// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/dbformat.h" #include #include #include "db/lookup_key.h" #include "monitoring/perf_context_imp.h" #include "port/port.h" #include "util/coding.h" #include "util/string_util.h" namespace ROCKSDB_NAMESPACE { // kValueTypeForSeek defines the ValueType that should be passed when // constructing a ParsedInternalKey object for seeking to a particular // sequence number (since we sort sequence numbers in decreasing order // and the value type is embedded as the low 8 bits in the sequence // number in internal keys, we need to use the highest-numbered // ValueType, not the lowest). const ValueType kValueTypeForSeek = kTypeValuePreferredSeqno; const ValueType kValueTypeForSeekForPrev = kTypeDeletion; const std::string kDisableUserTimestamp; EntryType GetEntryType(ValueType value_type) { switch (value_type) { case kTypeValue: return kEntryPut; case kTypeDeletion: return kEntryDelete; case kTypeDeletionWithTimestamp: return kEntryDeleteWithTimestamp; case kTypeSingleDeletion: return kEntrySingleDelete; case kTypeMerge: return kEntryMerge; case kTypeRangeDeletion: return kEntryRangeDeletion; case kTypeBlobIndex: return kEntryBlobIndex; case kTypeWideColumnEntity: return kEntryWideColumnEntity; case kTypeValuePreferredSeqno: return kEntryTimedPut; default: return kEntryOther; } } void AppendInternalKey(std::string* result, const ParsedInternalKey& key) { result->append(key.user_key.data(), key.user_key.size()); PutFixed64(result, PackSequenceAndType(key.sequence, key.type)); } void AppendInternalKeyWithDifferentTimestamp(std::string* result, const ParsedInternalKey& key, const Slice& ts) { assert(key.user_key.size() >= ts.size()); result->append(key.user_key.data(), key.user_key.size() - ts.size()); result->append(ts.data(), ts.size()); PutFixed64(result, PackSequenceAndType(key.sequence, key.type)); } void AppendUserKeyWithDifferentTimestamp(std::string* result, const Slice& key, const Slice& ts) { assert(key.size() >= ts.size()); result->append(key.data(), key.size() - ts.size()); result->append(ts.data(), ts.size()); } void AppendInternalKeyFooter(std::string* result, SequenceNumber s, ValueType t) { PutFixed64(result, PackSequenceAndType(s, t)); } void AppendKeyWithMinTimestamp(std::string* result, const Slice& key, size_t ts_sz) { assert(ts_sz > 0); const std::string kTsMin(ts_sz, static_cast(0)); result->append(key.data(), key.size()); result->append(kTsMin.data(), ts_sz); } void AppendKeyWithMaxTimestamp(std::string* result, const Slice& key, size_t ts_sz) { assert(ts_sz > 0); const std::string kTsMax(ts_sz, static_cast(0xff)); result->append(key.data(), key.size()); result->append(kTsMax.data(), ts_sz); } void AppendUserKeyWithMinTimestamp(std::string* result, const Slice& key, size_t ts_sz) { assert(ts_sz > 0); result->append(key.data(), key.size() - ts_sz); result->append(ts_sz, static_cast(0)); } void AppendUserKeyWithMaxTimestamp(std::string* result, const Slice& key, size_t ts_sz) { assert(ts_sz > 0); result->append(key.data(), key.size() - ts_sz); static constexpr char kTsMax[] = "\xff\xff\xff\xff\xff\xff\xff\xff\xff"; if (ts_sz < strlen(kTsMax)) { result->append(kTsMax, ts_sz); } else { result->append(std::string(ts_sz, '\xff')); } } void PadInternalKeyWithMinTimestamp(std::string* result, const Slice& key, size_t ts_sz) { assert(ts_sz > 0); assert(key.size() >= kNumInternalBytes); size_t user_key_size = key.size() - kNumInternalBytes; result->reserve(key.size() + ts_sz); result->append(key.data(), user_key_size); result->append(ts_sz, static_cast(0)); result->append(key.data() + user_key_size, kNumInternalBytes); } void PadInternalKeyWithMaxTimestamp(std::string* result, const Slice& key, size_t ts_sz) { assert(ts_sz > 0); assert(key.size() >= kNumInternalBytes); size_t user_key_size = key.size() - kNumInternalBytes; result->reserve(key.size() + ts_sz); result->append(key.data(), user_key_size); result->append(std::string(ts_sz, '\xff')); result->append(key.data() + user_key_size, kNumInternalBytes); } void StripTimestampFromInternalKey(std::string* result, const Slice& key, size_t ts_sz) { assert(key.size() >= ts_sz + kNumInternalBytes); result->reserve(key.size() - ts_sz); result->append(key.data(), key.size() - kNumInternalBytes - ts_sz); result->append(key.data() + key.size() - kNumInternalBytes, kNumInternalBytes); } void ReplaceInternalKeyWithMinTimestamp(std::string* result, const Slice& key, size_t ts_sz) { const size_t key_sz = key.size(); assert(key_sz >= ts_sz + kNumInternalBytes); result->reserve(key_sz); result->append(key.data(), key_sz - kNumInternalBytes - ts_sz); result->append(ts_sz, static_cast(0)); result->append(key.data() + key_sz - kNumInternalBytes, kNumInternalBytes); } std::string ParsedInternalKey::DebugString(bool log_err_key, bool hex, const Comparator* ucmp) const { std::string result = "'"; size_t ts_sz_for_debug = ucmp == nullptr ? 0 : ucmp->timestamp_size(); if (log_err_key) { if (ts_sz_for_debug == 0) { result += user_key.ToString(hex); } else { assert(user_key.size() >= ts_sz_for_debug); Slice user_key_without_ts = user_key; user_key_without_ts.remove_suffix(ts_sz_for_debug); result += user_key_without_ts.ToString(hex); Slice ts = Slice(user_key.data() + user_key.size() - ts_sz_for_debug, ts_sz_for_debug); result += "|timestamp:"; result += ucmp->TimestampToString(ts); } } else { result += ""; } char buf[50]; snprintf(buf, sizeof(buf), "' seq:%" PRIu64 ", type:%d", sequence, static_cast(type)); result += buf; return result; } std::string InternalKey::DebugString(bool hex, const Comparator* ucmp) const { std::string result; ParsedInternalKey parsed; if (ParseInternalKey(rep_, &parsed, false /* log_err_key */).ok()) { result = parsed.DebugString(true /* log_err_key */, hex, ucmp); // TODO } else { result = "(bad)"; result.append(EscapeString(rep_)); } return result; } int InternalKeyComparator::Compare(const ParsedInternalKey& a, const ParsedInternalKey& b) const { // Order by: // increasing user key (according to user-supplied comparator) // decreasing sequence number // decreasing type (though sequence# should be enough to disambiguate) int r = user_comparator_.Compare(a.user_key, b.user_key); if (r == 0) { if (a.sequence > b.sequence) { r = -1; } else if (a.sequence < b.sequence) { r = +1; } else if (a.type > b.type) { r = -1; } else if (a.type < b.type) { r = +1; } } return r; } int InternalKeyComparator::Compare(const Slice& a, const ParsedInternalKey& b) const { // Order by: // increasing user key (according to user-supplied comparator) // decreasing sequence number // decreasing type (though sequence# should be enough to disambiguate) int r = user_comparator_.Compare(ExtractUserKey(a), b.user_key); if (r == 0) { const uint64_t anum = DecodeFixed64(a.data() + a.size() - kNumInternalBytes); const uint64_t bnum = (b.sequence << 8) | b.type; if (anum > bnum) { r = -1; } else if (anum < bnum) { r = +1; } } return r; } int InternalKeyComparator::Compare(const ParsedInternalKey& a, const Slice& b) const { return -Compare(b, a); } LookupKey::LookupKey(const Slice& _user_key, SequenceNumber s, const Slice* ts) { size_t usize = _user_key.size(); size_t ts_sz = (nullptr == ts) ? 0 : ts->size(); size_t needed = usize + ts_sz + 13; // A conservative estimate char* dst; if (needed <= sizeof(space_)) { dst = space_; } else { dst = new char[needed]; } start_ = dst; // NOTE: We don't support users keys of more than 2GB :) dst = EncodeVarint32(dst, static_cast(usize + ts_sz + 8)); kstart_ = dst; memcpy(dst, _user_key.data(), usize); dst += usize; if (nullptr != ts) { memcpy(dst, ts->data(), ts_sz); dst += ts_sz; } EncodeFixed64(dst, PackSequenceAndType(s, kValueTypeForSeek)); dst += 8; end_ = dst; } void IterKey::EnlargeBuffer(size_t key_size) { // If size is smaller than buffer size, continue using current buffer, // or the inline one, as default assert(key_size > buf_size_); // Need to enlarge the buffer. ResetBuffer(); buf_ = new char[key_size]; buf_size_ = key_size; } void IterKey::EnlargeSecondaryBufferIfNeeded(size_t key_size) { // If size is smaller than buffer size, continue using current buffer, // or the inline one, as default if (key_size <= secondary_buf_size_) { return; } // Need to enlarge the secondary buffer. ResetSecondaryBuffer(); secondary_buf_ = new char[key_size]; secondary_buf_size_ = key_size; } } // namespace ROCKSDB_NAMESPACE