> cache_;
std::shared_ptr<Cache> compressed_cache_;
std::shared_ptr<const SliceTransform> prefix_extractor_;
DBWithColumnFamilies db_;
std::vector<DBWithColumnFamilies> multi_dbs_;
int64_t num_;
int key_size_;
int user_timestamp_size_;
int prefix_size_;
int total_thread_count_;
int64_t keys_per_prefix_;
int64_t entries_per_batch_;
int64_t writes_before_delete_range_;
int64_t writes_per_range_tombstone_;
int64_t range_tombstone_width_;
int64_t max_num_range_tombstones_;
ReadOptions read_options_;
WriteOptions write_options_;
Options open_options_; // keep options around to properly destroy db later
TraceOptions trace_options_;
TraceOptions block_cache_trace_options_;
int64_t reads_;
int64_t deletes_;
double read_random_exp_range_;
int64_t writes_;
int64_t readwrites_;
int64_t merge_keys_;
bool report_file_operations_;
bool use_blob_db_; // Stacked BlobDB
bool read_operands_; // read via GetMergeOperands()
std::vector<std::string> keys_;
class ErrorHandlerListener : public EventListener {
public:
ErrorHandlerListener()
: mutex_(),
cv_(&mutex_),
no_auto_recovery_(false),
recovery_complete_(false) {}
~ErrorHandlerListener() override = default;
const char* Name() const override { return kClassName(); }
static const char* kClassName() { return "ErrorHandlerListener"; }
void OnErrorRecoveryBegin(BackgroundErrorReason /*reason*/,
Status /*bg_error*/,
bool* auto_recovery) override {
if (*auto_recovery && no_auto_recovery_) {
*auto_recovery = false;
}
}
void OnErrorRecoveryCompleted(Status /*old_bg_error*/) override {
InstrumentedMutexLock l(&mutex_);
recovery_complete_ = true;
cv_.SignalAll();
}
bool WaitForRecovery(uint64_t abs_time_us) {
InstrumentedMutexLock l(&mutex_);
if (!recovery_complete_) {
cv_.TimedWait(abs_time_us);
}
if (recovery_complete_) {
recovery_complete_ = false;
return true;
}
return false;
}
void EnableAutoRecovery(bool enable = true) { no_auto_recovery_ = !enable; }
private:
InstrumentedMutex mutex_;
InstrumentedCondVar cv_;
bool no_auto_recovery_;
bool recovery_complete_;
};
std::shared_ptr<ErrorHandlerListener> listener_;
std::unique_ptr<TimestampEmulator> mock_app_clock_;
bool SanityCheck() {
if (FLAGS_compression_ratio > 1) {
fprintf(stderr, "compression_ratio should be between 0 and 1\n");
return false;
}
return true;
}
inline bool CompressSlice(const CompressionInfo& compression_info,
const Slice& input, std::string* compressed) {
constexpr uint32_t compress_format_version = 2;
return CompressData(input, compression_info, compress_format_version,
compressed);
}
void PrintHeader(const Options& options) {
PrintEnvironment();
fprintf(stdout,
"Keys: %d bytes each (+ %d bytes user-defined timestamp)\n",
FLAGS_key_size, FLAGS_user_timestamp_size);
auto avg_value_size = FLAGS_value_size;
if (FLAGS_value_size_distribution_type_e == kFixed) {
fprintf(stdout,
"Values: %d bytes each (%d bytes after compression)\n",
avg_value_size,
static_cast<int>(avg_value_size * FLAGS_compression_ratio + 0.5));
} else {
avg_value_size = (FLAGS_value_size_min + FLAGS_value_size_max) / 2;
fprintf(stdout,
"Values: %d avg bytes each (%d bytes after compression)\n",
avg_value_size,
static_cast<int>(avg_value_size * FLAGS_compression_ratio + 0.5));
fprintf(stdout, "Values Distribution: %s (min: %d, max: %d)\n",
FLAGS_value_size_distribution_type.c_str(), FLAGS_value_size_min,
FLAGS_value_size_max);
}
fprintf(stdout, "Entries: %" PRIu64 "\n", num_);
fprintf(stdout, "Prefix: %d bytes\n", FLAGS_prefix_size);
fprintf(stdout, "Keys per prefix: %" PRIu64 "\n", keys_per_prefix_);
fprintf(stdout, "RawSize: %.1f MB (estimated)\n",
((static_cast<int64_t>(FLAGS_key_size + avg_value_size) * num_) /
1048576.0));
fprintf(
stdout, "FileSize: %.1f MB (estimated)\n",
(((FLAGS_key_size + avg_value_size * FLAGS_compression_ratio) * num_) /
1048576.0));
fprintf(stdout, "Write rate: %" PRIu64 " bytes/second\n",
FLAGS_benchmark_write_rate_limit);
fprintf(stdout, "Read rate: %" PRIu64 " ops/second\n",
FLAGS_benchmark_read_rate_limit);
if (FLAGS_enable_numa) {
fprintf(stderr, "Running in NUMA enabled mode.\n");
#ifndef NUMA
fprintf(stderr, "NUMA is not defined in the system.\n");
exit(1);
#else
if (numa_available() == -1) {
fprintf(stderr, "NUMA is not supported by the system.\n");
exit(1);
}
#endif
}
auto compression = CompressionTypeToString(FLAGS_compression_type_e);
fprintf(stdout, "Compression: %s\n", compression.c_str());
fprintf(stdout, "Compression sampling rate: %" PRId64 "\n",
FLAGS_sample_for_compression);
if (options.memtable_factory != nullptr) {
fprintf(stdout, "Memtablerep: %s\n",
options.memtable_factory->GetId().c_str());
}
fprintf(stdout, "Perf Level: %d\n", FLAGS_perf_level);
PrintWarnings(compression.c_str());
fprintf(stdout, "------------------------------------------------\n");
}
void PrintWarnings(const char* compression) {
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
fprintf(
stdout,
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n");
#endif
#ifndef NDEBUG
fprintf(stdout,
"WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
#endif
if (FLAGS_compression_type_e != ROCKSDB_NAMESPACE::kNoCompression) {
// The test string should not be too small.
const int len = FLAGS_block_size;
std::string input_str(len, 'y');
std::string compressed;
CompressionOptions opts;
CompressionContext context(FLAGS_compression_type_e, opts);
CompressionInfo info(opts, context, CompressionDict::GetEmptyDict(),
FLAGS_compression_type_e,
FLAGS_sample_for_compression);
bool result = CompressSlice(info, Slice(input_str), &compressed);
if (!result) {
fprintf(stdout, "WARNING: %s compression is not enabled\n",
compression);
} else if (compressed.size() >= input_str.size()) {
fprintf(stdout, "WARNING: %s compression is not effective\n",
compression);
}
}
}
// Current the following isn't equivalent to OS_LINUX.
#if defined(__linux)
static Slice TrimSpace(Slice s) {
unsigned int start = 0;
while (start < s.size() && isspace(s[start])) {
start++;
}
unsigned int limit = static_cast<unsigned int>(s.size());
while (limit > start && isspace(s[limit - 1])) {
limit--;
}
return Slice(s.data() + start, limit - start);
}
#endif
void PrintEnvironment() {
fprintf(stderr, "RocksDB: version %s\n",
GetRocksVersionAsString(true).c_str());
#if defined(__linux) || defined(__APPLE__) || defined(__FreeBSD__)
time_t now = time(nullptr);
char buf[52];
// Lint complains about ctime() usage, so replace it with ctime_r(). The
// requirement is to provide a buffer which is at least 26 bytes.
fprintf(stderr, "Date: %s",
ctime_r(&now, buf)); // ctime_r() adds newline
#if defined(__linux)
FILE* cpuinfo = fopen("/proc/cpuinfo", "r");
if (cpuinfo != nullptr) {
char line[1000];
int num_cpus = 0;
std::string cpu_type;
std::string cache_size;
while (fgets(line, sizeof(line), cpuinfo) != nullptr) {
const char* sep = strchr(line, ':');
if (sep == nullptr) {
continue;
}
Slice key = TrimSpace(Slice(line, sep - 1 - line));
Slice val = TrimSpace(Slice(sep + 1));
if (key == "model name") {
++num_cpus;
cpu_type = val.ToString();
} else if (key == "cache size") {
cache_size = val.ToString();
}
}
fclose(cpuinfo);
fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str());
fprintf(stderr, "CPUCache: %s\n", cache_size.c_str());
}
#elif defined(__APPLE__)
struct host_basic_info h;
size_t hlen = HOST_BASIC_INFO_COUNT;
if (host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&h,
(uint32_t*)&hlen) == KERN_SUCCESS) {
std::string cpu_type;
std::string cache_size;
size_t hcache_size;
hlen = sizeof(hcache_size);
if (sysctlbyname("hw.cachelinesize", &hcache_size, &hlen, NULL, 0) == 0) {
cache_size = std::to_string(hcache_size);
}
switch (h.cpu_type) {
case CPU_TYPE_X86_64:
cpu_type = "x86_64";
break;
case CPU_TYPE_ARM64:
cpu_type = "arm64";
break;
default:
break;
}
fprintf(stderr, "CPU: %d * %s\n", h.max_cpus, cpu_type.c_str());
fprintf(stderr, "CPUCache: %s\n", cache_size.c_str());
}
#elif defined(__FreeBSD__)
int ncpus;
size_t len = sizeof(ncpus);
int mib[2] = {CTL_HW, HW_NCPU};
if (sysctl(mib, 2, &ncpus, &len, nullptr, 0) == 0) {
char cpu_type[16];
len = sizeof(cpu_type) - 1;
mib[1] = HW_MACHINE;
if (sysctl(mib, 2, cpu_type, &len, nullptr, 0) == 0) cpu_type[len] = 0;
fprintf(stderr, "CPU: %d * %s\n", ncpus, cpu_type);
// no programmatic way to get the cache line size except on PPC
}
#endif
#endif
}
static bool KeyExpired(const TimestampEmulator* timestamp_emulator,
const Slice& key) {
const char* pos = key.data();
pos += 8;
uint64_t timestamp = 0;
if (port::kLittleEndian) {
int bytes_to_fill = 8;
for (int i = 0; i < bytes_to_fill; ++i) {
timestamp |= (static_cast<uint64_t>(static_cast<unsigned char>(pos[i]))
<< ((bytes_to_fill - i - 1) << 3));
}
} else {
memcpy(&timestamp, pos, sizeof(timestamp));
}
return timestamp_emulator->Get() - timestamp > FLAGS_time_range;
}
class ExpiredTimeFilter : public CompactionFilter {
public:
explicit ExpiredTimeFilter(
const std::shared_ptr<TimestampEmulator>& timestamp_emulator)
: timestamp_emulator_(timestamp_emulator) {}
bool Filter(int /*level*/, const Slice& key,
const Slice& /*existing_value*/, std::string* /*new_value*/,
bool* /*value_changed*/) const override {
return KeyExpired(timestamp_emulator_.get(), key);
}
const char* Name() const override { return "ExpiredTimeFilter"; }
private:
std::shared_ptr<TimestampEmulator> timestamp_emulator_;
};
class KeepFilter : public CompactionFilter {
public:
bool Filter(int /*level*/, const Slice& /*key*/, const Slice& /*value*/,
std::string* /*new_value*/,
bool* /*value_changed*/) const override {
return false;
}
const char* Name() const override { return "KeepFilter"; }
};
static std::shared_ptr<MemoryAllocator> GetCacheAllocator() {
std::shared_ptr<MemoryAllocator> allocator;
if (FLAGS_use_cache_jemalloc_no_dump_allocator) {
JemallocAllocatorOptions jemalloc_options;
if (!NewJemallocNodumpAllocator(jemalloc_options, &allocator).ok()) {
fprintf(stderr, "JemallocNodumpAllocator not supported.\n");
exit(1);
}
} else if (FLAGS_use_cache_memkind_kmem_allocator) {
#ifdef MEMKIND
allocator = std::make_shared<MemkindKmemAllocator>();
#else
fprintf(stderr, "Memkind library is not linked with the binary.\n");
exit(1);
#endif
}
return allocator;
}
static int32_t GetCacheHashSeed() {
// For a fixed Cache seed, need a non-negative int32
return static_cast<int32_t>(*seed_base) & 0x7fffffff;
}
static std::shared_ptr<Cache> NewCache(int64_t capacity) {
CompressedSecondaryCacheOptions secondary_cache_opts;
TieredAdmissionPolicy adm_policy = TieredAdmissionPolicy::kAdmPolicyAuto;
bool use_tiered_cache = false;
if (capacity <= 0) {
return nullptr;
}
if (FLAGS_use_compressed_secondary_cache) {
secondary_cache_opts.capacity = FLAGS_compressed_secondary_cache_size;
secondary_cache_opts.num_shard_bits =
FLAGS_compressed_secondary_cache_numshardbits;
secondary_cache_opts.high_pri_pool_ratio =
FLAGS_compressed_secondary_cache_high_pri_pool_ratio;
secondary_cache_opts.low_pri_pool_ratio =
FLAGS_compressed_secondary_cache_low_pri_pool_ratio;
secondary_cache_opts.compression_type =
FLAGS_compressed_secondary_cache_compression_type_e;
secondary_cache_opts.compression_opts.level =
FLAGS_compressed_secondary_cache_compression_level;
secondary_cache_opts.compress_format_version =
FLAGS_compressed_secondary_cache_compress_format_version;
if (FLAGS_use_tiered_cache) {
use_tiered_cache = true;
adm_policy = StringToAdmissionPolicy(FLAGS_tiered_adm_policy.c_str());
}
}
if (!FLAGS_secondary_cache_uri.empty()) {
if (!use_tiered_cache && FLAGS_use_compressed_secondary_cache) {
fprintf(
stderr,
"Cannot specify both --secondary_cache_uri and "
"--use_compressed_secondary_cache when using a non-tiered cache\n");
exit(1);
}
Status s = SecondaryCache::CreateFromString(
ConfigOptions(), FLAGS_secondary_cache_uri, &secondary_cache);
if (secondary_cache == nullptr) {
fprintf(stderr,
"No secondary cache registered matching string: %s status=%s\n",
FLAGS_secondary_cache_uri.c_str(), s.ToString().c_str());
exit(1);
}
}
std::shared_ptr<Cache> block_cache;
if (!FLAGS_cache_uri.empty()) {
Status s = Cache::CreateFromString(ConfigOptions(), FLAGS_cache_uri,
&block_cache);
if (block_cache == nullptr) {
fprintf(stderr, "No cache registered matching string: %s status=%s\n",
FLAGS_cache_uri.c_str(), s.ToString().c_str());
exit(1);
}
} else if (FLAGS_cache_type == "clock_cache") {
fprintf(stderr, "Old clock cache implementation has been removed.\n");
exit(1);
} else if (EndsWith(FLAGS_cache_type, "hyper_clock_cache")) {
size_t estimated_entry_charge;
if (FLAGS_cache_type == "fixed_hyper_clock_cache" ||
FLAGS_cache_type == "hyper_clock_cache") {
estimated_entry_charge = FLAGS_block_size;
} else if (FLAGS_cache_type == "auto_hyper_clock_cache") {
estimated_entry_charge = 0;
} else {
fprintf(stderr, "Cache type not supported.");
exit(1);
}
HyperClockCacheOptions opts(FLAGS_cache_size, estimated_entry_charge,
FLAGS_cache_numshardbits);
opts.hash_seed = GetCacheHashSeed();
if (use_tiered_cache) {
TieredCacheOptions tiered_opts;
tiered_opts.cache_type = PrimaryCacheType::kCacheTypeHCC;
tiered_opts.cache_opts = &opts;
tiered_opts.total_capacity =
opts.capacity + secondary_cache_opts.capacity;
tiered_opts.compressed_secondary_ratio =
secondary_cache_opts.capacity * 1.0 / tiered_opts.total_capacity;
tiered_opts.comp_cache_opts = secondary_cache_opts;
tiered_opts.nvm_sec_cache = secondary_cache;
tiered_opts.adm_policy = adm_policy;
block_cache = NewTieredCache(tiered_opts);
} else {
if (!FLAGS_secondary_cache_uri.empty()) {
opts.secondary_cache = secondary_cache;
} else if (FLAGS_use_compressed_secondary_cache) {
opts.secondary_cache =
NewCompressedSecondaryCache(secondary_cache_opts);
}
block_cache = opts.MakeSharedCache();
}
} else if (FLAGS_cache_type == "lru_cache") {
LRUCacheOptions opts(
static_cast<size_t>(capacity), FLAGS_cache_numshardbits,
false /*strict_capacity_limit*/, FLAGS_cache_high_pri_pool_ratio,
GetCacheAllocator(), kDefaultToAdaptiveMutex,
kDefaultCacheMetadataChargePolicy, FLAGS_cache_low_pri_pool_ratio);
opts.hash_seed = GetCacheHashSeed();
if (use_tiered_cache) {
TieredCacheOptions tiered_opts;
tiered_opts.cache_type = PrimaryCacheType::kCacheTypeLRU;
tiered_opts.cache_opts = &opts;
tiered_opts.total_capacity =
opts.capacity + secondary_cache_opts.capacity;
tiered_opts.compressed_secondary_ratio =
secondary_cache_opts.capacity * 1.0 / tiered_opts.total_capacity;
tiered_opts.comp_cache_opts = secondary_cache_opts;
tiered_opts.nvm_sec_cache = secondary_cache;
tiered_opts.adm_policy = adm_policy;
block_cache = NewTieredCache(tiered_opts);
} else {
if (!FLAGS_secondary_cache_uri.empty()) {
opts.secondary_cache = secondary_cache;
} else if (FLAGS_use_compressed_secondary_cache) {
opts.secondary_cache =
NewCompressedSecondaryCache(secondary_cache_opts);
}
block_cache = opts.MakeSharedCache();
}
} else {
fprintf(stderr, "Cache type not supported.");
exit(1);
}
if (!block_cache) {
fprintf(stderr, "Unable to allocate block cache\n");
exit(1);
}
return block_cache;
}
public:
Benchmark()
: cache_(NewCache(FLAGS_cache_size)),
compressed_cache_(NewCache(FLAGS_compressed_cache_size)),
prefix_extractor_(FLAGS_prefix_size != 0
? NewFixedPrefixTransform(FLAGS_prefix_size)
: nullptr),
num_(FLAGS_num),
key_size_(FLAGS_key_size),
user_timestamp_size_(FLAGS_user_timestamp_size),
prefix_size_(FLAGS_prefix_size),
total_thread_count_(0),
keys_per_prefix_(FLAGS_keys_per_prefix),
entries_per_batch_(1),
reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads),
read_random_exp_range_(0.0),
writes_(FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes),
readwrites_(
(FLAGS_writes < 0 && FLAGS_reads < 0)
? FLAGS_num
: ((FLAGS_writes > FLAGS_reads) ? FLAGS_writes : FLAGS_reads)),
merge_keys_(FLAGS_merge_keys < 0 ? FLAGS_num : FLAGS_merge_keys),
report_file_operations_(FLAGS_report_file_operations),
use_blob_db_(FLAGS_use_blob_db), // Stacked BlobDB
read_operands_(false) {
// use simcache instead of cache
if (FLAGS_simcache_size >= 0) {
if (FLAGS_cache_numshardbits >= 1) {
cache_ =
NewSimCache(cache_, FLAGS_simcache_size, FLAGS_cache_numshardbits);
} else {
cache_ = NewSimCache(cache_, FLAGS_simcache_size, 0);
}
}
if (report_file_operations_) {
FLAGS_env = new CompositeEnvWrapper(
FLAGS_env,
std::make_shared<CountedFileSystem>(FLAGS_env->GetFileSystem()));
}
if (FLAGS_prefix_size > FLAGS_key_size) {
fprintf(stderr, "prefix size is larger than key size");
exit(1);
}
std::vector<std::string> files;
FLAGS_env->GetChildren(FLAGS_db, &files);
for (size_t i = 0; i < files.size(); i++) {
if (Slice(files[i]).starts_with("heap-")) {
FLAGS_env->DeleteFile(FLAGS_db + "/" + files[i]);
}
}
if (!FLAGS_use_existing_db) {
Options options;
options.env = FLAGS_env;
if (!FLAGS_wal_dir.empty()) {
options.wal_dir = FLAGS_wal_dir;
}
if (use_blob_db_) {
// Stacked BlobDB
blob_db::DestroyBlobDB(FLAGS_db, options, blob_db::BlobDBOptions());
}
DestroyDB(FLAGS_db, options);
if (!FLAGS_wal_dir.empty()) {
FLAGS_env->DeleteDir(FLAGS_wal_dir);
}
if (FLAGS_num_multi_db > 1) {
FLAGS_env->CreateDir(FLAGS_db);
if (!FLAGS_wal_dir.empty()) {
FLAGS_env->CreateDir(FLAGS_wal_dir);
}
}
}
listener_.reset(new ErrorHandlerListener());
if (user_timestamp_size_ > 0) {
mock_app_clock_.reset(new TimestampEmulator());
}
}
void DeleteDBs() {
db_.DeleteDBs();
for (const DBWithColumnFamilies& dbwcf : multi_dbs_) {
delete dbwcf.db;
}
}
~Benchmark() {
DeleteDBs();
if (cache_.get() != nullptr) {
// Clear cache reference first
open_options_.write_buffer_manager.reset();
// this will leak, but we're shutting down so nobody cares
cache_->DisownData();
}
}
Slice AllocateKey(std::unique_ptr<const char[]>* key_guard) {
char* data = new char[key_size_];
const char* const_data = data;
key_guard->reset(const_data);
return Slice(key_guard->get(), key_size_);
}
// Generate key according to the given specification and random number.
// The resulting key will have the following format:
// - If keys_per_prefix_ is positive, extra trailing bytes are either cut
// off or padded with '0'.
// The prefix value is derived from key value.
// ----------------------------
// | prefix 00000 | key 00000 |
// ----------------------------
//
// - If keys_per_prefix_ is 0, the key is simply a binary representation of
// random number followed by trailing '0's
// ----------------------------
// | key 00000 |
// ----------------------------
void GenerateKeyFromInt(uint64_t v, int64_t num_keys, Slice* key) {
if (!keys_.empty()) {
assert(FLAGS_use_existing_keys);
assert(keys_.size() == static_cast<size_t>(num_keys));
assert(v < static_cast<uint64_t>(num_keys));
*key = keys_[v];
return;
}
char* start = const_cast<char*>(key->data());
char* pos = start;
if (keys_per_prefix_ > 0) {
int64_t num_prefix = num_keys / keys_per_prefix_;
int64_t prefix = v % num_prefix;
int bytes_to_fill = std::min(prefix_size_, 8);
if (port::kLittleEndian) {
for (int i = 0; i < bytes_to_fill; ++i) {
pos[i] = (prefix >> ((bytes_to_fill - i - 1) << 3)) & 0xFF;
}
} else {
memcpy(pos, static_cast<void*>(&prefix), bytes_to_fill);
}
if (prefix_size_ > 8) {
// fill the rest with 0s
memset(pos + 8, '0', prefix_size_ - 8);
}
pos += prefix_size_;
}
int bytes_to_fill = std::min(key_size_ - static_cast<int>(pos - start), 8);
if (port::kLittleEndian) {
for (int i = 0; i < bytes_to_fill; ++i) {
pos[i] = (v >> ((bytes_to_fill - i - 1) << 3)) & 0xFF;
}
} else {
memcpy(pos, static_cast<void*>(&v), bytes_to_fill);
}
pos += bytes_to_fill;
if (key_size_ > pos - start) {
memset(pos, '0', key_size_ - (pos - start));
}
}
void GenerateKeyFromIntForSeek(uint64_t v, int64_t num_keys, Slice* key) {
GenerateKeyFromInt(v, num_keys, key);
if (FLAGS_seek_missing_prefix) {
assert(prefix_size_ > 8);
char* key_ptr = const_cast<char*>(key->data());
// This rely on GenerateKeyFromInt filling paddings with '0's.
// Putting a '1' will create a non-existing prefix.
key_ptr[8] = '1';
}
}
std::string GetPathForMultiple(std::string base_name, size_t id) {
if (!base_name.empty()) {
#ifndef OS_WIN
if (base_name.back() != '/') {
base_name += '/';
}
#else
if (base_name.back() != '\\') {
base_name += '\\';
}
#endif
}
return base_name + std::to_string(id);
}
void VerifyDBFromDB(std::string& truth_db_name) {
DBWithColumnFamilies truth_db;
auto s = DB::OpenForReadOnly(open_options_, truth_db_name, &truth_db.db);
if (!s.ok()) {
fprintf(stderr, "open error: %s\n", s.ToString().c_str());
exit(1);
}
ReadOptions ro;
ro.total_order_seek = true;
std::unique_ptr<Iterator> truth_iter(truth_db.db->NewIterator(ro));
std::unique_ptr<Iterator> db_iter(db_.db->NewIterator(ro));
// Verify that all the key/values in truth_db are retrivable in db with
// ::Get
fprintf(stderr, "Verifying db >= truth_db with ::Get...\n");
for (truth_iter->SeekToFirst(); truth_iter->Valid(); truth_iter->Next()) {
std::string value;
s = db_.db->Get(ro, truth_iter->key(), &value);
assert(s.ok());
// TODO(myabandeh): provide debugging hints
assert(Slice(value) == truth_iter->value());
}
// Verify that the db iterator does not give any extra key/value
fprintf(stderr, "Verifying db == truth_db...\n");
for (db_iter->SeekToFirst(), truth_iter->SeekToFirst(); db_iter->Valid();
db_iter->Next(), truth_iter->Next()) {
assert(truth_iter->Valid());
assert(truth_iter->value() == db_iter->value());
}
// No more key should be left unchecked in truth_db
assert(!truth_iter->Valid());
fprintf(stderr, "...Verified\n");
}
void ErrorExit() {
DeleteDBs();
exit(1);
}
void Run() {
if (!SanityCheck()) {
ErrorExit();
}
Open(&open_options_);
PrintHeader(open_options_);
std::stringstream benchmark_stream(FLAGS_benchmarks);
std::string name;
std::unique_ptr<ExpiredTimeFilter> filter;
while (std::getline(benchmark_stream, name, ',')) {
// Sanitize parameters
num_ = FLAGS_num;
reads_ = (FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads);
writes_ = (FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes);
deletes_ = (FLAGS_deletes < 0 ? FLAGS_num : FLAGS_deletes);
value_size = FLAGS_value_size;
key_size_ = FLAGS_key_size;
entries_per_batch_ = FLAGS_batch_size;
writes_before_delete_range_ = FLAGS_writes_before_delete_range;
writes_per_range_tombstone_ = FLAGS_writes_per_range_tombstone;
range_tombstone_width_ = FLAGS_range_tombstone_width;
max_num_range_tombstones_ = FLAGS_max_num_range_tombstones;
write_options_ = WriteOptions();
read_random_exp_range_ = FLAGS_read_random_exp_range;
if (FLAGS_sync) {
write_options_.sync = true;
}
write_options_.disableWAL = FLAGS_disable_wal;
write_options_.rate_limiter_priority =
FLAGS_rate_limit_auto_wal_flush ? Env::IO_USER : Env::IO_TOTAL;
read_options_ = ReadOptions(FLAGS_verify_checksum, true);
read_options_.total_order_seek = FLAGS_total_order_seek;
read_options_.prefix_same_as_start = FLAGS_prefix_same_as_start;
read_options_.rate_limiter_priority =
FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
read_options_.tailing = FLAGS_use_tailing_iterator;
read_options_.readahead_size = FLAGS_readahead_size;
read_options_.adaptive_readahead = FLAGS_adaptive_readahead;
read_options_.async_io = FLAGS_async_io;
read_options_.optimize_multiget_for_io = FLAGS_optimize_multiget_for_io;
read_options_.auto_readahead_size = FLAGS_auto_readahead_size;
void (Benchmark::*method)(ThreadState*) = nullptr;
void (Benchmark::*post_process_method)() = nullptr;
bool fresh_db = false;
int num_threads = FLAGS_threads;
int num_repeat = 1;
int num_warmup = 0;
if (!name.empty() && *name.rbegin() == ']') {
auto it = name.find('[');
if (it == std::string::npos) {
fprintf(stderr, "unknown benchmark arguments '%s'\n", name.c_str());
ErrorExit();
}
std::string args = name.substr(it + 1);
args.resize(args.size() - 1);
name.resize(it);
std::string bench_arg;
std::stringstream args_stream(args);
while (std::getline(args_stream, bench_arg, '-')) {
if (bench_arg.empty()) {
continue;
}
if (bench_arg[0] == 'X') {
// Repeat the benchmark n times
std::string num_str = bench_arg.substr(1);
num_repeat = std::stoi(num_str);
} else if (bench_arg[0] == 'W') {
// Warm up the benchmark for n times
std::string num_str = bench_arg.substr(1);
num_warmup = std::stoi(num_str);
}
}
}
// Both fillseqdeterministic and filluniquerandomdeterministic
// fill the levels except the max level with UNIQUE_RANDOM
// and fill the max level with fillseq and filluniquerandom, respectively
if (name == "fillseqdeterministic" ||
name == "filluniquerandomdeterministic") {
if (!FLAGS_disable_auto_compactions) {
fprintf(stderr,
"Please disable_auto_compactions in FillDeterministic "
"benchmark\n");
ErrorExit();
}
if (num_threads > 1) {
fprintf(stderr,
"filldeterministic multithreaded not supported"
", use 1 thread\n");
num_threads = 1;
}
fresh_db = true;
if (name == "fillseqdeterministic") {
method = &Benchmark::WriteSeqDeterministic;
} else {
method = &Benchmark::WriteUniqueRandomDeterministic;
}
} else if (name == "fillseq") {
fresh_db = true;
method = &Benchmark::WriteSeq;
} else if (name == "fillbatch") {
fresh_db = true;
entries_per_batch_ = 1000;
method = &Benchmark::WriteSeq;
} else if (name == "fillrandom") {
fresh_db = true;
method = &Benchmark::WriteRandom;
} else if (name == "filluniquerandom" ||
name == "fillanddeleteuniquerandom") {
fresh_db = true;
if (num_threads > 1) {
fprintf(stderr,
"filluniquerandom and fillanddeleteuniquerandom "
"multithreaded not supported, use 1 thread");
num_threads = 1;
}
method = &Benchmark::WriteUniqueRandom;
} else if (name == "overwrite") {
method = &Benchmark::WriteRandom;
} else if (name == "fillsync") {
fresh_db = true;
num_ /= 1000;
write_options_.sync = true;
method = &Benchmark::WriteRandom;
} else if (name == "fill100K") {
fresh_db = true;
num_ /= 1000;
value_size = 100 * 1000;
method = &Benchmark::WriteRandom;
} else if (name == "readseq") {
method = &Benchmark::ReadSequential;
} else if (name == "readtorowcache") {
if (!FLAGS_use_existing_keys || !FLAGS_row_cache_size) {
fprintf(stderr,
"Please set use_existing_keys to true and specify a "
"row cache size in readtorowcache benchmark\n");
ErrorExit();
}
method = &Benchmark::ReadToRowCache;
} else if (name == "readtocache") {
method = &Benchmark::ReadSequential;
num_threads = 1;
reads_ = num_;
} else if (name == "readreverse") {
method = &Benchmark::ReadReverse;
} else if (name == "readrandom") {
if (FLAGS_multiread_stride) {
fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
entries_per_batch_);
}
method = &Benchmark::ReadRandom;
} else if (name == "readrandomfast") {
method = &Benchmark::ReadRandomFast;
} else if (name == "multireadrandom") {
fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
entries_per_batch_);
method = &Benchmark::MultiReadRandom;
} else if (name == "multireadwhilewriting") {
fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
entries_per_batch_);
num_threads++;
method = &Benchmark::MultiReadWhileWriting;
} else if (name == "approximatesizerandom") {
fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
entries_per_batch_);
method = &Benchmark::ApproximateSizeRandom;
} else if (name == "mixgraph") {
method = &Benchmark::MixGraph;
} else if (name == "readmissing") {
++key_size_;
method = &Benchmark::ReadRandom;
} else if (name == "newiterator") {
method = &Benchmark::IteratorCreation;
} else if (name == "newiteratorwhilewriting") {
num_threads++; // Add extra thread for writing
method = &Benchmark::IteratorCreationWhileWriting;
} else if (name == "seekrandom") {
method = &Benchmark::SeekRandom;
} else if (name == "seekrandomwhilewriting") {
num_threads++; // Add extra thread for writing
method = &Benchmark::SeekRandomWhileWriting;
} else if (name == "seekrandomwhilemerging") {
num_threads++; // Add extra thread for merging
method = &Benchmark::SeekRandomWhileMerging;
} else if (name == "readrandomsmall") {
reads_ /= 1000;
method = &Benchmark::ReadRandom;
} else if (name == "deleteseq") {
method = &Benchmark::DeleteSeq;
} else if (name == "deleterandom") {
method = &Benchmark::DeleteRandom;
} else if (name == "readwhilewriting") {
num_threads++; // Add extra thread for writing
method = &Benchmark::ReadWhileWriting;
} else if (name == "readwhilemerging") {
num_threads++; // Add extra thread for writing
method = &Benchmark::ReadWhileMerging;
} else if (name == "readwhilescanning") {
num_threads++; // Add extra thread for scaning
method = &Benchmark::ReadWhileScanning;
} else if (name == "readrandomwriterandom") {
method = &Benchmark::ReadRandomWriteRandom;
} else if (name == "readrandommergerandom") {
if (FLAGS_merge_operator.empty()) {
fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n",
name.c_str());
ErrorExit();
}
method = &Benchmark::ReadRandomMergeRandom;
} else if (name == "updaterandom") {
method = &Benchmark::UpdateRandom;
} else if (name == "xorupdaterandom") {
method = &Benchmark::XORUpdateRandom;
} else if (name == "appendrandom") {
method = &Benchmark::AppendRandom;
} else if (name == "mergerandom") {
if (FLAGS_merge_operator.empty()) {
fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n",
name.c_str());
exit(1);
}
method = &Benchmark::MergeRandom;
} else if (name == "randomwithverify") {
method = &Benchmark::RandomWithVerify;
} else if (name == "fillseekseq") {
method = &Benchmark::WriteSeqSeekSeq;
} else if (name == "compact") {
method = &Benchmark::Compact;
} else if (name == "compactall") {
CompactAll();
} else if (name == "compact0") {
CompactLevel(0);
} else if (name == "compact1") {
CompactLevel(1);
} else if (name == "waitforcompaction") {
WaitForCompaction();
} else if (name == "flush") {
Flush();
} else if (name == "crc32c") {
method = &Benchmark::Crc32c;
} else if (name == "xxhash") {
method = &Benchmark::xxHash;
} else if (name == "xxhash64") {
method = &Benchmark::xxHash64;
} else if (name == "xxh3") {
method = &Benchmark::xxh3;
} else if (name == "acquireload") {
method = &Benchmark::AcquireLoad;
} else if (name == "compress") {
method = &Benchmark::Compress;
} else if (name == "uncompress") {
method = &Benchmark::Uncompress;
} else if (name == "randomtransaction") {
method = &Benchmark::RandomTransaction;
post_process_method = &Benchmark::RandomTransactionVerify;
} else if (name == "randomreplacekeys") {
fresh_db = true;
method = &Benchmark::RandomReplaceKeys;
} else if (name == "timeseries") {
timestamp_emulator_.reset(new TimestampEmulator());
if (FLAGS_expire_style == "compaction_filter") {
filter.reset(new ExpiredTimeFilter(timestamp_emulator_));
fprintf(stdout, "Compaction filter is used to remove expired data");
open_options_.compaction_filter = filter.get();
}
fresh_db = true;
method = &Benchmark::TimeSeries;
} else if (name == "block_cache_entry_stats") {
// DB::Properties::kBlockCacheEntryStats
PrintStats("rocksdb.block-cache-entry-stats");
} else if (name == "cache_report_problems") {
CacheReportProblems();
} else if (name == "stats") {
PrintStats("rocksdb.stats");
} else if (name == "resetstats") {
ResetStats();
} else if (name == "verify") {
VerifyDBFromDB(FLAGS_truth_db);
} else if (name == "levelstats") {
PrintStats("rocksdb.levelstats");
} else if (name == "memstats") {
std::vector<std::string> keys{"rocksdb.num-immutable-mem-table",
"rocksdb.cur-size-active-mem-table",
"rocksdb.cur-size-all-mem-tables",
"rocksdb.size-all-mem-tables",
"rocksdb.num-entries-active-mem-table",
"rocksdb.num-entries-imm-mem-tables"};
PrintStats(keys);
} else if (name == "sstables") {
PrintStats("rocksdb.sstables");
} else if (name == "stats_history") {
PrintStatsHistory();
} else if (name == "replay") {
if (num_threads > 1) {
fprintf(stderr, "Multi-threaded replay is not yet supported\n");
ErrorExit();
}
if (FLAGS_trace_file == "") {
fprintf(stderr, "Please set --trace_file to be replayed from\n");
ErrorExit();
}
method = &Benchmark::Replay;
} else if (name == "getmergeoperands") {
method = &Benchmark::GetMergeOperands;
} else if (name == "verifychecksum") {
method = &Benchmark::VerifyChecksum;
} else if (name == "verifyfilechecksums") {
method = &Benchmark::VerifyFileChecksums;
} else if (name == "readrandomoperands") {
read_operands_ = true;
method = &Benchmark::ReadRandom;
} else if (name == "backup") {
method = &Benchmark::Backup;
} else if (name == "restore") {
method = &Benchmark::Restore;
} else if (!name.empty()) { // No error message for empty name
fprintf(stderr, "unknown benchmark '%s'\n", name.c_str());
ErrorExit();
}
if (fresh_db) {
if (FLAGS_use_existing_db) {
fprintf(stdout, "%-12s : skipped (--use_existing_db is true)\n",
name.c_str());
method = nullptr;
} else {
if (db_.db != nullptr) {
db_.DeleteDBs();
DestroyDB(FLAGS_db, open_options_);
}
Options options = open_options_;
for (size_t i = 0; i < multi_dbs_.size(); i++) {
delete multi_dbs_[i].db;
if (!open_options_.wal_dir.empty()) {
options.wal_dir = GetPathForMultiple(open_options_.wal_dir, i);
}
DestroyDB(GetPathForMultiple(FLAGS_db, i), options);
}
multi_dbs_.clear();
}
Open(&open_options_); // use open_options for the last accessed
}
if (method != nullptr) {
fprintf(stdout, "DB path: [%s]\n", FLAGS_db.c_str());
if (name == "backup") {
std::cout << "Backup path: [" << FLAGS_backup_dir << "]" << std::endl;
} else if (name == "restore") {
std::cout << "Backup path: [" << FLAGS_backup_dir << "]" << std::endl;
std::cout << "Restore path: [" << FLAGS_restore_dir << "]"
<< std::endl;
}
// A trace_file option can be provided both for trace and replay
// operations. But db_bench does not support tracing and replaying at
// the same time, for now. So, start tracing only when it is not a
// replay.
if (FLAGS_trace_file != "" && name != "replay") {
std::unique_ptr<TraceWriter> trace_writer;
Status s = NewFileTraceWriter(FLAGS_env, EnvOptions(),
FLAGS_trace_file, &trace_writer);
if (!s.ok()) {
fprintf(stderr, "Encountered an error starting a trace, %s\n",
s.ToString().c_str());
ErrorExit();
}
s = db_.db->StartTrace(trace_options_, std::move(trace_writer));
if (!s.ok()) {
fprintf(stderr, "Encountered an error starting a trace, %s\n",
s.ToString().c_str());
ErrorExit();
}
fprintf(stdout, "Tracing the workload to: [%s]\n",
FLAGS_trace_file.c_str());
}
// Start block cache tracing.
if (!FLAGS_block_cache_trace_file.empty()) {
// Sanity checks.
if (FLAGS_block_cache_trace_sampling_frequency <= 0) {
fprintf(stderr,
"Block cache trace sampling frequency must be higher than "
"0.\n");
ErrorExit();
}
if (FLAGS_block_cache_trace_max_trace_file_size_in_bytes <= 0) {
fprintf(stderr,
"The maximum file size for block cache tracing must be "
"higher than 0.\n");
ErrorExit();
}
block_cache_trace_options_.max_trace_file_size =
FLAGS_block_cache_trace_max_trace_file_size_in_bytes;
block_cache_trace_options_.sampling_frequency =
FLAGS_block_cache_trace_sampling_frequency;
std::unique_ptr<TraceWriter> block_cache_trace_writer;
Status s = NewFileTraceWriter(FLAGS_env, EnvOptions(),
FLAGS_block_cache_trace_file,
&block_cache_trace_writer);
if (!s.ok()) {
fprintf(stderr,
"Encountered an error when creating trace writer, %s\n",
s.ToString().c_str());
ErrorExit();
}
s = db_.db->StartBlockCacheTrace(block_cache_trace_options_,
std::move(block_cache_trace_writer));
if (!s.ok()) {
fprintf(
stderr,
"Encountered an error when starting block cache tracing, %s\n",
s.ToString().c_str());
ErrorExit();
}
fprintf(stdout, "Tracing block cache accesses to: [%s]\n",
FLAGS_block_cache_trace_file.c_str());
}
if (num_warmup > 0) {
printf("Warming up benchmark by running %d times\n", num_warmup);
}
for (int i = 0; i < num_warmup; i++) {
RunBenchmark(num_threads, name, method);
}
if (num_repeat > 1) {
printf("Running benchmark for %d times\n", num_repeat);
}
CombinedStats combined_stats;
for (int i = 0; i < num_repeat; i++) {
Stats stats = RunBenchmark(num_threads, name, method);
combined_stats.AddStats(stats);
if (FLAGS_confidence_interval_only) {
combined_stats.ReportWithConfidenceIntervals(name);
} else {
combined_stats.Report(name);
}
}
if (num_repeat > 1) {
combined_stats.ReportFinal(name);
}
}
if (post_process_method != nullptr) {
(this->*post_process_method)();
}
}
if (secondary_update_thread_) {
secondary_update_stopped_.store(1, std::memory_order_relaxed);
secondary_update_thread_->join();
secondary_update_thread_.reset();
}
if (name != "replay" && FLAGS_trace_file != "") {
Status s = db_.db->EndTrace();
if (!s.ok()) {
fprintf(stderr, "Encountered an error ending the trace, %s\n",
s.ToString().c_str());
}
}
if (!FLAGS_block_cache_trace_file.empty()) {
Status s = db_.db->EndBlockCacheTrace();
if (!s.ok()) {
fprintf(stderr,
"Encountered an error ending the block cache tracing, %s\n",
s.ToString().c_str());
}
}
if (FLAGS_statistics) {
fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str());
}
if (FLAGS_simcache_size >= 0) {
fprintf(
stdout, "SIMULATOR CACHE STATISTICS:\n%s\n",
static_cast_with_check<SimCache>(cache_.get())->ToString().c_str());
}
if (FLAGS_use_secondary_db) {
fprintf(stdout, "Secondary instance updated %" PRIu64 " times.\n",
secondary_db_updates_);
}
}
private:
std::shared_ptr<TimestampEmulator> timestamp_emulator_;
std::unique_ptr<port::Thread> secondary_update_thread_;
std::atomic<int> secondary_update_stopped_{0};
uint64_t secondary_db_updates_ = 0;
struct ThreadArg {
Benchmark* bm;
SharedState* shared;
ThreadState* thread;
void (Benchmark::*method)(ThreadState*);
};
static void ThreadBody(void* v) {
ThreadArg* arg = static_cast<ThreadArg*>(v);
SharedState* shared = arg->shared;
ThreadState* thread = arg->thread;
{
MutexLock l(&shared->mu);
shared->num_initialized++;
if (shared->num_initialized >= shared->total) {
shared->cv.SignalAll();
}
while (!shared->start) {
shared->cv.Wait();
}
}
SetPerfLevel(static_cast<PerfLevel>(shared->perf_level));
perf_context.EnablePerLevelPerfContext();
thread->stats.Start(thread->tid);
(arg->bm->*(arg->method))(thread);
if (FLAGS_perf_level > ROCKSDB_NAMESPACE::PerfLevel::kDisable) {
thread->stats.AddMessage(std::string("PERF_CONTEXT:\n") +
get_perf_context()->ToString());
}
thread->stats.Stop();
{
MutexLock l(&shared->mu);
shared->num_done++;
if (shared->num_done >= shared->total) {
shared->cv.SignalAll();
}
}
}
Stats RunBenchmark(int n, Slice name,
void (Benchmark::*method)(ThreadState*)) {
SharedState shared;
shared.total = n;
shared.num_initialized = 0;
shared.num_done = 0;
shared.start = false;
if (FLAGS_benchmark_write_rate_limit > 0) {
shared.write_rate_limiter.reset(
NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit));
}
if (FLAGS_benchmark_read_rate_limit > 0) {
shared.read_rate_limiter.reset(NewGenericRateLimiter(
FLAGS_benchmark_read_rate_limit, 100000 /* refill_period_us */,
10 /* fairness */, RateLimiter::Mode::kReadsOnly));
}
std::unique_ptr<ReporterAgent> reporter_agent;
if (FLAGS_report_interval_seconds > 0) {
reporter_agent.reset(new ReporterAgent(FLAGS_env, FLAGS_report_file,
FLAGS_report_interval_seconds));
}
ThreadArg* arg = new ThreadArg[n];
for (int i = 0; i < n; i++) {
#ifdef NUMA
if (FLAGS_enable_numa) {
// Performs a local allocation of memory to threads in numa node.
int n_nodes = numa_num_task_nodes(); // Number of nodes in NUMA.
numa_exit_on_error = 1;
int numa_node = i % n_nodes;
bitmask* nodes = numa_allocate_nodemask();
numa_bitmask_clearall(nodes);
numa_bitmask_setbit(nodes, numa_node);
// numa_bind() call binds the process to the node and these
// properties are passed on to the thread that is created in
// StartThread method called later in the loop.
numa_bind(nodes);
numa_set_strict(1);
numa_free_nodemask(nodes);
}
#endif
arg[i].bm = this;
arg[i].method = method;
arg[i].shared = &shared;
total_thread_count_++;
arg[i].thread = new ThreadState(i, total_thread_count_);
arg[i].thread->stats.SetReporterAgent(reporter_agent.get());
arg[i].thread->shared = &shared;
FLAGS_env->StartThread(ThreadBody, &arg[i]);
}
shared.mu.Lock();
while (shared.num_initialized < n) {
shared.cv.Wait();
}
shared.start = true;
shared.cv.SignalAll();
while (shared.num_done < n) {
shared.cv.Wait();
}
shared.mu.Unlock();
// Stats for some threads can be excluded.
Stats merge_stats;
for (int i = 0; i < n; i++) {
merge_stats.Merge(arg[i].thread->stats);
}
merge_stats.Report(name);
for (int i = 0; i < n; i++) {
delete arg[i].thread;
}
delete[] arg;
return merge_stats;
}
template <OperationType kOpType, typename FnType, typename... Args>
static inline void ChecksumBenchmark(FnType fn, ThreadState* thread,
Args... args) {
const int size = FLAGS_block_size; // use --block_size option for db_bench
std::string labels = "(" + std::to_string(FLAGS_block_size) + " per op)";
const char* label = labels.c_str();
std::string data(size, 'x');
uint64_t bytes = 0;
uint32_t val = 0;
while (bytes < 5000U * uint64_t{1048576}) { // ~5GB
val += static_cast<uint32_t>(fn(data.data(), size, args...));
thread->stats.FinishedOps(nullptr, nullptr, 1, kOpType);
bytes += size;
}
// Print so result is not dead
fprintf(stderr, "... val=0x%x\r", static_cast<unsigned int>(val));
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(label);
}
void Crc32c(ThreadState* thread) {
ChecksumBenchmark<kCrc>(crc32c::Value, thread);
}
void xxHash(ThreadState* thread) {
ChecksumBenchmark<kHash>(XXH32, thread, /*seed*/ 0);
}
void xxHash64(ThreadState* thread) {
ChecksumBenchmark<kHash>(XXH64, thread, /*seed*/ 0);
}
void xxh3(ThreadState* thread) {
ChecksumBenchmark<kHash>(XXH3_64bits, thread);
}
void AcquireLoad(ThreadState* thread) {
int dummy;
std::atomic<void*> ap(&dummy);
int count = 0;
void* ptr = nullptr;
thread->stats.AddMessage("(each op is 1000 loads)");
while (count < 100000) {
for (int i = 0; i < 1000; i++) {
ptr = ap.load(std::memory_order_acquire);
}
count++;
thread->stats.FinishedOps(nullptr, nullptr, 1, kOthers);
}
if (ptr == nullptr) {
exit(1); // Disable unused variable warning.
}
}
void Compress(ThreadState* thread) {
RandomGenerator gen;
Slice input = gen.Generate(FLAGS_block_size);
int64_t bytes = 0;
int64_t produced = 0;
bool ok = true;
std::string compressed;
CompressionOptions opts;
opts.level = FLAGS_compression_level;
CompressionContext context(FLAGS_compression_type_e, opts);
CompressionInfo info(opts, context, CompressionDict::GetEmptyDict(),
FLAGS_compression_type_e,
FLAGS_sample_for_compression);
// Compress 1G
while (ok && bytes < int64_t(1) << 30) {
compressed.clear();
ok = CompressSlice(info, input, &compressed);
produced += compressed.size();
bytes += input.size();
thread->stats.FinishedOps(nullptr, nullptr, 1, kCompress);
}
if (!ok) {
thread->stats.AddMessage("(compression failure)");
} else {
char buf[340];
snprintf(buf, sizeof(buf), "(output: %.1f%%)",
(produced * 100.0) / bytes);
thread->stats.AddMessage(buf);
thread->stats.AddBytes(bytes);
}
}
void Uncompress(ThreadState* thread) {
RandomGenerator gen;
Slice input = gen.Generate(FLAGS_block_size);
std::string compressed;
CompressionOptions compression_opts;
compression_opts.level = FLAGS_compression_level;
CompressionContext compression_ctx(FLAGS_compression_type_e,
compression_opts);
CompressionInfo compression_info(
compression_opts, compression_ctx, CompressionDict::GetEmptyDict(),
FLAGS_compression_type_e, FLAGS_sample_for_compression);
UncompressionContext uncompression_ctx(FLAGS_compression_type_e);
UncompressionInfo uncompression_info(uncompression_ctx,
UncompressionDict::GetEmptyDict(),
FLAGS_compression_type_e);
bool ok = CompressSlice(compression_info, input, &compressed);
int64_t bytes = 0;
size_t uncompressed_size = 0;
while (ok && bytes < 1024 * 1048576) {
constexpr uint32_t compress_format_version = 2;
CacheAllocationPtr uncompressed = UncompressData(
uncompression_info, compressed.data(), compressed.size(),
&uncompressed_size, compress_format_version);
ok = uncompressed.get() != nullptr;
bytes += input.size();
thread->stats.FinishedOps(nullptr, nullptr, 1, kUncompress);
}
if (!ok) {
thread->stats.AddMessage("(compression failure)");
} else {
thread->stats.AddBytes(bytes);
}
}
// Returns true if the options is initialized from the specified
// options file.
bool InitializeOptionsFromFile(Options* opts) {
printf("Initializing RocksDB Options from the specified file\n");
DBOptions db_opts;
std::vector<ColumnFamilyDescriptor> cf_descs;
if (FLAGS_options_file != "") {
ConfigOptions config_opts;
config_opts.ignore_unknown_options = false;
config_opts.input_strings_escaped = true;
config_opts.env = FLAGS_env;
auto s = LoadOptionsFromFile(config_opts, FLAGS_options_file, &db_opts,
&cf_descs);
db_opts.env = FLAGS_env;
if (s.ok()) {
*opts = Options(db_opts, cf_descs[0].options);
return true;
}
fprintf(stderr, "Unable to load options file %s --- %s\n",
FLAGS_options_file.c_str(), s.ToString().c_str());
exit(1);
}
return false;
}
void InitializeOptionsFromFlags(Options* opts) {
printf("Initializing RocksDB Options from command-line flags\n");
Options& options = *opts;
ConfigOptions config_options(options);
config_options.ignore_unsupported_options = false;
assert(db_.db == nullptr);
options.env = FLAGS_env;
options.wal_dir = FLAGS_wal_dir;
options.dump_malloc_stats = FLAGS_dump_malloc_stats;
options.stats_dump_period_sec =
static_cast<unsigned int>(FLAGS_stats_dump_period_sec);
options.stats_persist_period_sec =
static_cast<unsigned int>(FLAGS_stats_persist_period_sec);
options.persist_stats_to_disk = FLAGS_persist_stats_to_disk;
options.stats_history_buffer_size =
static_cast<size_t>(FLAGS_stats_history_buffer_size);
options.avoid_flush_during_recovery = FLAGS_avoid_flush_during_recovery;
options.compression_opts.level = FLAGS_compression_level;
options.compression_opts.max_dict_bytes = FLAGS_compression_max_dict_bytes;
options.compression_opts.zstd_max_train_bytes =
FLAGS_compression_zstd_max_train_bytes;
options.compression_opts.parallel_threads =
FLAGS_compression_parallel_threads;
options.compression_opts.max_dict_buffer_bytes =
FLAGS_compression_max_dict_buffer_bytes;
options.compression_opts.use_zstd_dict_trainer =
FLAGS_compression_use_zstd_dict_trainer;
options.max_open_files = FLAGS_open_files;
if (FLAGS_cost_write_buffer_to_cache || FLAGS_db_write_buffer_size != 0) {
options.write_buffer_manager.reset(
new WriteBufferManager(FLAGS_db_write_buffer_size, cache_));
}
options.arena_block_size = FLAGS_arena_block_size;
options.write_buffer_size = FLAGS_write_buffer_size;
options.max_write_buffer_number = FLAGS_max_write_buffer_number;
options.min_write_buffer_number_to_merge =
FLAGS_min_write_buffer_number_to_merge;
options.max_write_buffer_number_to_maintain =
FLAGS_max_write_buffer_number_to_maintain;
options.max_write_buffer_size_to_maintain =
FLAGS_max_write_buffer_size_to_maintain;
options.max_background_jobs = FLAGS_max_background_jobs;
options.max_background_compactions = FLAGS_max_background_compactions;
options.max_subcompactions = static_cast<uint32_t>(FLAGS_subcompactions);
options.max_background_flushes = FLAGS_max_background_flushes;
options.compaction_style = FLAGS_compaction_style_e;
options.compaction_pri = FLAGS_compaction_pri_e;
options.allow_mmap_reads = FLAGS_mmap_read;
options.allow_mmap_writes = FLAGS_mmap_write;
options.use_direct_reads = FLAGS_use_direct_reads;
options.use_direct_io_for_flush_and_compaction =
FLAGS_use_direct_io_for_flush_and_compaction;
options.manual_wal_flush = FLAGS_manual_wal_flush;
options.wal_compression = FLAGS_wal_compression_e;
options.ttl = FLAGS_fifo_compaction_ttl;
options.compaction_options_fifo = CompactionOptionsFIFO(
FLAGS_fifo_compaction_max_table_files_size_mb * 1024 * 1024,
FLAGS_fifo_compaction_allow_compaction);
options.compaction_options_fifo.age_for_warm = FLAGS_fifo_age_for_warm;
options.prefix_extractor = prefix_extractor_;
if (FLAGS_use_uint64_comparator) {
options.comparator = test::Uint64Comparator();
if (FLAGS_key_size != 8) {
fprintf(stderr, "Using Uint64 comparator but key size is not 8.\n");
exit(1);
}
}
if (FLAGS_use_stderr_info_logger) {
options.info_log = std::make_shared<StderrLogger>();
}
options.memtable_huge_page_size = FLAGS_memtable_use_huge_page ? 2048 : 0;
options.memtable_prefix_bloom_size_ratio = FLAGS_memtable_bloom_size_ratio;
options.memtable_whole_key_filtering = FLAGS_memtable_whole_key_filtering;
if (FLAGS_memtable_insert_with_hint_prefix_size > 0) {
options.memtable_insert_with_hint_prefix_extractor.reset(
NewCappedPrefixTransform(
FLAGS_memtable_insert_with_hint_prefix_size));
}
options.bloom_locality = FLAGS_bloom_locality;
options.max_file_opening_threads = FLAGS_file_opening_threads;
options.compaction_readahead_size = FLAGS_compaction_readahead_size;
options.log_readahead_size = FLAGS_log_readahead_size;
options.random_access_max_buffer_size = FLAGS_random_access_max_buffer_size;
options.writable_file_max_buffer_size = FLAGS_writable_file_max_buffer_size;
options.use_fsync = FLAGS_use_fsync;
options.num_levels = FLAGS_num_levels;
options.target_file_size_base = FLAGS_target_file_size_base;
options.target_file_size_multiplier = FLAGS_target_file_size_multiplier;
options.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base;
options.level_compaction_dynamic_level_bytes =
FLAGS_level_compaction_dynamic_level_bytes;
options.max_bytes_for_level_multiplier =
FLAGS_max_bytes_for_level_multiplier;
options.uncache_aggressiveness = FLAGS_uncache_aggressiveness;
Status s =
CreateMemTableRepFactory(config_options, &options.memtable_factory);
if (!s.ok()) {
fprintf(stderr, "Could not create memtable factory: %s\n",
s.ToString().c_str());
exit(1);
} else if ((FLAGS_prefix_size == 0) &&
(options.memtable_factory->IsInstanceOf("prefix_hash") ||
options.memtable_factory->IsInstanceOf("hash_linkedlist"))) {
fprintf(stderr,
"prefix_size should be non-zero if PrefixHash or "
"HashLinkedList memtablerep is used\n");
exit(1);
}
if (FLAGS_use_plain_table) {
if (!options.memtable_factory->IsInstanceOf("prefix_hash") &&
!options.memtable_factory->IsInstanceOf("hash_linkedlist")) {
fprintf(stderr, "Warning: plain table is used with %s\n",
options.memtable_factory->Name());
}
int bloom_bits_per_key = FLAGS_bloom_bits;
if (bloom_bits_per_key < 0) {
bloom_bits_per_key = PlainTableOptions().bloom_bits_per_key;
}
PlainTableOptions plain_table_options;
plain_table_options.user_key_len = FLAGS_key_size;
plain_table_options.bloom_bits_per_key = bloom_bits_per_key;
plain_table_options.hash_table_ratio = 0.75;
options.table_factory = std::shared_ptr<TableFactory>(
NewPlainTableFactory(plain_table_options));
} else if (FLAGS_use_cuckoo_table) {
if (FLAGS_cuckoo_hash_ratio > 1 || FLAGS_cuckoo_hash_ratio < 0) {
fprintf(stderr, "Invalid cuckoo_hash_ratio\n");
exit(1);
}
if (!FLAGS_mmap_read) {
fprintf(stderr, "cuckoo table format requires mmap read to operate\n");
exit(1);
}
ROCKSDB_NAMESPACE::CuckooTableOptions table_options;
table_options.hash_table_ratio = FLAGS_cuckoo_hash_ratio;
table_options.identity_as_first_hash = FLAGS_identity_as_first_hash;
options.table_factory =
std::shared_ptr<TableFactory>(NewCuckooTableFactory(table_options));
} else {
BlockBasedTableOptions block_based_options;
block_based_options.checksum =
static_cast<ChecksumType>(FLAGS_checksum_type);
if (FLAGS_use_hash_search) {
if (FLAGS_prefix_size == 0) {
fprintf(stderr,
"prefix_size not assigned when enable use_hash_search \n");
exit(1);
}
block_based_options.index_type = BlockBasedTableOptions::kHashSearch;
} else {
block_based_options.index_type = BlockBasedTableOptions::kBinarySearch;
}
block_based_options.decouple_partitioned_filters =
FLAGS_decouple_partitioned_filters;
if (FLAGS_partition_index_and_filters || FLAGS_partition_index) {
if (FLAGS_index_with_first_key) {
fprintf(stderr,
"--index_with_first_key is not compatible with"
" partition index.");
}
if (FLAGS_use_hash_search) {
fprintf(stderr,
"use_hash_search is incompatible with "
"partition index and is ignored");
}
block_based_options.index_type =
BlockBasedTableOptions::kTwoLevelIndexSearch;
block_based_options.metadata_block_size = FLAGS_metadata_block_size;
if (FLAGS_partition_index_and_filters) {
block_based_options.partition_filters = true;
}
} else if (FLAGS_index_with_first_key) {
block_based_options.index_type =
BlockBasedTableOptions::kBinarySearchWithFirstKey;
}
BlockBasedTableOptions::IndexShorteningMode index_shortening =
block_based_options.index_shortening;
switch (FLAGS_index_shortening_mode) {
case 0:
index_shortening =
BlockBasedTableOptions::IndexShorteningMode::kNoShortening;
break;
case 1:
index_shortening =
BlockBasedTableOptions::IndexShorteningMode::kShortenSeparators;
break;
case 2:
index_shortening = BlockBasedTableOptions::IndexShorteningMode::
kShortenSeparatorsAndSuccessor;
break;
default:
fprintf(stderr, "Unknown key shortening mode\n");
}
block_based_options.optimize_filters_for_memory =
FLAGS_optimize_filters_for_memory;
block_based_options.index_shortening = index_shortening;
if (cache_ == nullptr) {
block_based_options.no_block_cache = true;
}
block_based_options.cache_index_and_filter_blocks =
FLAGS_cache_index_and_filter_blocks;
block_based_options.pin_l0_filter_and_index_blocks_in_cache =
FLAGS_pin_l0_filter_and_index_blocks_in_cache;
block_based_options.pin_top_level_index_and_filter =
FLAGS_pin_top_level_index_and_filter;
if (FLAGS_cache_high_pri_pool_ratio > 1e-6) { // > 0.0 + eps
block_based_options.cache_index_and_filter_blocks_with_high_priority =
true;
}
if (FLAGS_cache_high_pri_pool_ratio + FLAGS_cache_low_pri_pool_ratio >
1.0) {
fprintf(stderr,
"Sum of high_pri_pool_ratio and low_pri_pool_ratio "
"cannot exceed 1.0.\n");
}
block_based_options.block_cache = cache_;
block_based_options.cache_usage_options.options_overrides.insert(
{CacheEntryRole::kCompressionDictionaryBuildingBuffer,
{/*.charged = */ FLAGS_charge_compression_dictionary_building_buffer
? CacheEntryRoleOptions::Decision::kEnabled
: CacheEntryRoleOptions::Decision::kDisabled}});
block_based_options.cache_usage_options.options_overrides.insert(
{CacheEntryRole::kFilterConstruction,
{/*.charged = */ FLAGS_charge_filter_construction
? CacheEntryRoleOptions::Decision::kEnabled
: CacheEntryRoleOptions::Decision::kDisabled}});
block_based_options.cache_usage_options.options_overrides.insert(
{CacheEntryRole::kBlockBasedTableReader,
{/*.charged = */ FLAGS_charge_table_reader
? CacheEntryRoleOptions::Decision::kEnabled
: CacheEntryRoleOptions::Decision::kDisabled}});
block_based_options.cache_usage_options.options_overrides.insert(
{CacheEntryRole::kFileMetadata,
{/*.charged = */ FLAGS_charge_file_metadata
? CacheEntryRoleOptions::Decision::kEnabled
: CacheEntryRoleOptions::Decision::kDisabled}});
block_based_options.cache_usage_options.options_overrides.insert(
{CacheEntryRole::kBlobCache,
{/*.charged = */ FLAGS_charge_blob_cache
? CacheEntryRoleOptions::Decision::kEnabled
: CacheEntryRoleOptions::Decision::kDisabled}});
block_based_options.block_size = FLAGS_block_size;
block_based_options.block_restart_interval = FLAGS_block_restart_interval;
block_based_options.index_block_restart_interval =
FLAGS_index_block_restart_interval;
block_based_options.format_version =
static_cast<uint32_t>(FLAGS_format_version);
block_based_options.read_amp_bytes_per_bit = FLAGS_read_amp_bytes_per_bit;
block_based_options.enable_index_compression =
FLAGS_enable_index_compression;
block_based_options.block_align = FLAGS_block_align;
block_based_options.whole_key_filtering = FLAGS_whole_key_filtering;
block_based_options.max_auto_readahead_size =
FLAGS_max_auto_readahead_size;
block_based_options.initial_auto_readahead_size =
FLAGS_initial_auto_readahead_size;
block_based_options.num_file_reads_for_auto_readahead =
FLAGS_num_file_reads_for_auto_readahead;
BlockBasedTableOptions::PrepopulateBlockCache prepopulate_block_cache =
block_based_options.prepopulate_block_cache;
switch (FLAGS_prepopulate_block_cache) {
case 0:
prepopulate_block_cache =
BlockBasedTableOptions::PrepopulateBlockCache::kDisable;
break;
case 1:
prepopulate_block_cache =
BlockBasedTableOptions::PrepopulateBlockCache::kFlushOnly;
break;
default:
fprintf(stderr, "Unknown prepopulate block cache mode\n");
}
block_based_options.prepopulate_block_cache = prepopulate_block_cache;
if (FLAGS_use_data_block_hash_index) {
block_based_options.data_block_index_type =
ROCKSDB_NAMESPACE::BlockBasedTableOptions::kDataBlockBinaryAndHash;
} else {
block_based_options.data_block_index_type =
ROCKSDB_NAMESPACE::BlockBasedTableOptions::kDataBlockBinarySearch;
}
block_based_options.data_block_hash_table_util_ratio =
FLAGS_data_block_hash_table_util_ratio;
if (FLAGS_read_cache_path != "") {
Status rc_status;
// Read cache need to be provided with a the Logger, we will put all
// reac cache logs in the read cache path in a file named rc_LOG
rc_status = FLAGS_env->CreateDirIfMissing(FLAGS_read_cache_path);
std::shared_ptr<Logger> read_cache_logger;
if (rc_status.ok()) {
rc_status = FLAGS_env->NewLogger(FLAGS_read_cache_path + "/rc_LOG",
&read_cache_logger);
}
if (rc_status.ok()) {
PersistentCacheConfig rc_cfg(FLAGS_env, FLAGS_read_cache_path,
FLAGS_read_cache_size,
read_cache_logger);
rc_cfg.enable_direct_reads = FLAGS_read_cache_direct_read;
rc_cfg.enable_direct_writes = FLAGS_read_cache_direct_write;
rc_cfg.writer_qdepth = 4;
rc_cfg.writer_dispatch_size = 4 * 1024;
auto pcache = std::make_shared<BlockCacheTier>(rc_cfg);
block_based_options.persistent_cache = pcache;
rc_status = pcache->Open();
}
if (!rc_status.ok()) {
fprintf(stderr, "Error initializing read cache, %s\n",
rc_status.ToString().c_str());
exit(1);
}
}
if (FLAGS_use_blob_cache) {
if (FLAGS_use_shared_block_and_blob_cache) {
options.blob_cache = cache_;
} else {
if (FLAGS_blob_cache_size > 0) {
LRUCacheOptions co;
co.capacity = FLAGS_blob_cache_size;
co.num_shard_bits = FLAGS_blob_cache_numshardbits;
co.memory_allocator = GetCacheAllocator();
options.blob_cache = NewLRUCache(co);
} else {
fprintf(
stderr,
"Unable to create a standalone blob cache if blob_cache_size "
"<= 0.\n");
exit(1);
}
}
switch (FLAGS_prepopulate_blob_cache) {
case 0:
options.prepopulate_blob_cache = PrepopulateBlobCache::kDisable;
break;
case 1:
options.prepopulate_blob_cache = PrepopulateBlobCache::kFlushOnly;
break;
default:
fprintf(stderr, "Unknown prepopulate blob cache mode\n");
exit(1);
}
fprintf(stdout,
"Integrated BlobDB: blob cache enabled"
", block and blob caches shared: %d",
FLAGS_use_shared_block_and_blob_cache);
if (!FLAGS_use_shared_block_and_blob_cache) {
fprintf(stdout,
", blob cache size %" PRIu64
", blob cache num shard bits: %d",
FLAGS_blob_cache_size, FLAGS_blob_cache_numshardbits);
}
fprintf(stdout, ", blob cache prepopulated: %d\n",
FLAGS_prepopulate_blob_cache);
} else {
fprintf(stdout, "Integrated BlobDB: blob cache disabled\n");
}
options.table_factory.reset(
NewBlockBasedTableFactory(block_based_options));
}
if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() > 0) {
if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() !=
static_cast<unsigned int>(FLAGS_num_levels)) {
fprintf(stderr, "Insufficient number of fanouts specified %d\n",
static_cast<int>(
FLAGS_max_bytes_for_level_multiplier_additional_v.size()));
exit(1);
}
options.max_bytes_for_level_multiplier_additional =
FLAGS_max_bytes_for_level_multiplier_additional_v;
}
options.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger;
options.level0_file_num_compaction_trigger =
FLAGS_level0_file_num_compaction_trigger;
options.level0_slowdown_writes_trigger =
FLAGS_level0_slowdown_writes_trigger;
options.compression = FLAGS_compression_type_e;
if (FLAGS_simulate_hybrid_fs_file != "") {
options.last_level_temperature = Temperature::kWarm;
}
options.preclude_last_level_data_seconds =
FLAGS_preclude_last_level_data_seconds;
options.preserve_internal_time_seconds =
FLAGS_preserve_internal_time_seconds;
options.sample_for_compression = FLAGS_sample_for_compression;
options.WAL_ttl_seconds = FLAGS_wal_ttl_seconds;
options.WAL_size_limit_MB = FLAGS_wal_size_limit_MB;
options.max_total_wal_size = FLAGS_max_total_wal_size;
if (FLAGS_min_level_to_compress >= 0) {
assert(FLAGS_min_level_to_compress <= FLAGS_num_levels);
options.compression_per_level.resize(FLAGS_num_levels);
for (int i = 0; i < FLAGS_min_level_to_compress; i++) {
options.compression_per_level[i] = kNoCompression;
}
for (int i = FLAGS_min_level_to_compress; i < FLAGS_num_levels; i++) {
options.compression_per_level[i] = FLAGS_compression_type_e;
}
}
options.soft_pending_compaction_bytes_limit =
FLAGS_soft_pending_compaction_bytes_limit;
options.hard_pending_compaction_bytes_limit =
FLAGS_hard_pending_compaction_bytes_limit;
options.delayed_write_rate = FLAGS_delayed_write_rate;
options.allow_concurrent_memtable_write =
FLAGS_allow_concurrent_memtable_write;
options.experimental_mempurge_threshold =
FLAGS_experimental_mempurge_threshold;
options.inplace_update_support = FLAGS_inplace_update_support;
options.inplace_update_num_locks = FLAGS_inplace_update_num_locks;
options.enable_write_thread_adaptive_yield =
FLAGS_enable_write_thread_adaptive_yield;
options.enable_pipelined_write = FLAGS_enable_pipelined_write;
options.unordered_write = FLAGS_unordered_write;
options.write_thread_max_yield_usec = FLAGS_write_thread_max_yield_usec;
options.write_thread_slow_yield_usec = FLAGS_write_thread_slow_yield_usec;
options.table_cache_numshardbits = FLAGS_table_cache_numshardbits;
options.max_compaction_bytes = FLAGS_max_compaction_bytes;
options.disable_auto_compactions = FLAGS_disable_auto_compactions;
options.optimize_filters_for_hits = FLAGS_optimize_filters_for_hits;
options.paranoid_checks = FLAGS_paranoid_checks;
options.force_consistency_checks = FLAGS_force_consistency_checks;
options.periodic_compaction_seconds = FLAGS_periodic_compaction_seconds;
options.ttl = FLAGS_ttl_seconds;
// fill storage options
options.advise_random_on_open = FLAGS_advise_random_on_open;
options.use_adaptive_mutex = FLAGS_use_adaptive_mutex;
options.bytes_per_sync = FLAGS_bytes_per_sync;
options.wal_bytes_per_sync = FLAGS_wal_bytes_per_sync;
// merge operator options
if (!FLAGS_merge_operator.empty()) {
s = MergeOperator::CreateFromString(config_options, FLAGS_merge_operator,
&options.merge_operator);
if (!s.ok()) {
fprintf(stderr, "invalid merge operator[%s]: %s\n",
FLAGS_merge_operator.c_str(), s.ToString().c_str());
exit(1);
}
}
options.max_successive_merges = FLAGS_max_successive_merges;
options.strict_max_successive_merges = FLAGS_strict_max_successive_merges;
options.report_bg_io_stats = FLAGS_report_bg_io_stats;
// set universal style compaction configurations, if applicable
if (FLAGS_universal_size_ratio != 0) {
options.compaction_options_universal.size_ratio =
FLAGS_universal_size_ratio;
}
if (FLAGS_universal_min_merge_width != 0) {
options.compaction_options_universal.min_merge_width =
FLAGS_universal_min_merge_width;
}
if (FLAGS_universal_max_merge_width != 0) {
options.compaction_options_universal.max_merge_width =
FLAGS_universal_max_merge_width;
}
if (FLAGS_universal_max_size_amplification_percent != 0) {
options.compaction_options_universal.max_size_amplification_percent =
FLAGS_universal_max_size_amplification_percent;
}
if (FLAGS_universal_compression_size_percent != -1) {
options.compaction_options_universal.compression_size_percent =
FLAGS_universal_compression_size_percent;
}
options.compaction_options_universal.max_read_amp =
FLAGS_universal_max_read_amp;
options.compaction_options_universal.allow_trivial_move =
FLAGS_universal_allow_trivial_move;
options.compaction_options_universal.incremental =
FLAGS_universal_incremental;
options.compaction_options_universal.stop_style =
static_cast<CompactionStopStyle>(FLAGS_universal_stop_style);
if (FLAGS_thread_status_per_interval > 0) {
options.enable_thread_tracking = true;
}
if (FLAGS_user_timestamp_size > 0) {
if (FLAGS_user_timestamp_size != 8) {
fprintf(stderr, "Only 64 bits timestamps are supported.\n");
exit(1);
}
options.comparator = test::BytewiseComparatorWithU64TsWrapper();
}
options.allow_data_in_errors = FLAGS_allow_data_in_errors;
options.track_and_verify_wals_in_manifest =
FLAGS_track_and_verify_wals_in_manifest;
// Integrated BlobDB
options.enable_blob_files = FLAGS_enable_blob_files;
options.min_blob_size = FLAGS_min_blob_size;
options.blob_file_size = FLAGS_blob_file_size;
options.blob_compression_type =
StringToCompressionType(FLAGS_blob_compression_type.c_str());
options.enable_blob_garbage_collection =
FLAGS_enable_blob_garbage_collection;
options.blob_garbage_collection_age_cutoff =
FLAGS_blob_garbage_collection_age_cutoff;
options.blob_garbage_collection_force_threshold =
FLAGS_blob_garbage_collection_force_threshold;
options.blob_compaction_readahead_size =
FLAGS_blob_compaction_readahead_size;
options.blob_file_starting_level = FLAGS_blob_file_starting_level;
if (FLAGS_readonly && FLAGS_transaction_db) {
fprintf(stderr, "Cannot use readonly flag with transaction_db\n");
exit(1);
}
if (FLAGS_use_secondary_db &&
(FLAGS_transaction_db || FLAGS_optimistic_transaction_db)) {
fprintf(stderr, "Cannot use use_secondary_db flag with transaction_db\n");
exit(1);
}
options.memtable_protection_bytes_per_key =
FLAGS_memtable_protection_bytes_per_key;
options.block_protection_bytes_per_key =
FLAGS_block_protection_bytes_per_key;
options.paranoid_memory_checks = FLAGS_paranoid_memory_checks;
}
void InitializeOptionsGeneral(Options* opts) {
// Be careful about what is set here to avoid accidentally overwriting
// settings already configured by OPTIONS file. Only configure settings that
// are needed for the benchmark to run, settings for shared objects that
// were not configured already, settings that require dynamically invoking
// APIs, and settings for the benchmark itself.
Options& options = *opts;
// Always set these since they are harmless when not needed and prevent
// a guaranteed failure when they are needed.
options.create_missing_column_families = true;
options.create_if_missing = true;
if (options.statistics == nullptr) {
options.statistics = dbstats;
}
auto table_options =
options.table_factory->GetOptions<BlockBasedTableOptions>();
if (table_options != nullptr) {
if (FLAGS_cache_size > 0) {
// This violates this function's rules on when to set options. But we
// have to do it because the case of unconfigured block cache in OPTIONS
// file is indistinguishable (it is sanitized to 32MB by this point, not
// nullptr), and our regression tests assume this will be the shared
// block cache, even with OPTIONS file provided.
table_options->block_cache = cache_;
}
if (table_options->filter_policy == nullptr) {
if (FLAGS_bloom_bits < 0) {
table_options->filter_policy = BlockBasedTableOptions().filter_policy;
} else if (FLAGS_bloom_bits == 0) {
table_options->filter_policy.reset();
} else {
table_options->filter_policy.reset(
FLAGS_use_ribbon_filter ? NewRibbonFilterPolicy(FLAGS_bloom_bits)
: NewBloomFilterPolicy(FLAGS_bloom_bits));
}
}
}
if (options.row_cache == nullptr) {
if (FLAGS_row_cache_size) {
if (FLAGS_cache_numshardbits >= 1) {
options.row_cache =
NewLRUCache(FLAGS_row_cache_size, FLAGS_cache_numshardbits);
} else {
options.row_cache = NewLRUCache(FLAGS_row_cache_size);
}
}
}
if (options.env == Env::Default()) {
options.env = FLAGS_env;
}
if (FLAGS_enable_io_prio) {
options.env->LowerThreadPoolIOPriority(Env::LOW);
options.env->LowerThreadPoolIOPriority(Env::HIGH);
}
if (FLAGS_enable_cpu_prio) {
options.env->LowerThreadPoolCPUPriority(Env::LOW);
options.env->LowerThreadPoolCPUPriority(Env::HIGH);
}
if (FLAGS_sine_write_rate) {
FLAGS_benchmark_write_rate_limit = static_cast<uint64_t>(SineRate(0));
}
if (options.rate_limiter == nullptr) {
if (FLAGS_rate_limiter_bytes_per_sec > 0) {
options.rate_limiter.reset(NewGenericRateLimiter(
FLAGS_rate_limiter_bytes_per_sec,
FLAGS_rate_limiter_refill_period_us, 10 /* fairness */,
// TODO: replace this with a more general FLAG for deciding
// RateLimiter::Mode as now we also rate-limit foreground reads e.g,
// Get()/MultiGet()
FLAGS_rate_limit_bg_reads ? RateLimiter::Mode::kReadsOnly
: RateLimiter::Mode::kWritesOnly,
FLAGS_rate_limiter_auto_tuned,
FLAGS_rate_limiter_single_burst_bytes));
}
}
options.listeners.emplace_back(listener_);
if (options.file_checksum_gen_factory == nullptr) {
if (FLAGS_file_checksum) {
options.file_checksum_gen_factory.reset(
new FileChecksumGenCrc32cFactory());
}
}
if (FLAGS_num_multi_db <= 1) {
OpenDb(options, FLAGS_db, &db_);
} else {
multi_dbs_.clear();
multi_dbs_.resize(FLAGS_num_multi_db);
auto wal_dir = options.wal_dir;
for (int i = 0; i < FLAGS_num_multi_db; i++) {
if (!wal_dir.empty()) {
options.wal_dir = GetPathForMultiple(wal_dir, i);
}
OpenDb(options, GetPathForMultiple(FLAGS_db, i), &multi_dbs_[i]);
}
options.wal_dir = wal_dir;
}
// KeepFilter is a noop filter, this can be used to test compaction filter
if (options.compaction_filter == nullptr) {
if (FLAGS_use_keep_filter) {
options.compaction_filter = new KeepFilter();
fprintf(stdout, "A noop compaction filter is used\n");
}
}
if (FLAGS_use_existing_keys) {
// Only work on single database
assert(db_.db != nullptr);
ReadOptions read_opts; // before read_options_ initialized
read_opts.total_order_seek = true;
Iterator* iter = db_.db->NewIterator(read_opts);
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
keys_.emplace_back(iter->key().ToString());
}
delete iter;
FLAGS_num = keys_.size();
}
}
void Open(Options* opts) {
if (!InitializeOptionsFromFile(opts)) {
InitializeOptionsFromFlags(opts);
}
InitializeOptionsGeneral(opts);
}
void OpenDb(Options options, const std::string& db_name,
DBWithColumnFamilies* db) {
uint64_t open_start = FLAGS_report_open_timing ? FLAGS_env->NowNanos() : 0;
Status s;
// Open with column families if necessary.
if (FLAGS_num_column_families > 1) {
size_t num_hot = FLAGS_num_column_families;
if (FLAGS_num_hot_column_families > 0 &&
FLAGS_num_hot_column_families < FLAGS_num_column_families) {
num_hot = FLAGS_num_hot_column_families;
} else {
FLAGS_num_hot_column_families = FLAGS_num_column_families;
}
std::vector<ColumnFamilyDescriptor> column_families;
for (size_t i = 0; i < num_hot; i++) {
column_families.emplace_back(ColumnFamilyName(i),
ColumnFamilyOptions(options));
}
std::vector<int> cfh_idx_to_prob;
if (!FLAGS_column_family_distribution.empty()) {
std::stringstream cf_prob_stream(FLAGS_column_family_distribution);
std::string cf_prob;
int sum = 0;
while (std::getline(cf_prob_stream, cf_prob, ',')) {
cfh_idx_to_prob.push_back(std::stoi(cf_prob));
sum += cfh_idx_to_prob.back();
}
if (sum != 100) {
fprintf(stderr, "column_family_distribution items must sum to 100\n");
exit(1);
}
if (cfh_idx_to_prob.size() != num_hot) {
fprintf(stderr,
"got %" ROCKSDB_PRIszt
" column_family_distribution items; expected "
"%" ROCKSDB_PRIszt "\n",
cfh_idx_to_prob.size(), num_hot);
exit(1);
}
}
if (FLAGS_readonly) {
s = DB::OpenForReadOnly(options, db_name, column_families, &db->cfh,
&db->db);
} else if (FLAGS_optimistic_transaction_db) {
s = OptimisticTransactionDB::Open(options, db_name, column_families,
&db->cfh, &db->opt_txn_db);
if (s.ok()) {
db->db = db->opt_txn_db->GetBaseDB();
}
} else if (FLAGS_transaction_db) {
TransactionDB* ptr;
TransactionDBOptions txn_db_options;
if (options.unordered_write) {
options.two_write_queues = true;
txn_db_options.skip_concurrency_control = true;
txn_db_options.write_policy = WRITE_PREPARED;
}
s = TransactionDB::Open(options, txn_db_options, db_name,
column_families, &db->cfh, &ptr);
if (s.ok()) {
db->db = ptr;
}
} else {
s = DB::Open(options, db_name, column_families, &db->cfh, &db->db);
}
db->cfh.resize(FLAGS_num_column_families);
db->num_created = num_hot;
db->num_hot = num_hot;
db->cfh_idx_to_prob = std::move(cfh_idx_to_prob);
} else if (FLAGS_readonly) {
s = DB::OpenForReadOnly(options, db_name, &db->db);
} else if (FLAGS_optimistic_transaction_db) {
s = OptimisticTransactionDB::Open(options, db_name, &db->opt_txn_db);
if (s.ok()) {
db->db = db->opt_txn_db->GetBaseDB();
}
} else if (FLAGS_transaction_db) {
TransactionDB* ptr = nullptr;
TransactionDBOptions txn_db_options;
if (options.unordered_write) {
options.two_write_queues = true;
txn_db_options.skip_concurrency_control = true;
txn_db_options.write_policy = WRITE_PREPARED;
}
s = CreateLoggerFromOptions(db_name, options, &options.info_log);
if (s.ok()) {
s = TransactionDB::Open(options, txn_db_options, db_name, &ptr);
}
if (s.ok()) {
db->db = ptr;
}
} else if (FLAGS_use_blob_db) {
// Stacked BlobDB
blob_db::BlobDBOptions blob_db_options;
blob_db_options.enable_garbage_collection = FLAGS_blob_db_enable_gc;
blob_db_options.garbage_collection_cutoff = FLAGS_blob_db_gc_cutoff;
blob_db_options.is_fifo = FLAGS_blob_db_is_fifo;
blob_db_options.max_db_size = FLAGS_blob_db_max_db_size;
blob_db_options.ttl_range_secs = FLAGS_blob_db_ttl_range_secs;
blob_db_options.min_blob_size = FLAGS_blob_db_min_blob_size;
blob_db_options.bytes_per_sync = FLAGS_blob_db_bytes_per_sync;
blob_db_options.blob_file_size = FLAGS_blob_db_file_size;
blob_db_options.compression = FLAGS_blob_db_compression_type_e;
blob_db::BlobDB* ptr = nullptr;
s = blob_db::BlobDB::Open(options, blob_db_options, db_name, &ptr);
if (s.ok()) {
db->db = ptr;
}
} else if (FLAGS_use_secondary_db) {
if (FLAGS_secondary_path.empty()) {
std::string default_secondary_path;
FLAGS_env->GetTestDirectory(&default_secondary_path);
default_secondary_path += "/dbbench_secondary";
FLAGS_secondary_path = default_secondary_path;
}
s = DB::OpenAsSecondary(options, db_name, FLAGS_secondary_path, &db->db);
if (s.ok() && FLAGS_secondary_update_interval > 0) {
secondary_update_thread_.reset(new port::Thread(
[this](int interval, DBWithColumnFamilies* _db) {
while (0 == secondary_update_stopped_.load(
std::memory_order_relaxed)) {
Status secondary_update_status =
_db->db->TryCatchUpWithPrimary();
if (!secondary_update_status.ok()) {
fprintf(stderr, "Failed to catch up with primary: %s\n",
secondary_update_status.ToString().c_str());
break;
}
++secondary_db_updates_;
FLAGS_env->SleepForMicroseconds(interval * 1000000);
}
},
FLAGS_secondary_update_interval, db));
}
} else if (FLAGS_open_as_follower) {
std::unique_ptr<DB> dbptr;
s = DB::OpenAsFollower(options, db_name, FLAGS_leader_path, &dbptr);
if (s.ok()) {
db->db = dbptr.release();
}
} else {
s = DB::Open(options, db_name, &db->db);
}
if (FLAGS_report_open_timing) {
std::cout << "OpenDb: "
<< (FLAGS_env->NowNanos() - open_start) / 1000000.0
<< " milliseconds\n";
}
if (!s.ok()) {
fprintf(stderr, "open error: %s\n", s.ToString().c_str());
exit(1);
}
}
enum WriteMode { RANDOM, SEQUENTIAL, UNIQUE_RANDOM };
void WriteSeqDeterministic(ThreadState* thread) {
DoDeterministicCompact(thread, open_options_.compaction_style, SEQUENTIAL);
}
void WriteUniqueRandomDeterministic(ThreadState* thread) {
DoDeterministicCompact(thread, open_options_.compaction_style,
UNIQUE_RANDOM);
}
void WriteSeq(ThreadState* thread) { DoWrite(thread, SEQUENTIAL); }
void WriteRandom(ThreadState* thread) { DoWrite(thread, RANDOM); }
void WriteUniqueRandom(ThreadState* thread) {
DoWrite(thread, UNIQUE_RANDOM);
}
class KeyGenerator {
public:
KeyGenerator(Random64* rand, WriteMode mode, uint64_t num,
uint64_t /*num_per_set*/ = 64 * 1024)
: rand_(rand), mode_(mode), num_(num), next_(0) {
if (mode_ == UNIQUE_RANDOM) {
// NOTE: if memory consumption of this approach becomes a concern,
// we can either break it into pieces and only random shuffle a section
// each time. Alternatively, use a bit map implementation
// (https://reviews.facebook.net/differential/diff/54627/)
values_.resize(num_);
for (uint64_t i = 0; i < num_; ++i) {
values_[i] = i;
}
RandomShuffle(values_.begin(), values_.end(),
static_cast<uint32_t>(*seed_base));
}
}
uint64_t Next() {
switch (mode_) {
case SEQUENTIAL:
return next_++;
case RANDOM:
return rand_->Next() % num_;
case UNIQUE_RANDOM:
assert(next_ < num_);
return values_[next_++];
}
assert(false);
return std::numeric_limits<uint64_t>::max();
}
// Only available for UNIQUE_RANDOM mode.
uint64_t Fetch(uint64_t index) {
assert(mode_ == UNIQUE_RANDOM);
assert(index < values_.size());
return values_[index];
}
private:
Random64* rand_;
WriteMode mode_;
const uint64_t num_;
uint64_t next_;
std::vector<uint64_t> values_;
};
DB* SelectDB(ThreadState* thread) { return SelectDBWithCfh(thread)->db; }
DBWithColumnFamilies* SelectDBWithCfh(ThreadState* thread) {
return SelectDBWithCfh(thread->rand.Next());
}
DBWithColumnFamilies* SelectDBWithCfh(uint64_t rand_int) {
if (db_.db != nullptr) {
return &db_;
} else {
return &multi_dbs_[rand_int % multi_dbs_.size()];
}
}
double SineRate(double x) {
return FLAGS_sine_a * sin((FLAGS_sine_b * x) + FLAGS_sine_c) + FLAGS_sine_d;
}
void DoWrite(ThreadState* thread, WriteMode write_mode) {
const int test_duration = write_mode == RANDOM ? FLAGS_duration : 0;
const int64_t num_ops = writes_ == 0 ? num_ : writes_;
size_t num_key_gens = 1;
if (db_.db == nullptr) {
num_key_gens = multi_dbs_.size();
}
std::vector<std::unique_ptr<KeyGenerator>> key_gens(num_key_gens);
int64_t max_ops = num_ops * num_key_gens;
int64_t ops_per_stage = max_ops;
if (FLAGS_num_column_families > 1 && FLAGS_num_hot_column_families > 0) {
ops_per_stage = (max_ops - 1) / (FLAGS_num_column_families /
FLAGS_num_hot_column_families) +
1;
}
Duration duration(test_duration, max_ops, ops_per_stage);
const uint64_t num_per_key_gen = num_ + max_num_range_tombstones_;
for (size_t i = 0; i < num_key_gens; i++) {
key_gens[i].reset(new KeyGenerator(&(thread->rand), write_mode,
num_per_key_gen, ops_per_stage));
}
if (num_ != FLAGS_num) {
char msg[100];
snprintf(msg, sizeof(msg), "(%" PRIu64 " ops)", num_);
thread->stats.AddMessage(msg);
}
RandomGenerator gen;
WriteBatch batch(/*reserved_bytes=*/0, /*max_bytes=*/0,
FLAGS_write_batch_protection_bytes_per_key,
user_timestamp_size_);
Status s;
int64_t bytes = 0;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
std::unique_ptr<const char[]> begin_key_guard;
Slice begin_key = AllocateKey(&begin_key_guard);
std::unique_ptr<const char[]> end_key_guard;
Slice end_key = AllocateKey(&end_key_guard);
double p = 0.0;
uint64_t num_overwrites = 0, num_unique_keys = 0, num_selective_deletes = 0;
// If user set overwrite_probability flag,
// check if value is in [0.0,1.0].
if (FLAGS_overwrite_probability > 0.0) {
p = FLAGS_overwrite_probability > 1.0 ? 1.0 : FLAGS_overwrite_probability;
// If overwrite set by user, and UNIQUE_RANDOM mode on,
// the overwrite_window_size must be > 0.
if (write_mode == UNIQUE_RANDOM && FLAGS_overwrite_window_size == 0) {
fprintf(stderr,
"Overwrite_window_size must be strictly greater than 0.\n");
ErrorExit();
}
}
// Default_random_engine provides slightly
// improved throughput over mt19937.
std::default_random_engine overwrite_gen{
static_cast<unsigned int>(*seed_base)};
std::bernoulli_distribution overwrite_decider(p);
// Inserted key window is filled with the last N
// keys previously inserted into the DB (with
// N=FLAGS_overwrite_window_size).
// We use a deque struct because:
// - random access is O(1)
// - insertion/removal at beginning/end is also O(1).
std::deque<int64_t> inserted_key_window;
Random64 reservoir_id_gen(*seed_base);
// --- Variables used in disposable/persistent keys simulation:
// The following variables are used when
// disposable_entries_batch_size is >0. We simualte a workload
// where the following sequence is repeated multiple times:
// "A set of keys S1 is inserted ('disposable entries'), then after
// some delay another set of keys S2 is inserted ('persistent entries')
// and the first set of keys S1 is deleted. S2 artificially represents
// the insertion of hypothetical results from some undefined computation
// done on the first set of keys S1. The next sequence can start as soon
// as the last disposable entry in the set S1 of this sequence is
// inserted, if the delay is non negligible"
bool skip_for_loop = false, is_disposable_entry = true;
std::vector<uint64_t> disposable_entries_index(num_key_gens, 0);
std::vector<uint64_t> persistent_ent_and_del_index(num_key_gens, 0);
const uint64_t kNumDispAndPersEntries =
FLAGS_disposable_entries_batch_size +
FLAGS_persistent_entries_batch_size;
if (kNumDispAndPersEntries > 0) {
if ((write_mode != UNIQUE_RANDOM) || (writes_per_range_tombstone_ > 0) ||
(p > 0.0)) {
fprintf(
stderr,
"Disposable/persistent deletes are not compatible with overwrites "
"and DeleteRanges; and are only supported in filluniquerandom.\n");
ErrorExit();
}
if (FLAGS_disposable_entries_value_size < 0 ||
FLAGS_persistent_entries_value_size < 0) {
fprintf(
stderr,
"disposable_entries_value_size and persistent_entries_value_size"
"have to be positive.\n");
ErrorExit();
}
}
Random rnd_disposable_entry(static_cast<uint32_t>(*seed_base));
std::string random_value;
// Queue that stores scheduled timestamp of disposable entries deletes,
// along with starting index of disposable entry keys to delete.
std::vector<std::queue<std::pair<uint64_t, uint64_t>>> disposable_entries_q(
num_key_gens);
// --- End of variables used in disposable/persistent keys simulation.
std::vector<std::unique_ptr<const char[]>> expanded_key_guards;
std::vector<Slice> expanded_keys;
if (FLAGS_expand_range_tombstones) {
expanded_key_guards.resize(range_tombstone_width_);
for (auto& expanded_key_guard : expanded_key_guards) {
expanded_keys.emplace_back(AllocateKey(&expanded_key_guard));
}
}
std::unique_ptr<char[]> ts_guard;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
}
int64_t stage = 0;
int64_t num_written = 0;
int64_t next_seq_db_at = num_ops;
size_t id = 0;
int64_t num_range_deletions = 0;
while ((num_per_key_gen != 0) && !duration.Done(entries_per_batch_)) {
if (duration.GetStage() != stage) {
stage = duration.GetStage();
if (db_.db != nullptr) {
db_.CreateNewCf(open_options_, stage);
} else {
for (auto& db : multi_dbs_) {
db.CreateNewCf(open_options_, stage);
}
}
}
if (write_mode != SEQUENTIAL) {
id = thread->rand.Next() % num_key_gens;
} else {
// When doing a sequential load with multiple databases, load them in
// order rather than all at the same time to avoid:
// 1) long delays between flushing memtables
// 2) flushing memtables for all of them at the same point in time
// 3) not putting the same number of keys in each database
if (num_written >= next_seq_db_at) {
next_seq_db_at += num_ops;
id++;
if (id >= num_key_gens) {
fprintf(stderr, "Logic error. Filled all databases\n");
ErrorExit();
}
}
}
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(id);
batch.Clear();
int64_t batch_bytes = 0;
for (int64_t j = 0; j < entries_per_batch_; j++) {
int64_t rand_num = 0;
if ((write_mode == UNIQUE_RANDOM) && (p > 0.0)) {
if ((inserted_key_window.size() > 0) &&
overwrite_decider(overwrite_gen)) {
num_overwrites++;
rand_num = inserted_key_window[reservoir_id_gen.Next() %
inserted_key_window.size()];
} else {
num_unique_keys++;
rand_num = key_gens[id]->Next();
if (inserted_key_window.size() < FLAGS_overwrite_window_size) {
inserted_key_window.push_back(rand_num);
} else {
inserted_key_window.pop_front();
inserted_key_window.push_back(rand_num);
}
}
} else if (kNumDispAndPersEntries > 0) {
// Check if queue is non-empty and if we need to insert
// 'persistent' KV entries (KV entries that are never deleted)
// and delete disposable entries previously inserted.
if (!disposable_entries_q[id].empty() &&
(disposable_entries_q[id].front().first <
FLAGS_env->NowMicros())) {
// If we need to perform a "merge op" pattern,
// we first write all the persistent KV entries not targeted
// by deletes, and then we write the disposable entries deletes.
if (persistent_ent_and_del_index[id] <
FLAGS_persistent_entries_batch_size) {
// Generate key to insert.
rand_num =
key_gens[id]->Fetch(disposable_entries_q[id].front().second +
FLAGS_disposable_entries_batch_size +
persistent_ent_and_del_index[id]);
persistent_ent_and_del_index[id]++;
is_disposable_entry = false;
skip_for_loop = false;
} else if (persistent_ent_and_del_index[id] <
kNumDispAndPersEntries) {
// Find key of the entry to delete.
rand_num =
key_gens[id]->Fetch(disposable_entries_q[id].front().second +
(persistent_ent_and_del_index[id] -
FLAGS_persistent_entries_batch_size));
persistent_ent_and_del_index[id]++;
GenerateKeyFromInt(rand_num, FLAGS_num, &key);
// For the delete operation, everything happens here and we
// skip the rest of the for-loop, which is designed for
// inserts.
if (FLAGS_num_column_families <= 1) {
batch.Delete(key);
} else {
// We use same rand_num as seed for key and column family so
// that we can deterministically find the cfh corresponding to a
// particular key while reading the key.
batch.Delete(db_with_cfh->GetCfh(rand_num), key);
}
// A delete only includes Key+Timestamp (no value).
batch_bytes += key_size_ + user_timestamp_size_;
bytes += key_size_ + user_timestamp_size_;
num_selective_deletes++;
// Skip rest of the for-loop (j=0, j<entries_per_batch_,j++).
skip_for_loop = true;
} else {
assert(false); // should never reach this point.
}
// If disposable_entries_q needs to be updated (ie: when a selective
// insert+delete was successfully completed, pop the job out of the
// queue).
if (!disposable_entries_q[id].empty() &&
(disposable_entries_q[id].front().first <
FLAGS_env->NowMicros()) &&
persistent_ent_and_del_index[id] == kNumDispAndPersEntries) {
disposable_entries_q[id].pop();
persistent_ent_and_del_index[id] = 0;
}
// If we are deleting disposable entries, skip the rest of the
// for-loop since there is no key-value inserts at this moment in
// time.
if (skip_for_loop) {
continue;
}
}
// If no job is in the queue, then we keep inserting disposable KV
// entries that will be deleted later by a series of deletes.
else {
rand_num = key_gens[id]->Fetch(disposable_entries_index[id]);
disposable_entries_index[id]++;
is_disposable_entry = true;
if ((disposable_entries_index[id] %
FLAGS_disposable_entries_batch_size) == 0) {
// Skip the persistent KV entries inserts for now
disposable_entries_index[id] +=
FLAGS_persistent_entries_batch_size;
}
}
} else {
rand_num = key_gens[id]->Next();
}
GenerateKeyFromInt(rand_num, FLAGS_num, &key);
Slice val;
if (kNumDispAndPersEntries > 0) {
random_value = rnd_disposable_entry.RandomString(
is_disposable_entry ? FLAGS_disposable_entries_value_size
: FLAGS_persistent_entries_value_size);
val = Slice(random_value);
num_unique_keys++;
} else {
val = gen.Generate();
}
if (use_blob_db_) {
// Stacked BlobDB
blob_db::BlobDB* blobdb =
static_cast<blob_db::BlobDB*>(db_with_cfh->db);
if (FLAGS_blob_db_max_ttl_range > 0) {
int ttl = rand() % FLAGS_blob_db_max_ttl_range;
s = blobdb->PutWithTTL(write_options_, key, val, ttl);
} else {
s = blobdb->Put(write_options_, key, val);
}
} else if (FLAGS_num_column_families <= 1) {
batch.Put(key, val);
} else {
// We use same rand_num as seed for key and column family so that we
// can deterministically find the cfh corresponding to a particular
// key while reading the key.
batch.Put(db_with_cfh->GetCfh(rand_num), key, val);
}
batch_bytes += val.size() + key_size_ + user_timestamp_size_;
bytes += val.size() + key_size_ + user_timestamp_size_;
++num_written;
// If all disposable entries have been inserted, then we need to
// add in the job queue a call for 'persistent entry insertions +
// disposable entry deletions'.
if (kNumDispAndPersEntries > 0 && is_disposable_entry &&
((disposable_entries_index[id] % kNumDispAndPersEntries) == 0)) {
// Queue contains [timestamp, starting_idx],
// timestamp = current_time + delay (minimum aboslute time when to
// start inserting the selective deletes) starting_idx = index in the
// keygen of the rand_num to generate the key of the first KV entry to
// delete (= key of the first selective delete).
disposable_entries_q[id].push(std::make_pair(
FLAGS_env->NowMicros() +
FLAGS_disposable_entries_delete_delay /* timestamp */,
disposable_entries_index[id] - kNumDispAndPersEntries
/*starting idx*/));
}
if (writes_per_range_tombstone_ > 0 &&
num_written > writes_before_delete_range_ &&
(num_written - writes_before_delete_range_) /
writes_per_range_tombstone_ <=
max_num_range_tombstones_ &&
(num_written - writes_before_delete_range_) %
writes_per_range_tombstone_ ==
0) {
num_range_deletions++;
int64_t begin_num = key_gens[id]->Next();
if (FLAGS_expand_range_tombstones) {
for (int64_t offset = 0; offset < range_tombstone_width_;
++offset) {
GenerateKeyFromInt(begin_num + offset, FLAGS_num,
&expanded_keys[offset]);
if (use_blob_db_) {
// Stacked BlobDB
s = db_with_cfh->db->Delete(write_options_,
expanded_keys[offset]);
} else if (FLAGS_num_column_families <= 1) {
batch.Delete(expanded_keys[offset]);
} else {
batch.Delete(db_with_cfh->GetCfh(rand_num),
expanded_keys[offset]);
}
}
} else {
GenerateKeyFromInt(begin_num, FLAGS_num, &begin_key);
GenerateKeyFromInt(begin_num + range_tombstone_width_, FLAGS_num,
&end_key);
if (use_blob_db_) {
// Stacked BlobDB
s = db_with_cfh->db->DeleteRange(
write_options_, db_with_cfh->db->DefaultColumnFamily(),
begin_key, end_key);
} else if (FLAGS_num_column_families <= 1) {
batch.DeleteRange(begin_key, end_key);
} else {
batch.DeleteRange(db_with_cfh->GetCfh(rand_num), begin_key,
end_key);
}
}
}
}
if (thread->shared->write_rate_limiter.get() != nullptr) {
thread->shared->write_rate_limiter->Request(
batch_bytes, Env::IO_HIGH, nullptr /* stats */,
RateLimiter::OpType::kWrite);
// Set time at which last op finished to Now() to hide latency and
// sleep from rate limiter. Also, do the check once per batch, not
// once per write.
thread->stats.ResetLastOpTime();
}
if (user_timestamp_size_ > 0) {
Slice user_ts = mock_app_clock_->Allocate(ts_guard.get());
s = batch.UpdateTimestamps(
user_ts, [this](uint32_t) { return user_timestamp_size_; });
if (!s.ok()) {
fprintf(stderr, "assign timestamp to write batch: %s\n",
s.ToString().c_str());
ErrorExit();
}
}
if (!use_blob_db_) {
// Not stacked BlobDB
s = db_with_cfh->db->Write(write_options_, &batch);
}
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db,
entries_per_batch_, kWrite);
if (FLAGS_sine_write_rate) {
uint64_t now = FLAGS_env->NowMicros();
uint64_t usecs_since_last;
if (now > thread->stats.GetSineInterval()) {
usecs_since_last = now - thread->stats.GetSineInterval();
} else {
usecs_since_last = 0;
}
if (usecs_since_last >
(FLAGS_sine_write_rate_interval_milliseconds * uint64_t{1000})) {
double usecs_since_start =
static_cast<double>(now - thread->stats.GetStart());
thread->stats.ResetSineInterval();
uint64_t write_rate =
static_cast<uint64_t>(SineRate(usecs_since_start / 1000000.0));
thread->shared->write_rate_limiter.reset(
NewGenericRateLimiter(write_rate));
}
}
if (!s.ok()) {
s = listener_->WaitForRecovery(600000000) ? Status::OK() : s;
}
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
ErrorExit();
}
}
if ((write_mode == UNIQUE_RANDOM) && (p > 0.0)) {
fprintf(stdout,
"Number of unique keys inserted: %" PRIu64
".\nNumber of overwrites: %" PRIu64 "\n",
num_unique_keys, num_overwrites);
} else if (kNumDispAndPersEntries > 0) {
fprintf(stdout,
"Number of unique keys inserted (disposable+persistent): %" PRIu64
".\nNumber of 'disposable entry delete': %" PRIu64 "\n",
num_written, num_selective_deletes);
}
if (num_range_deletions > 0) {
std::cout << "Number of range deletions: " << num_range_deletions
<< std::endl;
}
thread->stats.AddBytes(bytes);
}
Status DoDeterministicCompact(ThreadState* thread,
CompactionStyle compaction_style,
WriteMode write_mode) {
ColumnFamilyMetaData meta;
std::vector<DB*> db_list;
if (db_.db != nullptr) {
db_list.push_back(db_.db);
} else {
for (auto& db : multi_dbs_) {
db_list.push_back(db.db);
}
}
std::vector<Options> options_list;
for (auto db : db_list) {
options_list.push_back(db->GetOptions());
if (compaction_style != kCompactionStyleFIFO) {
db->SetOptions({{"disable_auto_compactions", "1"},
{"level0_slowdown_writes_trigger", "400000000"},
{"level0_stop_writes_trigger", "400000000"}});
} else {
db->SetOptions({{"disable_auto_compactions", "1"}});
}
}
assert(!db_list.empty());
auto num_db = db_list.size();
size_t num_levels = static_cast<size_t>(open_options_.num_levels);
size_t output_level = open_options_.num_levels - 1;
std::vector<std::vector<std::vector<SstFileMetaData>>> sorted_runs(num_db);
std::vector<size_t> num_files_at_level0(num_db, 0);
if (compaction_style == kCompactionStyleLevel) {
if (num_levels == 0) {
return Status::InvalidArgument("num_levels should be larger than 1");
}
bool should_stop = false;
while (!should_stop) {
if (sorted_runs[0].empty()) {
DoWrite(thread, write_mode);
} else {
DoWrite(thread, UNIQUE_RANDOM);
}
for (size_t i = 0; i < num_db; i++) {
auto db = db_list[i];
db->Flush(FlushOptions());
db->GetColumnFamilyMetaData(&meta);
if (num_files_at_level0[i] == meta.levels[0].files.size() ||
writes_ == 0) {
should_stop = true;
continue;
}
sorted_runs[i].emplace_back(
meta.levels[0].files.begin(),
meta.levels[0].files.end() - num_files_at_level0[i]);
num_files_at_level0[i] = meta.levels[0].files.size();
if (sorted_runs[i].back().size() == 1) {
should_stop = true;
continue;
}
if (sorted_runs[i].size() == output_level) {
auto& L1 = sorted_runs[i].back();
L1.erase(L1.begin(), L1.begin() + L1.size() / 3);
should_stop = true;
continue;
}
}
writes_ /=
static_cast<int64_t>(open_options_.max_bytes_for_level_multiplier);
}
for (size_t i = 0; i < num_db; i++) {
if (sorted_runs[i].size() < num_levels - 1) {
fprintf(stderr, "n is too small to fill %" ROCKSDB_PRIszt " levels\n",
num_levels);
exit(1);
}
}
for (size_t i = 0; i < num_db; i++) {
auto db = db_list[i];
auto compactionOptions = CompactionOptions();
compactionOptions.compression = FLAGS_compression_type_e;
auto options = db->GetOptions();
MutableCFOptions mutable_cf_options(options);
for (size_t j = 0; j < sorted_runs[i].size(); j++) {
compactionOptions.output_file_size_limit = MaxFileSizeForLevel(
mutable_cf_options, static_cast<int>(output_level),
compaction_style);
std::cout << sorted_runs[i][j].size() << std::endl;
db->CompactFiles(
compactionOptions,
{sorted_runs[i][j].back().name, sorted_runs[i][j].front().name},
static_cast<int>(output_level - j) /*level*/);
}
}
} else if (compaction_style == kCompactionStyleUniversal) {
auto ratio = open_options_.compaction_options_universal.size_ratio;
bool should_stop = false;
while (!should_stop) {
if (sorted_runs[0].empty()) {
DoWrite(thread, write_mode);
} else {
DoWrite(thread, UNIQUE_RANDOM);
}
for (size_t i = 0; i < num_db; i++) {
auto db = db_list[i];
db->Flush(FlushOptions());
db->GetColumnFamilyMetaData(&meta);
if (num_files_at_level0[i] == meta.levels[0].files.size() ||
writes_ == 0) {
should_stop = true;
continue;
}
sorted_runs[i].emplace_back(
meta.levels[0].files.begin(),
meta.levels[0].files.end() - num_files_at_level0[i]);
num_files_at_level0[i] = meta.levels[0].files.size();
if (sorted_runs[i].back().size() == 1) {
should_stop = true;
continue;
}
num_files_at_level0[i] = meta.levels[0].files.size();
}
writes_ = static_cast<int64_t>(writes_ * static_cast<double>(100) /
(ratio + 200));
}
for (size_t i = 0; i < num_db; i++) {
if (sorted_runs[i].size() < num_levels) {
fprintf(stderr, "n is too small to fill %" ROCKSDB_PRIszt " levels\n",
num_levels);
exit(1);
}
}
for (size_t i = 0; i < num_db; i++) {
auto db = db_list[i];
auto compactionOptions = CompactionOptions();
compactionOptions.compression = FLAGS_compression_type_e;
auto options = db->GetOptions();
MutableCFOptions mutable_cf_options(options);
for (size_t j = 0; j < sorted_runs[i].size(); j++) {
compactionOptions.output_file_size_limit = MaxFileSizeForLevel(
mutable_cf_options, static_cast<int>(output_level),
compaction_style);
db->CompactFiles(
compactionOptions,
{sorted_runs[i][j].back().name, sorted_runs[i][j].front().name},
(output_level > j ? static_cast<int>(output_level - j)
: 0) /*level*/);
}
}
} else if (compaction_style == kCompactionStyleFIFO) {
if (num_levels != 1) {
return Status::InvalidArgument(
"num_levels should be 1 for FIFO compaction");
}
if (FLAGS_num_multi_db != 0) {
return Status::InvalidArgument("Doesn't support multiDB");
}
auto db = db_list[0];
std::vector<std::string> file_names;
while (true) {
if (sorted_runs[0].empty()) {
DoWrite(thread, write_mode);
} else {
DoWrite(thread, UNIQUE_RANDOM);
}
db->Flush(FlushOptions());
db->GetColumnFamilyMetaData(&meta);
auto total_size = meta.levels[0].size;
if (total_size >=
db->GetOptions().compaction_options_fifo.max_table_files_size) {
for (const auto& file_meta : meta.levels[0].files) {
file_names.emplace_back(file_meta.name);
}
break;
}
}
// TODO(shuzhang1989): Investigate why CompactFiles not working
// auto compactionOptions = CompactionOptions();
// db->CompactFiles(compactionOptions, file_names, 0);
auto compactionOptions = CompactRangeOptions();
compactionOptions.max_subcompactions =
static_cast<uint32_t>(FLAGS_subcompactions);
db->CompactRange(compactionOptions, nullptr, nullptr);
} else {
fprintf(stdout,
"%-12s : skipped (-compaction_stype=kCompactionStyleNone)\n",
"filldeterministic");
return Status::InvalidArgument("None compaction is not supported");
}
// Verify seqno and key range
// Note: the seqno get changed at the max level by implementation
// optimization, so skip the check of the max level.
#ifndef NDEBUG
for (size_t k = 0; k < num_db; k++) {
auto db = db_list[k];
db->GetColumnFamilyMetaData(&meta);
// verify the number of sorted runs
if (compaction_style == kCompactionStyleLevel) {
assert(num_levels - 1 == sorted_runs[k].size());
} else if (compaction_style == kCompactionStyleUniversal) {
assert(meta.levels[0].files.size() + num_levels - 1 ==
sorted_runs[k].size());
} else if (compaction_style == kCompactionStyleFIFO) {
// TODO(gzh): FIFO compaction
db->GetColumnFamilyMetaData(&meta);
auto total_size = meta.levels[0].size;
assert(total_size <=
db->GetOptions().compaction_options_fifo.max_table_files_size);
break;
}
// verify smallest/largest seqno and key range of each sorted run
auto max_level = num_levels - 1;
int level;
for (size_t i = 0; i < sorted_runs[k].size(); i++) {
level = static_cast<int>(max_level - i);
SequenceNumber sorted_run_smallest_seqno = kMaxSequenceNumber;
SequenceNumber sorted_run_largest_seqno = 0;
std::string sorted_run_smallest_key, sorted_run_largest_key;
bool first_key = true;
for (const auto& fileMeta : sorted_runs[k][i]) {
sorted_run_smallest_seqno =
std::min(sorted_run_smallest_seqno, fileMeta.smallest_seqno);
sorted_run_largest_seqno =
std::max(sorted_run_largest_seqno, fileMeta.largest_seqno);
if (first_key ||
db->DefaultColumnFamily()->GetComparator()->Compare(
fileMeta.smallestkey, sorted_run_smallest_key) < 0) {
sorted_run_smallest_key = fileMeta.smallestkey;
}
if (first_key ||
db->DefaultColumnFamily()->GetComparator()->Compare(
fileMeta.largestkey, sorted_run_largest_key) > 0) {
sorted_run_largest_key = fileMeta.largestkey;
}
first_key = false;
}
if (compaction_style == kCompactionStyleLevel ||
(compaction_style == kCompactionStyleUniversal && level > 0)) {
SequenceNumber level_smallest_seqno = kMaxSequenceNumber;
SequenceNumber level_largest_seqno = 0;
for (const auto& fileMeta : meta.levels[level].files) {
level_smallest_seqno =
std::min(level_smallest_seqno, fileMeta.smallest_seqno);
level_largest_seqno =
std::max(level_largest_seqno, fileMeta.largest_seqno);
}
assert(sorted_run_smallest_key ==
meta.levels[level].files.front().smallestkey);
assert(sorted_run_largest_key ==
meta.levels[level].files.back().largestkey);
if (level != static_cast<int>(max_level)) {
// compaction at max_level would change sequence number
assert(sorted_run_smallest_seqno == level_smallest_seqno);
assert(sorted_run_largest_seqno == level_largest_seqno);
}
} else if (compaction_style == kCompactionStyleUniversal) {
// level <= 0 means sorted runs on level 0
auto level0_file =
meta.levels[0].files[sorted_runs[k].size() - 1 - i];
assert(sorted_run_smallest_key == level0_file.smallestkey);
assert(sorted_run_largest_key == level0_file.largestkey);
if (level != static_cast<int>(max_level)) {
assert(sorted_run_smallest_seqno == level0_file.smallest_seqno);
assert(sorted_run_largest_seqno == level0_file.largest_seqno);
}
}
}
}
#endif
// print the size of each sorted_run
for (size_t k = 0; k < num_db; k++) {
auto db = db_list[k];
fprintf(stdout,
"---------------------- DB %" ROCKSDB_PRIszt
" LSM ---------------------\n",
k);
db->GetColumnFamilyMetaData(&meta);
for (auto& levelMeta : meta.levels) {
if (levelMeta.files.empty()) {
continue;
}
if (levelMeta.level == 0) {
for (auto& fileMeta : levelMeta.files) {
fprintf(stdout, "Level[%d]: %s(size: %" PRIi64 " bytes)\n",
levelMeta.level, fileMeta.name.c_str(), fileMeta.size);
}
} else {
fprintf(stdout, "Level[%d]: %s - %s(total size: %" PRIi64 " bytes)\n",
levelMeta.level, levelMeta.files.front().name.c_str(),
levelMeta.files.back().name.c_str(), levelMeta.size);
}
}
}
for (size_t i = 0; i < num_db; i++) {
db_list[i]->SetOptions(
{{"disable_auto_compactions",
std::to_string(options_list[i].disable_auto_compactions)},
{"level0_slowdown_writes_trigger",
std::to_string(options_list[i].level0_slowdown_writes_trigger)},
{"level0_stop_writes_trigger",
std::to_string(options_list[i].level0_stop_writes_trigger)}});
}
return Status::OK();
}
void ReadSequential(ThreadState* thread) {
if (db_.db != nullptr) {
ReadSequential(thread, db_.db);
} else {
for (const auto& db_with_cfh : multi_dbs_) {
ReadSequential(thread, db_with_cfh.db);
}
}
}
void ReadSequential(ThreadState* thread, DB* db) {
ReadOptions options = read_options_;
std::unique_ptr<char[]> ts_guard;
Slice ts;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
options.timestamp = &ts;
}
options.adaptive_readahead = FLAGS_adaptive_readahead;
options.async_io = FLAGS_async_io;
options.auto_readahead_size = FLAGS_auto_readahead_size;
Iterator* iter = db->NewIterator(options);
int64_t i = 0;
int64_t bytes = 0;
for (iter->SeekToFirst(); i < reads_ && iter->Valid(); iter->Next()) {
bytes += iter->key().size() + iter->value().size();
thread->stats.FinishedOps(nullptr, db, 1, kRead);
++i;
if (thread->shared->read_rate_limiter.get() != nullptr &&
i % 1024 == 1023) {
thread->shared->read_rate_limiter->Request(1024, Env::IO_HIGH,
nullptr /* stats */,
RateLimiter::OpType::kRead);
}
}
delete iter;
thread->stats.AddBytes(bytes);
}
void ReadToRowCache(ThreadState* thread) {
int64_t read = 0;
int64_t found = 0;
int64_t bytes = 0;
int64_t key_rand = 0;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
PinnableSlice pinnable_val;
while (key_rand < FLAGS_num) {
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
// We use same key_rand as seed for key and column family so that we can
// deterministically find the cfh corresponding to a particular key, as it
// is done in DoWrite method.
GenerateKeyFromInt(key_rand, FLAGS_num, &key);
key_rand++;
read++;
Status s;
if (FLAGS_num_column_families > 1) {
s = db_with_cfh->db->Get(read_options_, db_with_cfh->GetCfh(key_rand),
key, &pinnable_val);
} else {
pinnable_val.Reset();
s = db_with_cfh->db->Get(read_options_,
db_with_cfh->db->DefaultColumnFamily(), key,
&pinnable_val);
}
if (s.ok()) {
found++;
bytes += key.size() + pinnable_val.size();
} else if (!s.IsNotFound()) {
fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str());
abort();
}
if (thread->shared->read_rate_limiter.get() != nullptr &&
read % 256 == 255) {
thread->shared->read_rate_limiter->Request(
256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
}
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead);
}
char msg[100];
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found,
read);
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(msg);
}
void ReadReverse(ThreadState* thread) {
if (db_.db != nullptr) {
ReadReverse(thread, db_.db);
} else {
for (const auto& db_with_cfh : multi_dbs_) {
ReadReverse(thread, db_with_cfh.db);
}
}
}
void ReadReverse(ThreadState* thread, DB* db) {
Iterator* iter = db->NewIterator(read_options_);
int64_t i = 0;
int64_t bytes = 0;
for (iter->SeekToLast(); i < reads_ && iter->Valid(); iter->Prev()) {
bytes += iter->key().size() + iter->value().size();
thread->stats.FinishedOps(nullptr, db, 1, kRead);
++i;
if (thread->shared->read_rate_limiter.get() != nullptr &&
i % 1024 == 1023) {
thread->shared->read_rate_limiter->Request(1024, Env::IO_HIGH,
nullptr /* stats */,
RateLimiter::OpType::kRead);
}
}
delete iter;
thread->stats.AddBytes(bytes);
}
void ReadRandomFast(ThreadState* thread) {
int64_t read = 0;
int64_t found = 0;
int64_t nonexist = 0;
ReadOptions options = read_options_;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
std::string value;
Slice ts;
std::unique_ptr<char[]> ts_guard;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
}
DB* db = SelectDBWithCfh(thread)->db;
int64_t pot = 1;
while (pot < FLAGS_num) {
pot <<= 1;
}
Duration duration(FLAGS_duration, reads_);
do {
for (int i = 0; i < 100; ++i) {
int64_t key_rand = thread->rand.Next() & (pot - 1);
GenerateKeyFromInt(key_rand, FLAGS_num, &key);
++read;
std::string ts_ret;
std::string* ts_ptr = nullptr;
if (user_timestamp_size_ > 0) {
ts = mock_app_clock_->GetTimestampForRead(thread->rand,
ts_guard.get());
options.timestamp = &ts;
ts_ptr = &ts_ret;
}
auto status = db->Get(options, key, &value, ts_ptr);
if (status.ok()) {
++found;
} else if (!status.IsNotFound()) {
fprintf(stderr, "Get returned an error: %s\n",
status.ToString().c_str());
abort();
}
if (key_rand >= FLAGS_num) {
++nonexist;
}
}
if (thread->shared->read_rate_limiter.get() != nullptr) {
thread->shared->read_rate_limiter->Request(
100, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
}
thread->stats.FinishedOps(nullptr, db, 100, kRead);
} while (!duration.Done(100));
char msg[100];
snprintf(msg, sizeof(msg),
"(%" PRIu64 " of %" PRIu64
" found, "
"issued %" PRIu64 " non-exist keys)\n",
found, read, nonexist);
thread->stats.AddMessage(msg);
}
int64_t GetRandomKey(Random64* rand) {
uint64_t rand_int = rand->Next();
int64_t key_rand;
if (read_random_exp_range_ == 0) {
key_rand = rand_int % FLAGS_num;
} else {
const uint64_t kBigInt = static_cast<uint64_t>(1U) << 62;
long double order = -static_cast<long double>(rand_int % kBigInt) /
static_cast<long double>(kBigInt) *
read_random_exp_range_;
long double exp_ran = std::exp(order);
uint64_t rand_num =
static_cast<int64_t>(exp_ran * static_cast<long double>(FLAGS_num));
// Map to a different number to avoid locality.
const uint64_t kBigPrime = 0x5bd1e995;
// Overflow is like %(2^64). Will have little impact of results.
key_rand = static_cast<int64_t>((rand_num * kBigPrime) % FLAGS_num);
}
return key_rand;
}
void ReadRandom(ThreadState* thread) {
int64_t read = 0;
int64_t found = 0;
int64_t bytes = 0;
int num_keys = 0;
int64_t key_rand = 0;
ReadOptions options = read_options_;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
PinnableSlice pinnable_val;
std::vector<PinnableSlice> pinnable_vals;
if (read_operands_) {
// Start off with a small-ish value that'll be increased later if
// `GetMergeOperands()` tells us it is not large enough.
pinnable_vals.resize(8);
}
std::unique_ptr<char[]> ts_guard;
Slice ts;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
}
Duration duration(FLAGS_duration, reads_);
while (!duration.Done(1)) {
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
// We use same key_rand as seed for key and column family so that we can
// deterministically find the cfh corresponding to a particular key, as it
// is done in DoWrite method.
if (entries_per_batch_ > 1 && FLAGS_multiread_stride) {
if (++num_keys == entries_per_batch_) {
num_keys = 0;
key_rand = GetRandomKey(&thread->rand);
if ((key_rand + (entries_per_batch_ - 1) * FLAGS_multiread_stride) >=
FLAGS_num) {
key_rand = FLAGS_num - entries_per_batch_ * FLAGS_multiread_stride;
}
} else {
key_rand += FLAGS_multiread_stride;
}
} else {
key_rand = GetRandomKey(&thread->rand);
}
GenerateKeyFromInt(key_rand, FLAGS_num, &key);
read++;
std::string ts_ret;
std::string* ts_ptr = nullptr;
if (user_timestamp_size_ > 0) {
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
options.timestamp = &ts;
ts_ptr = &ts_ret;
}
Status s;
pinnable_val.Reset();
for (size_t i = 0; i < pinnable_vals.size(); ++i) {
pinnable_vals[i].Reset();
}
ColumnFamilyHandle* cfh;
if (FLAGS_num_column_families > 1) {
cfh = db_with_cfh->GetCfh(key_rand);
} else {
cfh = db_with_cfh->db->DefaultColumnFamily();
}
if (read_operands_) {
GetMergeOperandsOptions get_merge_operands_options;
get_merge_operands_options.expected_max_number_of_operands =
static_cast<int>(pinnable_vals.size());
int number_of_operands;
s = db_with_cfh->db->GetMergeOperands(
options, cfh, key, pinnable_vals.data(),
&get_merge_operands_options, &number_of_operands);
if (s.IsIncomplete()) {
// Should only happen a few times when we encounter a key that had
// more merge operands than any key seen so far. Production use case
// would typically retry in such event to get all the operands so do
// that here.
pinnable_vals.resize(number_of_operands);
get_merge_operands_options.expected_max_number_of_operands =
static_cast<int>(pinnable_vals.size());
s = db_with_cfh->db->GetMergeOperands(
options, cfh, key, pinnable_vals.data(),
&get_merge_operands_options, &number_of_operands);
}
} else {
s = db_with_cfh->db->Get(options, cfh, key, &pinnable_val, ts_ptr);
}
if (s.ok()) {
found++;
bytes += key.size() + pinnable_val.size() + user_timestamp_size_;
for (size_t i = 0; i < pinnable_vals.size(); ++i) {
bytes += pinnable_vals[i].size();
pinnable_vals[i].Reset();
}
} else if (!s.IsNotFound()) {
fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str());
abort();
}
if (thread->shared->read_rate_limiter.get() != nullptr &&
read % 256 == 255) {
thread->shared->read_rate_limiter->Request(
256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
}
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead);
}
char msg[100];
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found,
read);
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(msg);
}
// Calls MultiGet over a list of keys from a random distribution.
// Returns the total number of keys found.
void MultiReadRandom(ThreadState* thread) {
int64_t read = 0;
int64_t bytes = 0;
int64_t num_multireads = 0;
int64_t found = 0;
ReadOptions options = read_options_;
std::vector<Slice> keys;
std::vector<std::unique_ptr<const char[]>> key_guards;
std::vector<std::string> values(entries_per_batch_);
PinnableSlice* pin_values = new PinnableSlice[entries_per_batch_];
std::unique_ptr<PinnableSlice[]> pin_values_guard(pin_values);
std::vector<Status> stat_list(entries_per_batch_);
while (static_cast<int64_t>(keys.size()) < entries_per_batch_) {
key_guards.push_back(std::unique_ptr<const char[]>());
keys.push_back(AllocateKey(&key_guards.back()));
}
std::unique_ptr<char[]> ts_guard;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
}
Duration duration(FLAGS_duration, reads_);
while (!duration.Done(entries_per_batch_)) {
DB* db = SelectDB(thread);
if (FLAGS_multiread_stride) {
int64_t key = GetRandomKey(&thread->rand);
if ((key + (entries_per_batch_ - 1) * FLAGS_multiread_stride) >=
static_cast<int64_t>(FLAGS_num)) {
key = FLAGS_num - entries_per_batch_ * FLAGS_multiread_stride;
}
for (int64_t i = 0; i < entries_per_batch_; ++i) {
GenerateKeyFromInt(key, FLAGS_num, &keys[i]);
key += FLAGS_multiread_stride;
}
} else {
for (int64_t i = 0; i < entries_per_batch_; ++i) {
GenerateKeyFromInt(GetRandomKey(&thread->rand), FLAGS_num, &keys[i]);
}
}
Slice ts;
if (user_timestamp_size_ > 0) {
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
options.timestamp = &ts;
}
if (!FLAGS_multiread_batched) {
std::vector<Status> statuses = db->MultiGet(options, keys, &values);
assert(static_cast<int64_t>(statuses.size()) == entries_per_batch_);
read += entries_per_batch_;
num_multireads++;
for (int64_t i = 0; i < entries_per_batch_; ++i) {
if (statuses[i].ok()) {
bytes += keys[i].size() + values[i].size() + user_timestamp_size_;
++found;
} else if (!statuses[i].IsNotFound()) {
fprintf(stderr, "MultiGet returned an error: %s\n",
statuses[i].ToString().c_str());
abort();
}
}
} else {
db->MultiGet(options, db->DefaultColumnFamily(), keys.size(),
keys.data(), pin_values, stat_list.data());
read += entries_per_batch_;
num_multireads++;
for (int64_t i = 0; i < entries_per_batch_; ++i) {
if (stat_list[i].ok()) {
bytes +=
keys[i].size() + pin_values[i].size() + user_timestamp_size_;
++found;
} else if (!stat_list[i].IsNotFound()) {
fprintf(stderr, "MultiGet returned an error: %s\n",
stat_list[i].ToString().c_str());
abort();
}
stat_list[i] = Status::OK();
pin_values[i].Reset();
}
}
if (thread->shared->read_rate_limiter.get() != nullptr &&
num_multireads % 256 == 255) {
thread->shared->read_rate_limiter->Request(
256 * entries_per_batch_, Env::IO_HIGH, nullptr /* stats */,
RateLimiter::OpType::kRead);
}
thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kRead);
}
char msg[100];
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)", found,
read);
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(msg);
}
// Calls ApproximateSize over random key ranges.
void ApproximateSizeRandom(ThreadState* thread) {
int64_t size_sum = 0;
int64_t num_sizes = 0;
const size_t batch_size = entries_per_batch_;
std::vector<Range> ranges;
std::vector<Slice> lkeys;
std::vector<std::unique_ptr<const char[]>> lkey_guards;
std::vector<Slice> rkeys;
std::vector<std::unique_ptr<const char[]>> rkey_guards;
std::vector<uint64_t> sizes;
while (ranges.size() < batch_size) {
// Ugly without C++17 return from emplace_back
lkey_guards.emplace_back();
rkey_guards.emplace_back();
lkeys.emplace_back(AllocateKey(&lkey_guards.back()));
rkeys.emplace_back(AllocateKey(&rkey_guards.back()));
ranges.emplace_back(lkeys.back(), rkeys.back());
sizes.push_back(0);
}
Duration duration(FLAGS_duration, reads_);
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
for (size_t i = 0; i < batch_size; ++i) {
int64_t lkey = GetRandomKey(&thread->rand);
int64_t rkey = GetRandomKey(&thread->rand);
if (lkey > rkey) {
std::swap(lkey, rkey);
}
GenerateKeyFromInt(lkey, FLAGS_num, &lkeys[i]);
GenerateKeyFromInt(rkey, FLAGS_num, &rkeys[i]);
}
db->GetApproximateSizes(
ranges.data(), static_cast<int>(entries_per_batch_), sizes.data());
num_sizes += entries_per_batch_;
for (int64_t size : sizes) {
size_sum += size;
}
thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kOthers);
}
char msg[100];
snprintf(msg, sizeof(msg), "(Avg approx size=%g)",
static_cast<double>(size_sum) / static_cast<double>(num_sizes));
thread->stats.AddMessage(msg);
}
// The inverse function of Pareto distribution
int64_t ParetoCdfInversion(double u, double theta, double k, double sigma) {
double ret;
if (k == 0.0) {
ret = theta - sigma * std::log(u);
} else {
ret = theta + sigma * (std::pow(u, -1 * k) - 1) / k;
}
return static_cast<int64_t>(ceil(ret));
}
// The inverse function of power distribution (y=ax^b)
int64_t PowerCdfInversion(double u, double a, double b) {
double ret;
ret = std::pow((u / a), (1 / b));
return static_cast<int64_t>(ceil(ret));
}
// Add the noice to the QPS
double AddNoise(double origin, double noise_ratio) {
if (noise_ratio < 0.0 || noise_ratio > 1.0) {
return origin;
}
int band_int = static_cast<int>(FLAGS_sine_a);
double delta = (rand() % band_int - band_int / 2) * noise_ratio;
if (origin + delta < 0) {
return origin;
} else {
return (origin + delta);
}
}
// Decide the ratio of different query types
// 0 Get, 1 Put, 2 Seek, 3 SeekForPrev, 4 Delete, 5 SingleDelete, 6 merge
class QueryDecider {
public:
std::vector<int> type_;
std::vector<double> ratio_;
int range_;
QueryDecider() = default;
~QueryDecider() = default;
Status Initiate(std::vector<double> ratio_input) {
int range_max = 1000;
double sum = 0.0;
for (auto& ratio : ratio_input) {
sum += ratio;
}
range_ = 0;
for (auto& ratio : ratio_input) {
range_ += static_cast<int>(ceil(range_max * (ratio / sum)));
type_.push_back(range_);
ratio_.push_back(ratio / sum);
}
return Status::OK();
}
int GetType(int64_t rand_num) {
if (rand_num < 0) {
rand_num = rand_num * (-1);
}
assert(range_ != 0);
int pos = static_cast<int>(rand_num % range_);
for (int i = 0; i < static_cast<int>(type_.size()); i++) {
if (pos < type_[i]) {
return i;
}
}
return 0;
}
};
// KeyrangeUnit is the struct of a keyrange. It is used in a keyrange vector
// to transfer a random value to one keyrange based on the hotness.
struct KeyrangeUnit {
int64_t keyrange_start;
int64_t keyrange_access;
int64_t keyrange_keys;
};
// From our observations, the prefix hotness (key-range hotness) follows
// the two-term-exponential distribution: f(x) = a*exp(b*x) + c*exp(d*x).
// However, we cannot directly use the inverse function to decide a
// key-range from a random distribution. To achieve it, we create a list of
// KeyrangeUnit, each KeyrangeUnit occupies a range of integers whose size is
// decided based on the hotness of the key-range. When a random value is
// generated based on uniform distribution, we map it to the KeyrangeUnit Vec
// and one KeyrangeUnit is selected. The probability of a KeyrangeUnit being
// selected is the same as the hotness of this KeyrangeUnit. After that, the
// key can be randomly allocated to the key-range of this KeyrangeUnit, or we
// can based on the power distribution (y=ax^b) to generate the offset of
// the key in the selected key-range. In this way, we generate the keyID
// based on the hotness of the prefix and also the key hotness distribution.
class GenerateTwoTermExpKeys {
public:
// Avoid uninitialized warning-as-error in some compilers
int64_t keyrange_rand_max_ = 0;
int64_t keyrange_size_ = 0;
int64_t keyrange_num_ = 0;
std::vector<KeyrangeUnit> keyrange_set_;
// Initiate the KeyrangeUnit vector and calculate the size of each
// KeyrangeUnit.
Status InitiateExpDistribution(int64_t total_keys, double prefix_a,
double prefix_b, double prefix_c,
double prefix_d) {
int64_t amplify = 0;
int64_t keyrange_start = 0;
if (FLAGS_keyrange_num <= 0) {
keyrange_num_ = 1;
} else {
keyrange_num_ = FLAGS_keyrange_num;
}
keyrange_size_ = total_keys / keyrange_num_;
// Calculate the key-range shares size based on the input parameters
for (int64_t pfx = keyrange_num_; pfx >= 1; pfx--) {
// Step 1. Calculate the probability that this key range will be
// accessed in a query. It is based on the two-term expoential
// distribution
double keyrange_p = prefix_a * std::exp(prefix_b * pfx) +
prefix_c * std::exp(prefix_d * pfx);
if (keyrange_p < std::pow(10.0, -16.0)) {
keyrange_p = 0.0;
}
// Step 2. Calculate the amplify
// In order to allocate a query to a key-range based on the random
// number generated for this query, we need to extend the probability
// of each key range from [0,1] to [0, amplify]. Amplify is calculated
// by 1/(smallest key-range probability). In this way, we ensure that
// all key-ranges are assigned with an Integer that >=0
if (amplify == 0 && keyrange_p > 0) {
amplify = static_cast<int64_t>(std::floor(1 / keyrange_p)) + 1;
}
// Step 3. For each key-range, we calculate its position in the
// [0, amplify] range, including the start, the size (keyrange_access)
KeyrangeUnit p_unit;
p_unit.keyrange_start = keyrange_start;
if (0.0 >= keyrange_p) {
p_unit.keyrange_access = 0;
} else {
p_unit.keyrange_access =
static_cast<int64_t>(std::floor(amplify * keyrange_p));
}
p_unit.keyrange_keys = keyrange_size_;
keyrange_set_.push_back(p_unit);
keyrange_start += p_unit.keyrange_access;
}
keyrange_rand_max_ = keyrange_start;
// Step 4. Shuffle the key-ranges randomly
// Since the access probability is calculated from small to large,
// If we do not re-allocate them, hot key-ranges are always at the end
// and cold key-ranges are at the begin of the key space. Therefore, the
// key-ranges are shuffled and the rand seed is only decide by the
// key-range hotness distribution. With the same distribution parameters
// the shuffle results are the same.
Random64 rand_loca(keyrange_rand_max_);
for (int64_t i = 0; i < FLAGS_keyrange_num; i++) {
int64_t pos = rand_loca.Next() % FLAGS_keyrange_num;
assert(i >= 0 && i < static_cast<int64_t>(keyrange_set_.size()) &&
pos >= 0 && pos < static_cast<int64_t>(keyrange_set_.size()));
std::swap(keyrange_set_[i], keyrange_set_[pos]);
}
// Step 5. Recalculate the prefix start postion after shuffling
int64_t offset = 0;
for (auto& p_unit : keyrange_set_) {
p_unit.keyrange_start = offset;
offset += p_unit.keyrange_access;
}
return Status::OK();
}
// Generate the Key ID according to the input ini_rand and key distribution
int64_t DistGetKeyID(int64_t ini_rand, double key_dist_a,
double key_dist_b) {
int64_t keyrange_rand = ini_rand % keyrange_rand_max_;
// Calculate and select one key-range that contains the new key
int64_t start = 0, end = static_cast<int64_t>(keyrange_set_.size());
while (start + 1 < end) {
int64_t mid = start + (end - start) / 2;
assert(mid >= 0 && mid < static_cast<int64_t>(keyrange_set_.size()));
if (keyrange_rand < keyrange_set_[mid].keyrange_start) {
end = mid;
} else {
start = mid;
}
}
int64_t keyrange_id = start;
// Select one key in the key-range and compose the keyID
int64_t key_offset = 0, key_seed;
if (key_dist_a == 0.0 || key_dist_b == 0.0) {
key_offset = ini_rand % keyrange_size_;
} else {
double u =
static_cast<double>(ini_rand % keyrange_size_) / keyrange_size_;
key_seed = static_cast<int64_t>(
ceil(std::pow((u / key_dist_a), (1 / key_dist_b))));
Random64 rand_key(key_seed);
key_offset = rand_key.Next() % keyrange_size_;
}
return keyrange_size_ * keyrange_id + key_offset;
}
};
// The social graph workload mixed with Get, Put, Iterator queries.
// The value size and iterator length follow Pareto distribution.
// The overall key access follow power distribution. If user models the
// workload based on different key-ranges (or different prefixes), user
// can use two-term-exponential distribution to fit the workload. User
// needs to decide the ratio between Get, Put, Iterator queries before
// starting the benchmark.
void MixGraph(ThreadState* thread) {
int64_t gets = 0;
int64_t puts = 0;
int64_t get_found = 0;
int64_t seek = 0;
int64_t seek_found = 0;
int64_t bytes = 0;
double total_scan_length = 0;
double total_val_size = 0;
const int64_t default_value_max = 1 * 1024 * 1024;
int64_t value_max = default_value_max;
int64_t scan_len_max = FLAGS_mix_max_scan_len;
double write_rate = 1000000.0;
double read_rate = 1000000.0;
bool use_prefix_modeling = false;
bool use_random_modeling = false;
GenerateTwoTermExpKeys gen_exp;
std::vector<double> ratio{FLAGS_mix_get_ratio, FLAGS_mix_put_ratio,
FLAGS_mix_seek_ratio};
char value_buffer[default_value_max];
QueryDecider query;
RandomGenerator gen;
Status s;
if (value_max > FLAGS_mix_max_value_size) {
value_max = FLAGS_mix_max_value_size;
}
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
PinnableSlice pinnable_val;
query.Initiate(ratio);
// the limit of qps initiation
if (FLAGS_sine_mix_rate) {
thread->shared->read_rate_limiter.reset(
NewGenericRateLimiter(static_cast<int64_t>(read_rate)));
thread->shared->write_rate_limiter.reset(
NewGenericRateLimiter(static_cast<int64_t>(write_rate)));
}
// Decide if user wants to use prefix based key generation
if (FLAGS_keyrange_dist_a != 0.0 || FLAGS_keyrange_dist_b != 0.0 ||
FLAGS_keyrange_dist_c != 0.0 || FLAGS_keyrange_dist_d != 0.0) {
use_prefix_modeling = true;
gen_exp.InitiateExpDistribution(
FLAGS_num, FLAGS_keyrange_dist_a, FLAGS_keyrange_dist_b,
FLAGS_keyrange_dist_c, FLAGS_keyrange_dist_d);
}
if (FLAGS_key_dist_a == 0 || FLAGS_key_dist_b == 0) {
use_random_modeling = true;
}
Duration duration(FLAGS_duration, reads_);
while (!duration.Done(1)) {
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
int64_t ini_rand, rand_v, key_rand, key_seed;
ini_rand = GetRandomKey(&thread->rand);
rand_v = ini_rand % FLAGS_num;
double u = static_cast<double>(rand_v) / FLAGS_num;
// Generate the keyID based on the key hotness and prefix hotness
if (use_random_modeling) {
key_rand = ini_rand;
} else if (use_prefix_modeling) {
key_rand =
gen_exp.DistGetKeyID(ini_rand, FLAGS_key_dist_a, FLAGS_key_dist_b);
} else {
key_seed = PowerCdfInversion(u, FLAGS_key_dist_a, FLAGS_key_dist_b);
Random64 rand(key_seed);
key_rand = static_cast<int64_t>(rand.Next()) % FLAGS_num;
}
GenerateKeyFromInt(key_rand, FLAGS_num, &key);
int query_type = query.GetType(rand_v);
// change the qps
uint64_t now = FLAGS_env->NowMicros();
uint64_t usecs_since_last;
if (now > thread->stats.GetSineInterval()) {
usecs_since_last = now - thread->stats.GetSineInterval();
} else {
usecs_since_last = 0;
}
if (FLAGS_sine_mix_rate &&
usecs_since_last >
(FLAGS_sine_mix_rate_interval_milliseconds * uint64_t{1000})) {
double usecs_since_start =
static_cast<double>(now - thread->stats.GetStart());
thread->stats.ResetSineInterval();
double mix_rate_with_noise = AddNoise(
SineRate(usecs_since_start / 1000000.0), FLAGS_sine_mix_rate_noise);
read_rate = mix_rate_with_noise * (query.ratio_[0] + query.ratio_[2]);
write_rate = mix_rate_with_noise * query.ratio_[1];
if (read_rate > 0) {
thread->shared->read_rate_limiter->SetBytesPerSecond(
static_cast<int64_t>(read_rate));
}
if (write_rate > 0) {
thread->shared->write_rate_limiter->SetBytesPerSecond(
static_cast<int64_t>(write_rate));
}
}
// Start the query
if (query_type == 0) {
// the Get query
gets++;
if (FLAGS_num_column_families > 1) {
s = db_with_cfh->db->Get(read_options_, db_with_cfh->GetCfh(key_rand),
key, &pinnable_val);
} else {
pinnable_val.Reset();
s = db_with_cfh->db->Get(read_options_,
db_with_cfh->db->DefaultColumnFamily(), key,
&pinnable_val);
}
if (s.ok()) {
get_found++;
bytes += key.size() + pinnable_val.size();
} else if (!s.IsNotFound()) {
fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str());
abort();
}
if (thread->shared->read_rate_limiter && (gets + seek) % 100 == 0) {
thread->shared->read_rate_limiter->Request(100, Env::IO_HIGH,
nullptr /*stats*/);
}
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead);
} else if (query_type == 1) {
// the Put query
puts++;
int64_t val_size = ParetoCdfInversion(u, FLAGS_value_theta,
FLAGS_value_k, FLAGS_value_sigma);
if (val_size < 10) {
val_size = 10;
} else if (val_size > value_max) {
val_size = val_size % value_max;
}
total_val_size += val_size;
s = db_with_cfh->db->Put(
write_options_, key,
gen.Generate(static_cast<unsigned int>(val_size)));
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
ErrorExit();
}
if (thread->shared->write_rate_limiter && puts % 100 == 0) {
thread->shared->write_rate_limiter->Request(100, Env::IO_HIGH,
nullptr /*stats*/);
}
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kWrite);
} else if (query_type == 2) {
// Seek query
if (db_with_cfh->db != nullptr) {
Iterator* single_iter = nullptr;
single_iter = db_with_cfh->db->NewIterator(read_options_);
if (single_iter != nullptr) {
single_iter->Seek(key);
seek++;
if (single_iter->Valid() && single_iter->key().compare(key) == 0) {
seek_found++;
}
int64_t scan_length =
ParetoCdfInversion(u, FLAGS_iter_theta, FLAGS_iter_k,
FLAGS_iter_sigma) %
scan_len_max;
for (int64_t j = 0; j < scan_length && single_iter->Valid(); j++) {
Slice value = single_iter->value();
memcpy(value_buffer, value.data(),
std::min(value.size(), sizeof(value_buffer)));
bytes += single_iter->key().size() + single_iter->value().size();
single_iter->Next();
assert(single_iter->status().ok());
total_scan_length++;
}
}
delete single_iter;
}
thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kSeek);
}
}
char msg[256];
snprintf(msg, sizeof(msg),
"( Gets:%" PRIu64 " Puts:%" PRIu64 " Seek:%" PRIu64
", reads %" PRIu64 " in %" PRIu64
" found, "
"avg size: %.1f value, %.1f scan)\n",
gets, puts, seek, get_found + seek_found, gets + seek,
total_val_size / puts, total_scan_length / seek);
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(msg);
}
void IteratorCreation(ThreadState* thread) {
Duration duration(FLAGS_duration, reads_);
ReadOptions options = read_options_;
std::unique_ptr<char[]> ts_guard;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
}
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
Slice ts;
if (user_timestamp_size_ > 0) {
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
options.timestamp = &ts;
}
Iterator* iter = db->NewIterator(options);
delete iter;
thread->stats.FinishedOps(nullptr, db, 1, kOthers);
}
}
void IteratorCreationWhileWriting(ThreadState* thread) {
if (thread->tid > 0) {
IteratorCreation(thread);
} else {
BGWriter(thread, kWrite);
}
}
void SeekRandom(ThreadState* thread) {
int64_t read = 0;
int64_t found = 0;
int64_t bytes = 0;
ReadOptions options = read_options_;
std::unique_ptr<char[]> ts_guard;
Slice ts;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
options.timestamp = &ts;
}
std::vector<Iterator*> tailing_iters;
if (FLAGS_use_tailing_iterator) {
if (db_.db != nullptr) {
tailing_iters.push_back(db_.db->NewIterator(options));
} else {
for (const auto& db_with_cfh : multi_dbs_) {
tailing_iters.push_back(db_with_cfh.db->NewIterator(options));
}
}
}
options.auto_prefix_mode = FLAGS_auto_prefix_mode;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
std::unique_ptr<const char[]> upper_bound_key_guard;
Slice upper_bound = AllocateKey(&upper_bound_key_guard);
std::unique_ptr<const char[]> lower_bound_key_guard;
Slice lower_bound = AllocateKey(&lower_bound_key_guard);
Duration duration(FLAGS_duration, reads_);
char value_buffer[256];
while (!duration.Done(1)) {
int64_t seek_pos = thread->rand.Next() % FLAGS_num;
GenerateKeyFromIntForSeek(static_cast<uint64_t>(seek_pos), FLAGS_num,
&key);
if (FLAGS_max_scan_distance != 0) {
if (FLAGS_reverse_iterator) {
GenerateKeyFromInt(
static_cast<uint64_t>(std::max(
static_cast<int64_t>(0), seek_pos - FLAGS_max_scan_distance)),
FLAGS_num, &lower_bound);
options.iterate_lower_bound = &lower_bound;
} else {
auto min_num =
std::min(FLAGS_num, seek_pos + FLAGS_max_scan_distance);
GenerateKeyFromInt(static_cast<uint64_t>(min_num), FLAGS_num,
&upper_bound);
options.iterate_upper_bound = &upper_bound;
}
} else if (FLAGS_auto_prefix_mode && prefix_extractor_ &&
!FLAGS_reverse_iterator) {
// Set upper bound to next prefix
auto mutable_upper_bound = const_cast<char*>(upper_bound.data());
std::memcpy(mutable_upper_bound, key.data(), prefix_size_);
mutable_upper_bound[prefix_size_ - 1]++;
upper_bound = Slice(upper_bound.data(), prefix_size_);
options.iterate_upper_bound = &upper_bound;
}
// Pick a Iterator to use
uint64_t db_idx_to_use =
(db_.db == nullptr)
? (uint64_t{thread->rand.Next()} % multi_dbs_.size())
: 0;
std::unique_ptr<Iterator> single_iter;
Iterator* iter_to_use;
if (FLAGS_use_tailing_iterator) {
iter_to_use = tailing_iters[db_idx_to_use];
} else {
if (db_.db != nullptr) {
single_iter.reset(db_.db->NewIterator(options));
} else {
single_iter.reset(multi_dbs_[db_idx_to_use].db->NewIterator(options));
}
iter_to_use = single_iter.get();
}
iter_to_use->Seek(key);
read++;
if (iter_to_use->Valid() && iter_to_use->key().compare(key) == 0) {
found++;
}
for (int j = 0; j < FLAGS_seek_nexts && iter_to_use->Valid(); ++j) {
// Copy out iterator's value to make sure we read them.
Slice value = iter_to_use->value();
memcpy(value_buffer, value.data(),
std::min(value.size(), sizeof(value_buffer)));
bytes += iter_to_use->key().size() + iter_to_use->value().size();
if (!FLAGS_reverse_iterator) {
iter_to_use->Next();
} else {
iter_to_use->Prev();
}
assert(iter_to_use->status().ok());
}
if (thread->shared->read_rate_limiter.get() != nullptr &&
read % 256 == 255) {
thread->shared->read_rate_limiter->Request(
256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
}
thread->stats.FinishedOps(&db_, db_.db, 1, kSeek);
}
for (auto iter : tailing_iters) {
delete iter;
}
char msg[100];
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found,
read);
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(msg);
}
void SeekRandomWhileWriting(ThreadState* thread) {
if (thread->tid > 0) {
SeekRandom(thread);
} else {
BGWriter(thread, kWrite);
}
}
void SeekRandomWhileMerging(ThreadState* thread) {
if (thread->tid > 0) {
SeekRandom(thread);
} else {
BGWriter(thread, kMerge);
}
}
void DoDelete(ThreadState* thread, bool seq) {
WriteBatch batch(/*reserved_bytes=*/0, /*max_bytes=*/0,
FLAGS_write_batch_protection_bytes_per_key,
user_timestamp_size_);
Duration duration(seq ? 0 : FLAGS_duration, deletes_);
int64_t i = 0;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
std::unique_ptr<char[]> ts_guard;
Slice ts;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
}
while (!duration.Done(entries_per_batch_)) {
DB* db = SelectDB(thread);
batch.Clear();
for (int64_t j = 0; j < entries_per_batch_; ++j) {
const int64_t k = seq ? i + j : (thread->rand.Next() % FLAGS_num);
GenerateKeyFromInt(k, FLAGS_num, &key);
batch.Delete(key);
}
Status s;
if (user_timestamp_size_ > 0) {
ts = mock_app_clock_->Allocate(ts_guard.get());
s = batch.UpdateTimestamps(
ts, [this](uint32_t) { return user_timestamp_size_; });
if (!s.ok()) {
fprintf(stderr, "assign timestamp: %s\n", s.ToString().c_str());
ErrorExit();
}
}
s = db->Write(write_options_, &batch);
thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kDelete);
if (!s.ok()) {
fprintf(stderr, "del error: %s\n", s.ToString().c_str());
exit(1);
}
i += entries_per_batch_;
}
}
void DeleteSeq(ThreadState* thread) { DoDelete(thread, true); }
void DeleteRandom(ThreadState* thread) { DoDelete(thread, false); }
void ReadWhileWriting(ThreadState* thread) {
if (thread->tid > 0) {
ReadRandom(thread);
} else {
BGWriter(thread, kWrite);
}
}
void MultiReadWhileWriting(ThreadState* thread) {
if (thread->tid > 0) {
MultiReadRandom(thread);
} else {
BGWriter(thread, kWrite);
}
}
void ReadWhileMerging(ThreadState* thread) {
if (thread->tid > 0) {
ReadRandom(thread);
} else {
BGWriter(thread, kMerge);
}
}
void BGWriter(ThreadState* thread, enum OperationType write_merge) {
// Special thread that keeps writing until other threads are done.
RandomGenerator gen;
int64_t bytes = 0;
std::unique_ptr<RateLimiter> write_rate_limiter;
if (FLAGS_benchmark_write_rate_limit > 0) {
write_rate_limiter.reset(
NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit));
}
// Don't merge stats from this thread with the readers.
thread->stats.SetExcludeFromMerge();
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
std::unique_ptr<char[]> ts_guard;
std::unique_ptr<const char[]> begin_key_guard;
Slice begin_key = AllocateKey(&begin_key_guard);
std::unique_ptr<const char[]> end_key_guard;
Slice end_key = AllocateKey(&end_key_guard);
uint64_t num_range_deletions = 0;
std::vector<std::unique_ptr<const char[]>> expanded_key_guards;
std::vector<Slice> expanded_keys;
if (FLAGS_expand_range_tombstones) {
expanded_key_guards.resize(range_tombstone_width_);
for (auto& expanded_key_guard : expanded_key_guards) {
expanded_keys.emplace_back(AllocateKey(&expanded_key_guard));
}
}
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
}
uint32_t written = 0;
bool hint_printed = false;
while (true) {
DB* db = SelectDB(thread);
{
MutexLock l(&thread->shared->mu);
if (FLAGS_finish_after_writes && written == writes_) {
fprintf(stderr, "Exiting the writer after %u writes...\n", written);
break;
}
if (thread->shared->num_done + 1 >= thread->shared->num_initialized) {
// Other threads have finished
if (FLAGS_finish_after_writes) {
// Wait for the writes to be finished
if (!hint_printed) {
fprintf(stderr, "Reads are finished. Have %d more writes to do\n",
static_cast<int>(writes_) - written);
hint_printed = true;
}
} else {
// Finish the write immediately
break;
}
}
}
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
Status s;
Slice val = gen.Generate();
Slice ts;
if (user_timestamp_size_ > 0) {
ts = mock_app_clock_->Allocate(ts_guard.get());
}
if (write_merge == kWrite) {
if (user_timestamp_size_ == 0) {
s = db->Put(write_options_, key, val);
} else {
s = db->Put(write_options_, key, ts, val);
}
} else {
s = db->Merge(write_options_, key, val);
}
// Restore write_options_
written++;
if (!s.ok()) {
fprintf(stderr, "put or merge error: %s\n", s.ToString().c_str());
exit(1);
}
bytes += key.size() + val.size() + user_timestamp_size_;
thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
if (FLAGS_benchmark_write_rate_limit > 0) {
write_rate_limiter->Request(key.size() + val.size(), Env::IO_HIGH,
nullptr /* stats */,
RateLimiter::OpType::kWrite);
}
if (writes_per_range_tombstone_ > 0 &&
written > writes_before_delete_range_ &&
(written - writes_before_delete_range_) /
writes_per_range_tombstone_ <=
max_num_range_tombstones_ &&
(written - writes_before_delete_range_) %
writes_per_range_tombstone_ ==
0) {
num_range_deletions++;
int64_t begin_num = thread->rand.Next() % FLAGS_num;
if (FLAGS_expand_range_tombstones) {
for (int64_t offset = 0; offset < range_tombstone_width_; ++offset) {
GenerateKeyFromInt(begin_num + offset, FLAGS_num,
&expanded_keys[offset]);
if (!db->Delete(write_options_, expanded_keys[offset]).ok()) {
fprintf(stderr, "delete error: %s\n", s.ToString().c_str());
exit(1);
}
}
} else {
GenerateKeyFromInt(begin_num, FLAGS_num, &begin_key);
GenerateKeyFromInt(begin_num + range_tombstone_width_, FLAGS_num,
&end_key);
if (!db->DeleteRange(write_options_, db->DefaultColumnFamily(),
begin_key, end_key)
.ok()) {
fprintf(stderr, "deleterange error: %s\n", s.ToString().c_str());
exit(1);
}
}
thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
// TODO: DeleteRange is not included in calculcation of bytes/rate
// limiter request
}
}
if (num_range_deletions > 0) {
std::cout << "Number of range deletions: " << num_range_deletions
<< std::endl;
}
thread->stats.AddBytes(bytes);
}
void ReadWhileScanning(ThreadState* thread) {
if (thread->tid > 0) {
ReadRandom(thread);
} else {
BGScan(thread);
}
}
void BGScan(ThreadState* thread) {
if (FLAGS_num_multi_db > 0) {
fprintf(stderr, "Not supporting multiple DBs.\n");
abort();
}
assert(db_.db != nullptr);
ReadOptions read_options = read_options_;
std::unique_ptr<char[]> ts_guard;
Slice ts;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
read_options.timestamp = &ts;
}
Iterator* iter = db_.db->NewIterator(read_options);
fprintf(stderr, "num reads to do %" PRIu64 "\n", reads_);
Duration duration(FLAGS_duration, reads_);
uint64_t num_seek_to_first = 0;
uint64_t num_next = 0;
while (!duration.Done(1)) {
if (!iter->Valid()) {
iter->SeekToFirst();
num_seek_to_first++;
} else if (!iter->status().ok()) {
fprintf(stderr, "Iterator error: %s\n",
iter->status().ToString().c_str());
abort();
} else {
iter->Next();
num_next++;
}
thread->stats.FinishedOps(&db_, db_.db, 1, kSeek);
}
(void)num_seek_to_first;
(void)num_next;
delete iter;
}
// Given a key K and value V, this puts (K+"0", V), (K+"1", V), (K+"2", V)
// in DB atomically i.e in a single batch. Also refer GetMany.
Status PutMany(DB* db, const WriteOptions& writeoptions, const Slice& key,
const Slice& value) {
std::string suffixes[3] = {"2", "1", "0"};
std::string keys[3];
WriteBatch batch(/*reserved_bytes=*/0, /*max_bytes=*/0,
FLAGS_write_batch_protection_bytes_per_key,
user_timestamp_size_);
Status s;
for (int i = 0; i < 3; i++) {
keys[i] = key.ToString() + suffixes[i];
batch.Put(keys[i], value);
}
std::unique_ptr<char[]> ts_guard;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
Slice ts = mock_app_clock_->Allocate(ts_guard.get());
s = batch.UpdateTimestamps(
ts, [this](uint32_t) { return user_timestamp_size_; });
if (!s.ok()) {
fprintf(stderr, "assign timestamp to batch: %s\n",
s.ToString().c_str());
ErrorExit();
}
}
s = db->Write(writeoptions, &batch);
return s;
}
// Given a key K, this deletes (K+"0", V), (K+"1", V), (K+"2", V)
// in DB atomically i.e in a single batch. Also refer GetMany.
Status DeleteMany(DB* db, const WriteOptions& writeoptions,
const Slice& key) {
std::string suffixes[3] = {"1", "2", "0"};
std::string keys[3];
WriteBatch batch(0, 0, FLAGS_write_batch_protection_bytes_per_key,
user_timestamp_size_);
Status s;
for (int i = 0; i < 3; i++) {
keys[i] = key.ToString() + suffixes[i];
batch.Delete(keys[i]);
}
std::unique_ptr<char[]> ts_guard;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
Slice ts = mock_app_clock_->Allocate(ts_guard.get());
s = batch.UpdateTimestamps(
ts, [this](uint32_t) { return user_timestamp_size_; });
if (!s.ok()) {
fprintf(stderr, "assign timestamp to batch: %s\n",
s.ToString().c_str());
ErrorExit();
}
}
s = db->Write(writeoptions, &batch);
return s;
}
// Given a key K and value V, this gets values for K+"0", K+"1" and K+"2"
// in the same snapshot, and verifies that all the values are identical.
// ASSUMES that PutMany was used to put (K, V) into the DB.
Status GetMany(DB* db, const Slice& key, std::string* value) {
std::string suffixes[3] = {"0", "1", "2"};
std::string keys[3];
Slice key_slices[3];
std::string values[3];
ReadOptions readoptionscopy = read_options_;
std::unique_ptr<char[]> ts_guard;
Slice ts;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
ts = mock_app_clock_->Allocate(ts_guard.get());
readoptionscopy.timestamp = &ts;
}
readoptionscopy.snapshot = db->GetSnapshot();
Status s;
for (int i = 0; i < 3; i++) {
keys[i] = key.ToString() + suffixes[i];
key_slices[i] = keys[i];
s = db->Get(readoptionscopy, key_slices[i], value);
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
values[i] = "";
// we continue after error rather than exiting so that we can
// find more errors if any
} else if (s.IsNotFound()) {
values[i] = "";
} else {
values[i] = *value;
}
}
db->ReleaseSnapshot(readoptionscopy.snapshot);
if ((values[0] != values[1]) || (values[1] != values[2])) {
fprintf(stderr, "inconsistent values for key %s: %s, %s, %s\n",
key.ToString().c_str(), values[0].c_str(), values[1].c_str(),
values[2].c_str());
// we continue after error rather than exiting so that we can
// find more errors if any
}
return s;
}
// Differs from readrandomwriterandom in the following ways:
// (a) Uses GetMany/PutMany to read/write key values. Refer to those funcs.
// (b) Does deletes as well (per FLAGS_deletepercent)
// (c) In order to achieve high % of 'found' during lookups, and to do
// multiple writes (including puts and deletes) it uses upto
// FLAGS_numdistinct distinct keys instead of FLAGS_num distinct keys.
// (d) Does not have a MultiGet option.
void RandomWithVerify(ThreadState* thread) {
RandomGenerator gen;
std::string value;
int64_t found = 0;
int get_weight = 0;
int put_weight = 0;
int delete_weight = 0;
int64_t gets_done = 0;
int64_t puts_done = 0;
int64_t deletes_done = 0;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
// the number of iterations is the larger of read_ or write_
for (int64_t i = 0; i < readwrites_; i++) {
DB* db = SelectDB(thread);
if (get_weight == 0 && put_weight == 0 && delete_weight == 0) {
// one batch completed, reinitialize for next batch
get_weight = FLAGS_readwritepercent;
delete_weight = FLAGS_deletepercent;
put_weight = 100 - get_weight - delete_weight;
}
GenerateKeyFromInt(thread->rand.Next() % FLAGS_numdistinct,
FLAGS_numdistinct, &key);
if (get_weight > 0) {
// do all the gets first
Status s = GetMany(db, key, &value);
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "getmany error: %s\n", s.ToString().c_str());
// we continue after error rather than exiting so that we can
// find more errors if any
} else if (!s.IsNotFound()) {
found++;
}
get_weight--;
gets_done++;
thread->stats.FinishedOps(&db_, db_.db, 1, kRead);
} else if (put_weight > 0) {
// then do all the corresponding number of puts
// for all the gets we have done earlier
Status s = PutMany(db, write_options_, key, gen.Generate());
if (!s.ok()) {
fprintf(stderr, "putmany error: %s\n", s.ToString().c_str());
exit(1);
}
put_weight--;
puts_done++;
thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
} else if (delete_weight > 0) {
Status s = DeleteMany(db, write_options_, key);
if (!s.ok()) {
fprintf(stderr, "deletemany error: %s\n", s.ToString().c_str());
exit(1);
}
delete_weight--;
deletes_done++;
thread->stats.FinishedOps(&db_, db_.db, 1, kDelete);
}
}
char msg[128];
snprintf(msg, sizeof(msg),
"( get:%" PRIu64 " put:%" PRIu64 " del:%" PRIu64 " total:%" PRIu64
" found:%" PRIu64 ")",
gets_done, puts_done, deletes_done, readwrites_, found);
thread->stats.AddMessage(msg);
}
// This is different from ReadWhileWriting because it does not use
// an extra thread.
void ReadRandomWriteRandom(ThreadState* thread) {
ReadOptions options = read_options_;
RandomGenerator gen;
std::string value;
int64_t found = 0;
int get_weight = 0;
int put_weight = 0;
int64_t reads_done = 0;
int64_t writes_done = 0;
Duration duration(FLAGS_duration, readwrites_);
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
std::unique_ptr<char[]> ts_guard;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
}
// the number of iterations is the larger of read_ or write_
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
if (get_weight == 0 && put_weight == 0) {
// one batch completed, reinitialize for next batch
get_weight = FLAGS_readwritepercent;
put_weight = 100 - get_weight;
}
if (get_weight > 0) {
// do all the gets first
Slice ts;
if (user_timestamp_size_ > 0) {
ts = mock_app_clock_->GetTimestampForRead(thread->rand,
ts_guard.get());
options.timestamp = &ts;
}
Status s = db->Get(options, key, &value);
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
// we continue after error rather than exiting so that we can
// find more errors if any
} else if (!s.IsNotFound()) {
found++;
}
get_weight--;
reads_done++;
thread->stats.FinishedOps(nullptr, db, 1, kRead);
} else if (put_weight > 0) {
// then do all the corresponding number of puts
// for all the gets we have done earlier
Status s;
if (user_timestamp_size_ > 0) {
Slice ts = mock_app_clock_->Allocate(ts_guard.get());
s = db->Put(write_options_, key, ts, gen.Generate());
} else {
s = db->Put(write_options_, key, gen.Generate());
}
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
ErrorExit();
}
put_weight--;
writes_done++;
thread->stats.FinishedOps(nullptr, db, 1, kWrite);
}
}
char msg[100];
snprintf(msg, sizeof(msg),
"( reads:%" PRIu64 " writes:%" PRIu64 " total:%" PRIu64
" found:%" PRIu64 ")",
reads_done, writes_done, readwrites_, found);
thread->stats.AddMessage(msg);
}
//
// Read-modify-write for random keys
void UpdateRandom(ThreadState* thread) {
ReadOptions options = read_options_;
RandomGenerator gen;
std::string value;
int64_t found = 0;
int64_t bytes = 0;
Duration duration(FLAGS_duration, readwrites_);
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
std::unique_ptr<char[]> ts_guard;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
}
// the number of iterations is the larger of read_ or write_
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
Slice ts;
if (user_timestamp_size_ > 0) {
// Read with newest timestamp because we are doing rmw.
ts = mock_app_clock_->Allocate(ts_guard.get());
options.timestamp = &ts;
}
auto status = db->Get(options, key, &value);
if (status.ok()) {
++found;
bytes += key.size() + value.size() + user_timestamp_size_;
} else if (!status.IsNotFound()) {
fprintf(stderr, "Get returned an error: %s\n",
status.ToString().c_str());
abort();
}
if (thread->shared->write_rate_limiter) {
thread->shared->write_rate_limiter->Request(
key.size() + value.size(), Env::IO_HIGH, nullptr /*stats*/,
RateLimiter::OpType::kWrite);
}
Slice val = gen.Generate();
Status s;
if (user_timestamp_size_ > 0) {
ts = mock_app_clock_->Allocate(ts_guard.get());
s = db->Put(write_options_, key, ts, val);
} else {
s = db->Put(write_options_, key, val);
}
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
bytes += key.size() + val.size() + user_timestamp_size_;
thread->stats.FinishedOps(nullptr, db, 1, kUpdate);
}
char msg[100];
snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")",
readwrites_, found);
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(msg);
}
// Read-XOR-write for random keys. Xors the existing value with a randomly
// generated value, and stores the result. Assuming A in the array of bytes
// representing the existing value, we generate an array B of the same size,
// then compute C = A^B as C[i]=A[i]^B[i], and store C
void XORUpdateRandom(ThreadState* thread) {
ReadOptions options = read_options_;
RandomGenerator gen;
std::string existing_value;
int64_t found = 0;
Duration duration(FLAGS_duration, readwrites_);
BytesXOROperator xor_operator;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
std::unique_ptr<char[]> ts_guard;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
}
// the number of iterations is the larger of read_ or write_
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
Slice ts;
if (user_timestamp_size_ > 0) {
ts = mock_app_clock_->Allocate(ts_guard.get());
options.timestamp = &ts;
}
auto status = db->Get(options, key, &existing_value);
if (status.ok()) {
++found;
} else if (!status.IsNotFound()) {
fprintf(stderr, "Get returned an error: %s\n",
status.ToString().c_str());
exit(1);
}
Slice value =
gen.Generate(static_cast<unsigned int>(existing_value.size()));
std::string new_value;
if (status.ok()) {
Slice existing_value_slice = Slice(existing_value);
xor_operator.XOR(&existing_value_slice, value, &new_value);
} else {
xor_operator.XOR(nullptr, value, &new_value);
}
Status s;
if (user_timestamp_size_ > 0) {
ts = mock_app_clock_->Allocate(ts_guard.get());
s = db->Put(write_options_, key, ts, Slice(new_value));
} else {
s = db->Put(write_options_, key, Slice(new_value));
}
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
ErrorExit();
}
thread->stats.FinishedOps(nullptr, db, 1);
}
char msg[100];
snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")",
readwrites_, found);
thread->stats.AddMessage(msg);
}
// Read-modify-write for random keys.
// Each operation causes the key grow by value_size (simulating an append).
// Generally used for benchmarking against merges of similar type
void AppendRandom(ThreadState* thread) {
ReadOptions options = read_options_;
RandomGenerator gen;
std::string value;
int64_t found = 0;
int64_t bytes = 0;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
std::unique_ptr<char[]> ts_guard;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
}
// The number of iterations is the larger of read_ or write_
Duration duration(FLAGS_duration, readwrites_);
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
Slice ts;
if (user_timestamp_size_ > 0) {
ts = mock_app_clock_->Allocate(ts_guard.get());
options.timestamp = &ts;
}
auto status = db->Get(options, key, &value);
if (status.ok()) {
++found;
bytes += key.size() + value.size() + user_timestamp_size_;
} else if (!status.IsNotFound()) {
fprintf(stderr, "Get returned an error: %s\n",
status.ToString().c_str());
abort();
} else {
// If not existing, then just assume an empty string of data
value.clear();
}
// Update the value (by appending data)
Slice operand = gen.Generate();
if (value.size() > 0) {
// Use a delimiter to match the semantics for StringAppendOperator
value.append(1, ',');
}
value.append(operand.data(), operand.size());
Status s;
if (user_timestamp_size_ > 0) {
ts = mock_app_clock_->Allocate(ts_guard.get());
s = db->Put(write_options_, key, ts, value);
} else {
// Write back to the database
s = db->Put(write_options_, key, value);
}
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
ErrorExit();
}
bytes += key.size() + value.size() + user_timestamp_size_;
thread->stats.FinishedOps(nullptr, db, 1, kUpdate);
}
char msg[100];
snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")",
readwrites_, found);
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(msg);
}
// Read-modify-write for random keys (using MergeOperator)
// The merge operator to use should be defined by FLAGS_merge_operator
// Adjust FLAGS_value_size so that the keys are reasonable for this operator
// Assumes that the merge operator is non-null (i.e.: is well-defined)
//
// For example, use FLAGS_merge_operator="uint64add" and FLAGS_value_size=8
// to simulate random additions over 64-bit integers using merge.
//
// The number of merges on the same key can be controlled by adjusting
// FLAGS_merge_keys.
void MergeRandom(ThreadState* thread) {
RandomGenerator gen;
int64_t bytes = 0;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
// The number of iterations is the larger of read_ or write_
Duration duration(FLAGS_duration, readwrites_);
while (!duration.Done(1)) {
DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
int64_t key_rand = thread->rand.Next() % merge_keys_;
GenerateKeyFromInt(key_rand, merge_keys_, &key);
Status s;
Slice val = gen.Generate();
if (FLAGS_num_column_families > 1) {
s = db_with_cfh->db->Merge(write_options_,
db_with_cfh->GetCfh(key_rand), key, val);
} else {
s = db_with_cfh->db->Merge(
write_options_, db_with_cfh->db->DefaultColumnFamily(), key, val);
}
if (!s.ok()) {
fprintf(stderr, "merge error: %s\n", s.ToString().c_str());
exit(1);
}
bytes += key.size() + val.size();
thread->stats.FinishedOps(nullptr, db_with_cfh->db, 1, kMerge);
}
// Print some statistics
char msg[100];
snprintf(msg, sizeof(msg), "( updates:%" PRIu64 ")", readwrites_);
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(msg);
}
// Read and merge random keys. The amount of reads and merges are controlled
// by adjusting FLAGS_num and FLAGS_mergereadpercent. The number of distinct
// keys (and thus also the number of reads and merges on the same key) can be
// adjusted with FLAGS_merge_keys.
//
// As with MergeRandom, the merge operator to use should be defined by
// FLAGS_merge_operator.
void ReadRandomMergeRandom(ThreadState* thread) {
RandomGenerator gen;
std::string value;
int64_t num_hits = 0;
int64_t num_gets = 0;
int64_t num_merges = 0;
size_t max_length = 0;
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
// the number of iterations is the larger of read_ or write_
Duration duration(FLAGS_duration, readwrites_);
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
GenerateKeyFromInt(thread->rand.Next() % merge_keys_, merge_keys_, &key);
bool do_merge = int(thread->rand.Next() % 100) < FLAGS_mergereadpercent;
if (do_merge) {
Status s = db->Merge(write_options_, key, gen.Generate());
if (!s.ok()) {
fprintf(stderr, "merge error: %s\n", s.ToString().c_str());
exit(1);
}
num_merges++;
thread->stats.FinishedOps(nullptr, db, 1, kMerge);
} else {
Status s = db->Get(read_options_, key, &value);
if (value.length() > max_length) {
max_length = value.length();
}
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
// we continue after error rather than exiting so that we can
// find more errors if any
} else if (!s.IsNotFound()) {
num_hits++;
}
num_gets++;
thread->stats.FinishedOps(nullptr, db, 1, kRead);
}
}
char msg[100];
snprintf(msg, sizeof(msg),
"(reads:%" PRIu64 " merges:%" PRIu64 " total:%" PRIu64
" hits:%" PRIu64 " maxlength:%" ROCKSDB_PRIszt ")",
num_gets, num_merges, readwrites_, num_hits, max_length);
thread->stats.AddMessage(msg);
}
void WriteSeqSeekSeq(ThreadState* thread) {
writes_ = FLAGS_num;
DoWrite(thread, SEQUENTIAL);
// exclude writes from the ops/sec calculation
thread->stats.Start(thread->tid);
DB* db = SelectDB(thread);
ReadOptions read_opts = read_options_;
std::unique_ptr<char[]> ts_guard;
Slice ts;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
read_opts.timestamp = &ts;
}
std::unique_ptr<Iterator> iter(db->NewIterator(read_opts));
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
for (int64_t i = 0; i < FLAGS_num; ++i) {
GenerateKeyFromInt(i, FLAGS_num, &key);
iter->Seek(key);
assert(iter->Valid() && iter->key() == key);
thread->stats.FinishedOps(nullptr, db, 1, kSeek);
for (int j = 0; j < FLAGS_seek_nexts && i + 1 < FLAGS_num; ++j) {
if (!FLAGS_reverse_iterator) {
iter->Next();
} else {
iter->Prev();
}
GenerateKeyFromInt(++i, FLAGS_num, &key);
assert(iter->Valid() && iter->key() == key);
thread->stats.FinishedOps(nullptr, db, 1, kSeek);
}
iter->Seek(key);
assert(iter->Valid() && iter->key() == key);
thread->stats.FinishedOps(nullptr, db, 1, kSeek);
}
}
bool binary_search(std::vector<int>& data, int start, int end, int key) {
if (data.empty()) {
return false;
}
if (start > end) {
return false;
}
int mid = start + (end - start) / 2;
if (mid > static_cast<int>(data.size()) - 1) {
return false;
}
if (data[mid] == key) {
return true;
} else if (data[mid] > key) {
return binary_search(data, start, mid - 1, key);
} else {
return binary_search(data, mid + 1, end, key);
}
}
// Does a bunch of merge operations for a key(key1) where the merge operand
// is a sorted list. Next performance comparison is done between doing a Get
// for key1 followed by searching for another key(key2) in the large sorted
// list vs calling GetMergeOperands for key1 and then searching for the key2
// in all the sorted sub-lists. Later case is expected to be a lot faster.
void GetMergeOperands(ThreadState* thread) {
DB* db = SelectDB(thread);
const int kTotalValues = 100000;
const int kListSize = 100;
std::string key = "my_key";
std::string value;
for (int i = 1; i < kTotalValues; i++) {
if (i % kListSize == 0) {
// Remove trailing ','
value.pop_back();
db->Merge(WriteOptions(), key, value);
value.clear();
} else {
value.append(std::to_string(i)).append(",");
}
}
SortList s;
std::vector<int> data;
// This value can be experimented with and it will demonstrate the
// perf difference between doing a Get and searching for lookup_key in the
// resultant large sorted list vs doing GetMergeOperands and searching
// for lookup_key within this resultant sorted sub-lists.
int lookup_key = 1;
// Get API call
std::cout << "--- Get API call --- \n";
PinnableSlice p_slice;
uint64_t st = FLAGS_env->NowNanos();
db->Get(ReadOptions(), db->DefaultColumnFamily(), key, &p_slice);
s.MakeVector(data, p_slice);
bool found =
binary_search(data, 0, static_cast<int>(data.size() - 1), lookup_key);
std::cout << "Found key? " << std::to_string(found) << "\n";
uint64_t sp = FLAGS_env->NowNanos();
std::cout << "Get: " << (sp - st) / 1000000000.0 << " seconds\n";
std::string* dat_ = p_slice.GetSelf();
std::cout << "Sample data from Get API call: " << dat_->substr(0, 10)
<< "\n";
data.clear();
// GetMergeOperands API call
std::cout << "--- GetMergeOperands API --- \n";
std::vector<PinnableSlice> a_slice((kTotalValues / kListSize) + 1);
st = FLAGS_env->NowNanos();
int number_of_operands = 0;
GetMergeOperandsOptions get_merge_operands_options;
get_merge_operands_options.expected_max_number_of_operands =
(kTotalValues / 100) + 1;
db->GetMergeOperands(ReadOptions(), db->DefaultColumnFamily(), key,
a_slice.data(), &get_merge_operands_options,
&number_of_operands);
for (PinnableSlice& psl : a_slice) {
s.MakeVector(data, psl);
found =
binary_search(data, 0, static_cast<int>(data.size() - 1), lookup_key);
data.clear();
if (found) {
break;
}
}
std::cout << "Found key? " << std::to_string(found) << "\n";
sp = FLAGS_env->NowNanos();
std::cout << "Get Merge operands: " << (sp - st) / 1000000000.0
<< " seconds \n";
int to_print = 0;
std::cout << "Sample data from GetMergeOperands API call: ";
for (PinnableSlice& psl : a_slice) {
std::cout << "List: " << to_print << " : " << *psl.GetSelf() << "\n";
if (to_print++ > 2) {
break;
}
}
}
void VerifyChecksum(ThreadState* thread) {
DB* db = SelectDB(thread);
ReadOptions ro;
ro.adaptive_readahead = FLAGS_adaptive_readahead;
ro.async_io = FLAGS_async_io;
ro.rate_limiter_priority =
FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
ro.readahead_size = FLAGS_readahead_size;
ro.auto_readahead_size = FLAGS_auto_readahead_size;
Status s = db->VerifyChecksum(ro);
if (!s.ok()) {
fprintf(stderr, "VerifyChecksum() failed: %s\n", s.ToString().c_str());
exit(1);
}
}
void VerifyFileChecksums(ThreadState* thread) {
DB* db = SelectDB(thread);
ReadOptions ro;
ro.adaptive_readahead = FLAGS_adaptive_readahead;
ro.async_io = FLAGS_async_io;
ro.rate_limiter_priority =
FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
ro.readahead_size = FLAGS_readahead_size;
ro.auto_readahead_size = FLAGS_auto_readahead_size;
Status s = db->VerifyFileChecksums(ro);
if (!s.ok()) {
fprintf(stderr, "VerifyFileChecksums() failed: %s\n",
s.ToString().c_str());
exit(1);
}
}
// This benchmark stress tests Transactions. For a given --duration (or
// total number of --writes, a Transaction will perform a read-modify-write
// to increment the value of a key in each of N(--transaction-sets) sets of
// keys (where each set has --num keys). If --threads is set, this will be
// done in parallel.
//
// To test transactions, use --transaction_db=true. Not setting this
// parameter
// will run the same benchmark without transactions.
//
// RandomTransactionVerify() will then validate the correctness of the results
// by checking if the sum of all keys in each set is the same.
void RandomTransaction(ThreadState* thread) {
Duration duration(FLAGS_duration, readwrites_);
uint16_t num_prefix_ranges = static_cast<uint16_t>(FLAGS_transaction_sets);
uint64_t transactions_done = 0;
if (num_prefix_ranges == 0 || num_prefix_ranges > 9999) {
fprintf(stderr, "invalid value for transaction_sets\n");
abort();
}
TransactionOptions txn_options;
txn_options.lock_timeout = FLAGS_transaction_lock_timeout;
txn_options.set_snapshot = FLAGS_transaction_set_snapshot;
RandomTransactionInserter inserter(&thread->rand, write_options_,
read_options_, FLAGS_num,
num_prefix_ranges);
if (FLAGS_num_multi_db > 1) {
fprintf(stderr,
"Cannot run RandomTransaction benchmark with "
"FLAGS_multi_db > 1.");
abort();
}
while (!duration.Done(1)) {
bool success;
// RandomTransactionInserter will attempt to insert a key for each
// # of FLAGS_transaction_sets
if (FLAGS_optimistic_transaction_db) {
success = inserter.OptimisticTransactionDBInsert(db_.opt_txn_db);
} else if (FLAGS_transaction_db) {
TransactionDB* txn_db = static_cast<TransactionDB*>(db_.db);
success = inserter.TransactionDBInsert(txn_db, txn_options);
} else {
success = inserter.DBInsert(db_.db);
}
if (!success) {
fprintf(stderr, "Unexpected error: %s\n",
inserter.GetLastStatus().ToString().c_str());
abort();
}
thread->stats.FinishedOps(nullptr, db_.db, 1, kOthers);
transactions_done++;
}
char msg[100];
if (FLAGS_optimistic_transaction_db || FLAGS_transaction_db) {
snprintf(msg, sizeof(msg),
"( transactions:%" PRIu64 " aborts:%" PRIu64 ")",
transactions_done, inserter.GetFailureCount());
} else {
snprintf(msg, sizeof(msg), "( batches:%" PRIu64 " )", transactions_done);
}
thread->stats.AddMessage(msg);
thread->stats.AddBytes(static_cast<int64_t>(inserter.GetBytesInserted()));
}
// Verifies consistency of data after RandomTransaction() has been run.
// Since each iteration of RandomTransaction() incremented a key in each set
// by the same value, the sum of the keys in each set should be the same.
void RandomTransactionVerify() {
if (!FLAGS_transaction_db && !FLAGS_optimistic_transaction_db) {
// transactions not used, nothing to verify.
return;
}
Status s = RandomTransactionInserter::Verify(
db_.db, static_cast<uint16_t>(FLAGS_transaction_sets));
if (s.ok()) {
fprintf(stdout, "RandomTransactionVerify Success.\n");
} else {
fprintf(stdout, "RandomTransactionVerify FAILED!!\n");
}
}
// Writes and deletes random keys without overwriting keys.
//
// This benchmark is intended to partially replicate the behavior of MyRocks
// secondary indices: All data is stored in keys and updates happen by
// deleting the old version of the key and inserting the new version.
void RandomReplaceKeys(ThreadState* thread) {
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
std::unique_ptr<char[]> ts_guard;
if (user_timestamp_size_ > 0) {
ts_guard.reset(new char[user_timestamp_size_]);
}
std::vector<uint32_t> counters(FLAGS_numdistinct, 0);
size_t max_counter = 50;
RandomGenerator gen;
Status s;
DB* db = SelectDB(thread);
for (int64_t i = 0; i < FLAGS_numdistinct; i++) {
GenerateKeyFromInt(i * max_counter, FLAGS_num, &key);
if (user_timestamp_size_ > 0) {
Slice ts = mock_app_clock_->Allocate(ts_guard.get());
s = db->Put(write_options_, key, ts, gen.Generate());
} else {
s = db->Put(write_options_, key, gen.Generate());
}
if (!s.ok()) {
fprintf(stderr, "Operation failed: %s\n", s.ToString().c_str());
exit(1);
}
}
db->GetSnapshot();
std::default_random_engine generator;
std::normal_distribution<double> distribution(FLAGS_numdistinct / 2.0,
FLAGS_stddev);
Duration duration(FLAGS_duration, FLAGS_num);
while (!duration.Done(1)) {
int64_t rnd_id = static_cast<int64_t>(distribution(generator));
int64_t key_id = std::max(std::min(FLAGS_numdistinct - 1, rnd_id),
static_cast<int64_t>(0));
GenerateKeyFromInt(key_id * max_counter + counters[key_id], FLAGS_num,
&key);
if (user_timestamp_size_ > 0) {
Slice ts = mock_app_clock_->Allocate(ts_guard.get());
s = FLAGS_use_single_deletes ? db->SingleDelete(write_options_, key, ts)
: db->Delete(write_options_, key, ts);
} else {
s = FLAGS_use_single_deletes ? db->SingleDelete(write_options_, key)
: db->Delete(write_options_, key);
}
if (s.ok()) {
counters[key_id] = (counters[key_id] + 1) % max_counter;
GenerateKeyFromInt(key_id * max_counter + counters[key_id], FLAGS_num,
&key);
if (user_timestamp_size_ > 0) {
Slice ts = mock_app_clock_->Allocate(ts_guard.get());
s = db->Put(write_options_, key, ts, Slice());
} else {
s = db->Put(write_options_, key, Slice());
}
}
if (!s.ok()) {
fprintf(stderr, "Operation failed: %s\n", s.ToString().c_str());
exit(1);
}
thread->stats.FinishedOps(nullptr, db, 1, kOthers);
}
char msg[200];
snprintf(msg, sizeof(msg),
"use single deletes: %d, "
"standard deviation: %lf\n",
FLAGS_use_single_deletes, FLAGS_stddev);
thread->stats.AddMessage(msg);
}
void TimeSeriesReadOrDelete(ThreadState* thread, bool do_deletion) {
int64_t read = 0;
int64_t found = 0;
int64_t bytes = 0;
Iterator* iter = nullptr;
// Only work on single database
assert(db_.db != nullptr);
iter = db_.db->NewIterator(read_options_);
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
char value_buffer[256];
while (true) {
{
MutexLock l(&thread->shared->mu);
if (thread->shared->num_done >= 1) {
// Write thread have finished
break;
}
}
if (!FLAGS_use_tailing_iterator) {
delete iter;
iter = db_.db->NewIterator(read_options_);
}
// Pick a Iterator to use
int64_t key_id = thread->rand.Next() % FLAGS_key_id_range;
GenerateKeyFromInt(key_id, FLAGS_num, &key);
// Reset last 8 bytes to 0
char* start = const_cast<char*>(key.data());
start += key.size() - 8;
memset(start, 0, 8);
++read;
bool key_found = false;
// Seek the prefix
for (iter->Seek(key); iter->Valid() && iter->key().starts_with(key);
iter->Next()) {
key_found = true;
// Copy out iterator's value to make sure we read them.
if (do_deletion) {
bytes += iter->key().size();
if (KeyExpired(timestamp_emulator_.get(), iter->key())) {
thread->stats.FinishedOps(&db_, db_.db, 1, kDelete);
db_.db->Delete(write_options_, iter->key());
} else {
break;
}
} else {
bytes += iter->key().size() + iter->value().size();
thread->stats.FinishedOps(&db_, db_.db, 1, kRead);
Slice value = iter->value();
memcpy(value_buffer, value.data(),
std::min(value.size(), sizeof(value_buffer)));
assert(iter->status().ok());
}
}
found += key_found;
if (thread->shared->read_rate_limiter.get() != nullptr) {
thread->shared->read_rate_limiter->Request(
1, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
}
}
delete iter;
char msg[100];
snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)", found,
read);
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(msg);
}
void TimeSeriesWrite(ThreadState* thread) {
// Special thread that keeps writing until other threads are done.
RandomGenerator gen;
int64_t bytes = 0;
// Don't merge stats from this thread with the readers.
thread->stats.SetExcludeFromMerge();
std::unique_ptr<RateLimiter> write_rate_limiter;
if (FLAGS_benchmark_write_rate_limit > 0) {
write_rate_limiter.reset(
NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit));
}
std::unique_ptr<const char[]> key_guard;
Slice key = AllocateKey(&key_guard);
Duration duration(FLAGS_duration, writes_);
while (!duration.Done(1)) {
DB* db = SelectDB(thread);
uint64_t key_id = thread->rand.Next() % FLAGS_key_id_range;
// Write key id
GenerateKeyFromInt(key_id, FLAGS_num, &key);
// Write timestamp
char* start = const_cast<char*>(key.data());
char* pos = start + 8;
int bytes_to_fill =
std::min(key_size_ - static_cast<int>(pos - start), 8);
uint64_t timestamp_value = timestamp_emulator_->Get();
if (port::kLittleEndian) {
for (int i = 0; i < bytes_to_fill; ++i) {
pos[i] = (timestamp_value >> ((bytes_to_fill - i - 1) << 3)) & 0xFF;
}
} else {
memcpy(pos, static_cast<void*>(&timestamp_value), bytes_to_fill);
}
timestamp_emulator_->Inc();
Status s;
Slice val = gen.Generate();
s = db->Put(write_options_, key, val);
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
ErrorExit();
}
bytes = key.size() + val.size();
thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
thread->stats.AddBytes(bytes);
if (FLAGS_benchmark_write_rate_limit > 0) {
write_rate_limiter->Request(key.size() + val.size(), Env::IO_HIGH,
nullptr /* stats */,
RateLimiter::OpType::kWrite);
}
}
}
void TimeSeries(ThreadState* thread) {
if (thread->tid > 0) {
bool do_deletion = FLAGS_expire_style == "delete" &&
thread->tid <= FLAGS_num_deletion_threads;
TimeSeriesReadOrDelete(thread, do_deletion);
} else {
TimeSeriesWrite(thread);
thread->stats.Stop();
thread->stats.Report("timeseries write");
}
}
void Compact(ThreadState* thread) {
DB* db = SelectDB(thread);
CompactRangeOptions cro;
cro.bottommost_level_compaction =
BottommostLevelCompaction::kForceOptimized;
cro.max_subcompactions = static_cast<uint32_t>(FLAGS_subcompactions);
db->CompactRange(cro, nullptr, nullptr);
}
void CompactAll() {
CompactRangeOptions cro;
cro.max_subcompactions = static_cast<uint32_t>(FLAGS_subcompactions);
if (db_.db != nullptr) {
db_.db->CompactRange(cro, nullptr, nullptr);
}
for (const auto& db_with_cfh : multi_dbs_) {
db_with_cfh.db->CompactRange(cro, nullptr, nullptr);
}
}
void WaitForCompactionHelper(DBWithColumnFamilies& db) {
fprintf(stdout, "waitforcompaction(%s): started\n",
db.db->GetName().c_str());
Status s = db.db->WaitForCompact(WaitForCompactOptions());
fprintf(stdout, "waitforcompaction(%s): finished with status (%s)\n",
db.db->GetName().c_str(), s.ToString().c_str());
}
void WaitForCompaction() {
// Give background threads a chance to wake
FLAGS_env->SleepForMicroseconds(5 * 1000000);
if (db_.db != nullptr) {
WaitForCompactionHelper(db_);
} else {
for (auto& db_with_cfh : multi_dbs_) {
WaitForCompactionHelper(db_with_cfh);
}
}
}
bool CompactLevelHelper(DBWithColumnFamilies& db_with_cfh, int from_level) {
std::vector<LiveFileMetaData> files;
db_with_cfh.db->GetLiveFilesMetaData(&files);
assert(from_level == 0 || from_level == 1);
int real_from_level = from_level;
if (real_from_level > 0) {
// With dynamic leveled compaction the first level with data beyond L0
// might not be L1.
real_from_level = std::numeric_limits<int>::max();
for (auto& f : files) {
if (f.level > 0 && f.level < real_from_level) {
real_from_level = f.level;
}
}
if (real_from_level == std::numeric_limits<int>::max()) {
fprintf(stdout, "compact%d found 0 files to compact\n", from_level);
return true;
}
}
// The goal is to compact from from_level to the level that follows it,
// and with dynamic leveled compaction the next level might not be
// real_from_level+1
int next_level = std::numeric_limits<int>::max();
std::vector<std::string> files_to_compact;
for (auto& f : files) {
if (f.level == real_from_level) {
files_to_compact.push_back(f.name);
} else if (f.level > real_from_level && f.level < next_level) {
next_level = f.level;
}
}
if (files_to_compact.empty()) {
fprintf(stdout, "compact%d found 0 files to compact\n", from_level);
return true;
} else if (next_level == std::numeric_limits<int>::max()) {
// There is no data beyond real_from_level. So we are done.
fprintf(stdout, "compact%d found no data beyond L%d\n", from_level,
real_from_level);
return true;
}
fprintf(stdout, "compact%d found %d files to compact from L%d to L%d\n",
from_level, static_cast<int>(files_to_compact.size()),
real_from_level, next_level);
ROCKSDB_NAMESPACE::CompactionOptions options;
// Lets RocksDB use the configured compression for this level
options.compression = ROCKSDB_NAMESPACE::kDisableCompressionOption;
ROCKSDB_NAMESPACE::ColumnFamilyDescriptor cfDesc;
db_with_cfh.db->DefaultColumnFamily()->GetDescriptor(&cfDesc);
options.output_file_size_limit = cfDesc.options.target_file_size_base;
Status status =
db_with_cfh.db->CompactFiles(options, files_to_compact, next_level);
if (!status.ok()) {
// This can fail for valid reasons including the operation was aborted
// or a filename is invalid because background compaction removed it.
// Having read the current cases for which an error is raised I prefer
// not to figure out whether an exception should be thrown here.
fprintf(stderr, "compact%d CompactFiles failed: %s\n", from_level,
status.ToString().c_str());
return false;
}
return true;
}
void CompactLevel(int from_level) {
if (db_.db != nullptr) {
while (!CompactLevelHelper(db_, from_level)) {
WaitForCompaction();
}
}
for (auto& db_with_cfh : multi_dbs_) {
while (!CompactLevelHelper(db_with_cfh, from_level)) {
WaitForCompaction();
}
}
}
void Flush() {
FlushOptions flush_opt;
flush_opt.wait = true;
if (db_.db != nullptr) {
Status s;
if (FLAGS_num_column_families > 1) {
s = db_.db->Flush(flush_opt, db_.cfh);
} else {
s = db_.db->Flush(flush_opt, db_.db->DefaultColumnFamily());
}
if (!s.ok()) {
fprintf(stderr, "Flush failed: %s\n", s.ToString().c_str());
exit(1);
}
} else {
for (const auto& db_with_cfh : multi_dbs_) {
Status s;
if (FLAGS_num_column_families > 1) {
s = db_with_cfh.db->Flush(flush_opt, db_with_cfh.cfh);
} else {
s = db_with_cfh.db->Flush(flush_opt,
db_with_cfh.db->DefaultColumnFamily());
}
if (!s.ok()) {
fprintf(stderr, "Flush failed: %s\n", s.ToString().c_str());
exit(1);
}
}
}
fprintf(stdout, "flush memtable\n");
}
void ResetStats() {
if (db_.db != nullptr) {
db_.db->ResetStats();
}
for (const auto& db_with_cfh : multi_dbs_) {
db_with_cfh.db->ResetStats();
}
}
void PrintStatsHistory() {
if (db_.db != nullptr) {
PrintStatsHistoryImpl(db_.db, false);
}
for (const auto& db_with_cfh : multi_dbs_) {
PrintStatsHistoryImpl(db_with_cfh.db, true);
}
}
void PrintStatsHistoryImpl(DB* db, bool print_header) {
if (print_header) {
fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str());
}
std::unique_ptr<StatsHistoryIterator> shi;
Status s =
db->GetStatsHistory(0, std::numeric_limits<uint64_t>::max(), &shi);
if (!s.ok()) {
fprintf(stdout, "%s\n", s.ToString().c_str());
return;
}
assert(shi);
while (shi->Valid()) {
uint64_t stats_time = shi->GetStatsTime();
fprintf(stdout, "------ %s ------\n",
TimeToHumanString(static_cast<int>(stats_time)).c_str());
for (auto& entry : shi->GetStatsMap()) {
fprintf(stdout, " %" PRIu64 " %s %" PRIu64 "\n", stats_time,
entry.first.c_str(), entry.second);
}
shi->Next();
}
}
void CacheReportProblems() {
auto debug_logger = std::make_shared<StderrLogger>(DEBUG_LEVEL);
cache_->ReportProblems(debug_logger);
}
void PrintStats(const char* key) {
if (db_.db != nullptr) {
PrintStats(db_.db, key, false);
}
for (const auto& db_with_cfh : multi_dbs_) {
PrintStats(db_with_cfh.db, key, true);
}
}
void PrintStats(DB* db, const char* key, bool print_header = false) {
if (print_header) {
fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str());
}
std::string stats;
if (!db->GetProperty(key, &stats)) {
stats = "(failed)";
}
fprintf(stdout, "\n%s\n", stats.c_str());
}
void PrintStats(const std::vector<std::string>& keys) {
if (db_.db != nullptr) {
PrintStats(db_.db, keys);
}
for (const auto& db_with_cfh : multi_dbs_) {
PrintStats(db_with_cfh.db, keys, true);
}
}
void PrintStats(DB* db, const std::vector<std::string>& keys,
bool print_header = false) {
if (print_header) {
fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str());
}
for (const auto& key : keys) {
std::string stats;
if (!db->GetProperty(key, &stats)) {
stats = "(failed)";
}
fprintf(stdout, "%s: %s\n", key.c_str(), stats.c_str());
}
}
void Replay(ThreadState* thread) {
if (db_.db != nullptr) {
Replay(thread, &db_);
}
}
void Replay(ThreadState* /*thread*/, DBWithColumnFamilies* db_with_cfh) {
Status s;
std::unique_ptr<TraceReader> trace_reader;
s = NewFileTraceReader(FLAGS_env, EnvOptions(), FLAGS_trace_file,
&trace_reader);
if (!s.ok()) {
fprintf(
stderr,
"Encountered an error creating a TraceReader from the trace file. "
"Error: %s\n",
s.ToString().c_str());
exit(1);
}
std::unique_ptr<Replayer> replayer;
s = db_with_cfh->db->NewDefaultReplayer(db_with_cfh->cfh,
std::move(trace_reader), &replayer);
if (!s.ok()) {
fprintf(stderr,
"Encountered an error creating a default Replayer. "
"Error: %s\n",
s.ToString().c_str());
exit(1);
}
s = replayer->Prepare();
if (!s.ok()) {
fprintf(stderr, "Prepare for replay failed. Error: %s\n",
s.ToString().c_str());
}
s = replayer->Replay(
ReplayOptions(static_cast<uint32_t>(FLAGS_trace_replay_threads),
FLAGS_trace_replay_fast_forward),
nullptr);
replayer.reset();
if (s.ok()) {
fprintf(stdout, "Replay completed from trace_file: %s\n",
FLAGS_trace_file.c_str());
} else {
fprintf(stderr, "Replay failed. Error: %s\n", s.ToString().c_str());
}
}
void Backup(ThreadState* thread) {
DB* db = SelectDB(thread);
std::unique_ptr<BackupEngineOptions> engine_options(
new BackupEngineOptions(FLAGS_backup_dir));
Status s;
BackupEngine* backup_engine;
if (FLAGS_backup_rate_limit > 0) {
engine_options->backup_rate_limiter.reset(NewGenericRateLimiter(
FLAGS_backup_rate_limit, 100000 /* refill_period_us */,
10 /* fairness */, RateLimiter::Mode::kAllIo));
}
// Build new backup of the entire DB
engine_options->destroy_old_data = true;
s = BackupEngine::Open(FLAGS_env, *engine_options, &backup_engine);
assert(s.ok());
s = backup_engine->CreateNewBackup(db);
assert(s.ok());
std::vector<BackupInfo> backup_info;
backup_engine->GetBackupInfo(&backup_info);
// Verify that a new backup is created
assert(backup_info.size() == 1);
}
void Restore(ThreadState* /* thread */) {
std::unique_ptr<BackupEngineOptions> engine_options(
new BackupEngineOptions(FLAGS_backup_dir));
if (FLAGS_restore_rate_limit > 0) {
engine_options->restore_rate_limiter.reset(NewGenericRateLimiter(
FLAGS_restore_rate_limit, 100000 /* refill_period_us */,
10 /* fairness */, RateLimiter::Mode::kAllIo));
}
BackupEngineReadOnly* backup_engine;
Status s =
BackupEngineReadOnly::Open(FLAGS_env, *engine_options, &backup_engine);
assert(s.ok());
s = backup_engine->RestoreDBFromLatestBackup(FLAGS_restore_dir,
FLAGS_restore_dir);
assert(s.ok());
delete backup_engine;
}
};
int db_bench_tool(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
ConfigOptions config_options;
static bool initialized = false;
if (!initialized) {
SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) +
" [OPTIONS]...");
SetVersionString(GetRocksVersionAsString(true));
initialized = true;
}
ParseCommandLineFlags(&argc, &argv, true);
FLAGS_compaction_style_e =
(ROCKSDB_NAMESPACE::CompactionStyle)FLAGS_compaction_style;
if (FLAGS_statistics && !FLAGS_statistics_string.empty()) {
fprintf(stderr,
"Cannot provide both --statistics and --statistics_string.\n");
exit(1);
}
if (!FLAGS_statistics_string.empty()) {
Status s = Statistics::CreateFromString(config_options,
FLAGS_statistics_string, &dbstats);
if (dbstats == nullptr) {
fprintf(stderr,
"No Statistics registered matching string: %s status=%s\n",
FLAGS_statistics_string.c_str(), s.ToString().c_str());
exit(1);
}
}
if (FLAGS_statistics) {
dbstats = ROCKSDB_NAMESPACE::CreateDBStatistics();
}
if (dbstats) {
dbstats->set_stats_level(static_cast<StatsLevel>(FLAGS_stats_level));
}
FLAGS_compaction_pri_e =
(ROCKSDB_NAMESPACE::CompactionPri)FLAGS_compaction_pri;
std::vector<std::string> fanout = ROCKSDB_NAMESPACE::StringSplit(
FLAGS_max_bytes_for_level_multiplier_additional, ',');
for (size_t j = 0; j < fanout.size(); j++) {
FLAGS_max_bytes_for_level_multiplier_additional_v.push_back(
#ifndef CYGWIN
std::stoi(fanout[j]));
#else
stoi(fanout[j]));
#endif
}
FLAGS_compression_type_e =
StringToCompressionType(FLAGS_compression_type.c_str());
FLAGS_wal_compression_e =
StringToCompressionType(FLAGS_wal_compression.c_str());
FLAGS_compressed_secondary_cache_compression_type_e = StringToCompressionType(
FLAGS_compressed_secondary_cache_compression_type.c_str());
// Stacked BlobDB
FLAGS_blob_db_compression_type_e =
StringToCompressionType(FLAGS_blob_db_compression_type.c_str());
int env_opts = !FLAGS_env_uri.empty() + !FLAGS_fs_uri.empty();
if (env_opts > 1) {
fprintf(stderr, "Error: --env_uri and --fs_uri are mutually exclusive\n");
exit(1);
}
if (env_opts == 1) {
Status s = Env::CreateFromUri(config_options, FLAGS_env_uri, FLAGS_fs_uri,
&FLAGS_env, &env_guard);
if (!s.ok()) {
fprintf(stderr, "Failed creating env: %s\n", s.ToString().c_str());
exit(1);
}
} else if (FLAGS_simulate_hdd || FLAGS_simulate_hybrid_fs_file != "") {
//**TODO: Make the simulate fs something that can be loaded
// from the ObjectRegistry...
static std::shared_ptr<ROCKSDB_NAMESPACE::Env> composite_env =
NewCompositeEnv(std::make_shared<SimulatedHybridFileSystem>(
FileSystem::Default(), FLAGS_simulate_hybrid_fs_file,
/*throughput_multiplier=*/
int{FLAGS_simulate_hybrid_hdd_multipliers},
/*is_full_fs_warm=*/FLAGS_simulate_hdd));
FLAGS_env = composite_env.get();
}
// Let -readonly imply -use_existing_db
FLAGS_use_existing_db |= FLAGS_readonly;
if (FLAGS_build_info) {
std::string build_info;
std::cout << GetRocksBuildInfoAsString(build_info, true) << std::endl;
// Similar to --version, nothing else will be done when this flag is set
exit(0);
}
if (!FLAGS_seed) {
uint64_t now = FLAGS_env->GetSystemClock()->NowMicros();
seed_base = static_cast<int64_t>(now);
fprintf(stdout, "Set seed to %" PRIu64 " because --seed was 0\n",
*seed_base);
} else {
seed_base = FLAGS_seed;
}
if (FLAGS_use_existing_keys && !FLAGS_use_existing_db) {
fprintf(stderr,
"`-use_existing_db` must be true for `-use_existing_keys` to be "
"settable\n");
exit(1);
}
FLAGS_value_size_distribution_type_e =
StringToDistributionType(FLAGS_value_size_distribution_type.c_str());
// Note options sanitization may increase thread pool sizes according to
// max_background_flushes/max_background_compactions/max_background_jobs
FLAGS_env->SetBackgroundThreads(FLAGS_num_high_pri_threads,
ROCKSDB_NAMESPACE::Env::Priority::HIGH);
FLAGS_env->SetBackgroundThreads(FLAGS_num_bottom_pri_threads,
ROCKSDB_NAMESPACE::Env::Priority::BOTTOM);
FLAGS_env->SetBackgroundThreads(FLAGS_num_low_pri_threads,
ROCKSDB_NAMESPACE::Env::Priority::LOW);
// Choose a location for the test database if none given with --db=<path>
if (FLAGS_db.empty()) {
std::string default_db_path;
FLAGS_env->GetTestDirectory(&default_db_path);
default_db_path += "/dbbench";
FLAGS_db = default_db_path;
}
if (FLAGS_backup_dir.empty()) {
FLAGS_backup_dir = FLAGS_db + "/backup";
}
if (FLAGS_restore_dir.empty()) {
FLAGS_restore_dir = FLAGS_db + "/restore";
}
if (FLAGS_stats_interval_seconds > 0) {
// When both are set then FLAGS_stats_interval determines the frequency
// at which the timer is checked for FLAGS_stats_interval_seconds
FLAGS_stats_interval = 1000;
}
if (FLAGS_seek_missing_prefix && FLAGS_prefix_size <= 8) {
fprintf(stderr, "prefix_size > 8 required by --seek_missing_prefix\n");
exit(1);
}
ROCKSDB_NAMESPACE::Benchmark benchmark;
benchmark.Run();
if (FLAGS_print_malloc_stats) {
std::string stats_string;
ROCKSDB_NAMESPACE::DumpMallocStats(&stats_string);
fprintf(stdout, "Malloc stats:\n%s\n", stats_string.c_str());
}
return 0;
}
} // namespace ROCKSDB_NAMESPACE
#endif